

November 17, 2016

David Sud Moorefield Properties Ltd. 2 Farr Avenue Sharon, Ontario L0G 1V0

Re: Review of Hydrogeological Assessment and Water Balance 154 and 164 Cemetery Road, Township of Uxbridge Project No. P16-11144-91

Dear Mr. Sud:

We are pleased to provide the results of our review of the existing hydrogeological report and stormwater management report for the above-noted development. Relevant reports provided to WSP for review include:

- → Hydrogeological Investigation Cemetery Road Uxbridge Proposed Development, submitted by Norbert M. Wornes, M.Sc., P.Geo, Hydrogeologist (February 2009);
- → Draft version of the *Functional Servicing and Stormwater Management report*, prepared by Cole Engineering Group Ltd. (October 2016); and
- → ORMCP Natural Heritage Evaluation 164 Cemetery Road, Township of Uxbridge, submitted by Beacon Environmental (February 2009).

The Hydrogeological and Natural Heritage reports that were provided were prepared in relation to a previous development application for a building complex consisting of 240 retirement units and commercial space, as well as associated parking lot area. The draft stormwater management report was prepared for the current proposed draft plan application which includes total of fifty six (56) townhouse lots on the north parcel of the property and a three-story apartment building on the south parcel of the site. The subject property area between the two applications are generally the same, with the exception of some additional land extending to the north along Cemetery Road being included in the current application.

The Hydrogeological report presents a detailed characterization of the existing hydrogeological conditions at the site and the surrounding area, including descriptions of the main hydrogeological functions for the site as it relates to the groundwater recharge and seasonal groundwater discharge. Current LSRCA requirements for hydrogeological studies have been partially addressed in this report. These LSRCA requirements have changed since this report was prepared. WSP has prepared a work plan to supplement the previous hydrogeological investigations to ensure that a water balance is prepared in accordance with LUP-12 of the South

WSP Canada Inc. 126 Don Hillock Drive. Unit 2 Aurora, Ontario L4G 4G9 www.wspgroup.com David Sud Moorefield Properties Ltd.

Georgian Bay Lake Simcoe Protection Plan in a WHPA-Q2 Zone. A detailed predevelopment to post-development water balance study will be carried out to update the previous assessment in accordance with the revised site plans, which will quantify changes to the hydrogeological function of site features, particularly the wetland tributary.

This study may be completed following the initial draft plan application, as the water balance study must be based on the final site plan and be consistent with the detailed stormwater management plan.

Although the details are not necessarily required until the detailed design stage, in order to support the draft plan application Beacon Environmental has identified the need to quantify and confirm that pre-development run-off directed towards the site wetland will be maintained and will not be increased under post-development conditions.

Cole Engineering's Functional Servicing report includes an assessment of target peak flows which were based on existing site flows. The preliminary design for stormwater management was prepared with the intention of matching pre- and postinfiltration and overland flows as closely as possible through controlled flow methodologies, such as the use of orifice controls and infiltration chambers at both the north and south parcels of the development. Cole Engineering has proposed the use of over-controls at the northern parcel of land in order to compensate for a slight increase in flow rates from the southern parcel to ensure that overall release rate targets towards the wetland are met and maintained. They have also indicated that every effort will be made to match post-development infiltration volumes to the predevelopment levels on an annual basis, using infiltration storage tanks that will be sized accordingly.

The detailed hydrogeological water balance revision will be completed in sufficient detail to provide a revised site infiltration target, as well as to provide targets for matching pre-development overland run-off directed towards the wetland pre- and post-development in Cole Engineering's detailed stormwater management design. Engineered site design will be modified accordingly to ensure that targets are met in accordance with LUP-12 of the South Georgian Bay Lake Simcoe Source Protection Plan in a WHPA-Q2 Zone and other relevant policies. It is expected that this water balance work will be included as a Condition of draft plan approval.

Based on our review of the existing hydrogeological investigations report, meeting water balance targets is not expected to be a concern for the proposed development. Existing soil and groundwater conditions, as well as proposed site layout, allow for additional infiltration opportunities, such as infiltration trenches in rear yards, which may be implemented if required to meet the targets. Post-development run-off from the site is expected to exceed pre-development flows, however run-off will be detained by the proposed orifice controls and released to the wetland over time to

David Sud Moorefield Properties Ltd.

match pre-development targets as closely as possible, therefore negative impacts to the wetland are not expected. Excess run-off volumes can be discharged downstream at the culvert under Cemetery Road and thereby bypass the wetland, as needed. Flow release targets and site infiltration targets will be revisited at the detailed engineering drainage design stage to ensure that specific targets are met.

We trust that this review will meet your current needs and those of Beacon Environmental. Please contact us if you have any questions or concerns.

Yours truly, WSP Canada Inc.

Sarah Dignard, P.Ehg **Project Engineer**

SJD:nah

Reviewed by,

10 Lloyd Lemon, M.Sc., P.Geo.

Senior Project Geoscientist

Hydrogeological Investigation Cemetery Road Uxbridge Proposed Development

Prepared For : Hyatt Developments (Uxbridge) Inc.

Prepared By: Norbert M. Woerns M.Sc. P.Geo. Hydrogeologist

February 12, 2009

Distribution 1 Client 1 File

> ECEN(15) FP2 2 5 2009

Norbert M. Woerns 96 Lund Street, Richmond Hill, Ontario, L4C 5V9 Ph: (905) 883- 0276

February 12, 2009

Jason Pantalone Hyatt Development (Uxbridge) Ltd. c/o Forum Development Ltd. 291 Edegely Blvd., Suite 1 Concord, Ontario L4K 3Z4

Dear Mr. Pantalone:

Re: Cemetery Road, Uxbridge, Ontario Proposed Development Hydrogeological Investigation

I am pleased to present the attached summary report for the above noted study. Included in this study is the result of a review of available geological and hydrogeological information and field investigation to confirm local and on-site hydrogeological conditions. Hydrogeological characterization of the site is provided along with an assessment of impact of the proposed development. Conclusions and recommendations for mitigation of anticipated impacts are provided in support of the site plan application.

I trust the attached report meets your needs at this time. Please call the undersigned should you have any questions or require additional information.

Yours very truly,

Nabert Woens

Norbert M. Woerns M.Sc., P. Geo. Hydrogeologist

Attach:

Table of Contents

Letter of Transmittal

Page No.

1.0		-1	1
	1.1 Ba	ekground	1
2.0	Methodology		1
	2.1 Da	ata Review	2
		ield Investigation	2
3.0	Results		6
		ysical Setting	6
	3.2 Ge	cological Setting	6
	3.3 Hv	drogeological Setting	9
	3.4We	Il Survey/Water Use	9
		oundwater Recharge/Discharge	16
4.0	Pre-developm	ent Water Balance	16
	4.1 Me	eteorological Data and Climatic Water Balance	16
		iltration Factors	17
- 0	D 1 1		10
5.0	-	nent Water Balance	19
	5.1	Proposed Land Uses	20
	5.2	Water Movement from Impervious Surfaces	23
	5.3	Post-development Water Balance Results	24
6.0	Impact Assess	ment	26
	6.1	Water Balance	26
	6.2	Wellhead Protection.	26
	6.3	Private Well Interference	27
	0.5		
7.0	Conclusions		28
8.0	Recommendat	tions	28
9.0	References		30

List of Figures

Figure 1	Location Map	3
Figure 2	Well Survey Area	5
Figure 3	Agricultural Soil Map	7
Figure 4	Surficial Geology	8
Figure 5	Section AA'	10
Figure 6	Section BB'	11
Figure 7	Aggregate Resources	12
Figure 8	Groundwater Flow	13
Figure 9	Site Plan	21
Figure 10	Water Balance Areas	22

List of Tables

Table 1	Well Water Quality Summary	14
Table 2	Well Water Microbiological Quality Summary	14
Table 3	Water Quality Results Summary-On-site Groundwater & Surface Water	15
Table 4	Water Balance Summary, 1954-1975, Uxbridge, Ontario	17
Table 5	Average Infiltration Factors	19
Table 6	Water Balance Existing Conditions	19
Table 7	Proposed Land Uses	20
Table 8	Functional Categories for Post-development Land Use	20
Table 9	Summary of Infiltration for Water Balance Analysis	25

Appendices

Appendix	1	MOE Well Record Summary
Appendix	2	Site Field Data
Appendix	3	Well Survey Summary
Appendix	4	Water Quality Results
Appendix	5	Climatic Water Balance
Appendix	6	Ontario Building Code, Supplementary Guide SC-6
Appendix	7	Water Balance Analysis
Appendix	8	Uxbridge Wellhead Protection Area Map

Page No.

Hydrogeological Investigation Cemetery Road, Uxbridge, Ontario

1.0 Introduction

1.1 Background

The subject property is located on part of Lots 26 and 27 Concession 6 at the western edge of the community of Uxbridge, Durham Region. It is located on the north side of Highway 47, Toronto Street South and includes portions of agricultural property formerly owned by the Wood family at 164 Cemetery Road. The portion of the property being considered for development consists of 2.49 hectares (6.15 acres). A site plan for 240 retirement units and commercial office space development is proposed within the existing settlement area boundary for the community of Uxbridge.

The property consists of agricultural fields with small wooded areas in the northwestern and southeastern portions of the subject lands. These wooded areas are associated with seepage areas and wetlands. The site drains from southwest to northeast through an intermittent drainage course that crosses the southern portion of the property. The northern portion of the subject lands contains an existing residence and a number of farm buildings associated with an existing agricultural operation.

The proposed development will be serviced with municipal sewer and water services. The community of Uxbridge is currently served with municipal wells. These are located within the community of Uxbridge and the nearest well is located about a kilometer to the northeast of the subject property.

2.0 Methodology

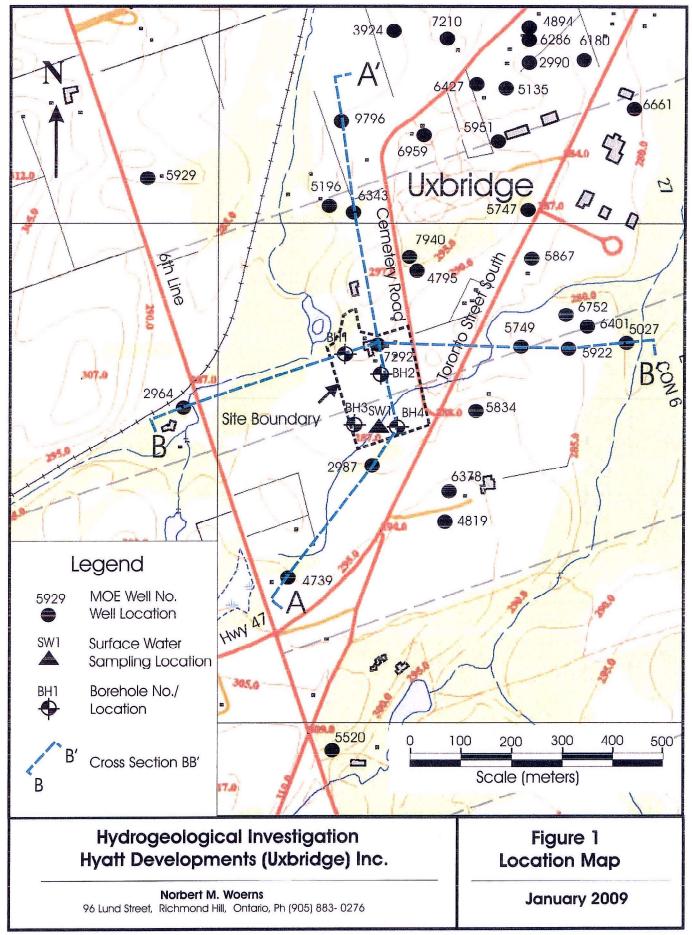
The hydrogeological evaluation is in support of a site plan approval and provides information to facilitate the layout and design of the proposed development with recommendations for storm water management systems. The hydrogeological evaluation includes the following:

- 1) Assessment of the hydrogeological setting through secondary source information, on-site subsurface investigations, and a reconnaissance site visit to identify areas where infiltration can occur and areas where site conditions limit or preclude infiltration,
- 2) Quantification of the existing groundwater recharge contributions through an appropriate long term water balance assessment,
- 3) Assessment of the groundwater contributions to the tributary stream,
- 4) Impact assessment to quantify the potential change in groundwater quantity and quality both on-site and off-site and the effects upon local wells including the municipal wells,
- 5) Screening of infiltration mitigation measures based on available site information collected through background sources and field work, and
- 6) A mitigation strategy including appropriate infiltration measures.

This investigation does not include an assessment of the contamination potential of on-site fill materials which has been undertaken under separate Environmental Site Assessment investigations.

2.1 Data Review

Available geological and hydrogeological maps and reports of the area were obtained and reviewed to provide a characterization of the site in the context of the local and regional setting. Stereo air photography obtained from Northway Maps for the property was examined to determine site terrain conditions. Previous investigations and borehole logs completed on the property as well as Ministry of the Environment well record summaries for the area were reviewed and utilized to characterize local groundwater conditions. Ministry of the Environment well summary information is provided in Appendix 1. Details of the proposed development including a detailed breakdown of the area of land use categories with percent pervious and impervious areas for each proposed land use on the property were provided by Sernas Associates for use in the water balance analysis. Monthly climatic information and a climatic water balance based on climatic data from the nearest long term climate station was provided by Environment Canada Atmospheric Environment Service (AES).


2.2 Field Investigation

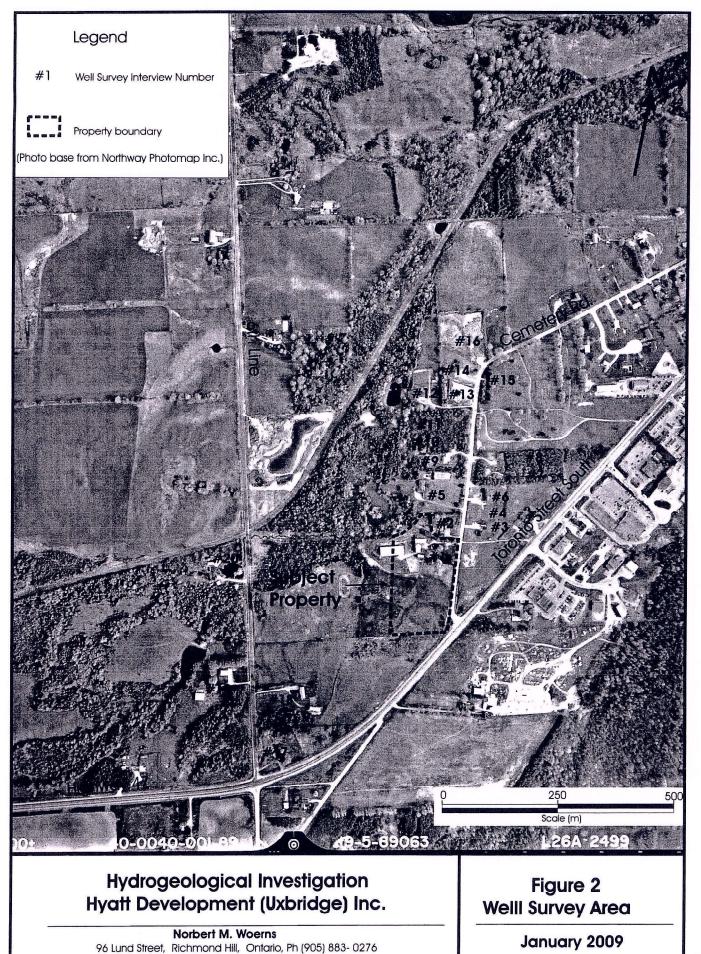
Field investigations include an initial site visit, completion of the installation of mini-piezometers in the on-site intermittent drainage channel, groundwater monitors installations, in-situ hydraulic conductivity testing within the monitors, a survey of well water use in the immediate area of the site, and groundwater quality testing to character the local aquifer and on-site conditions. The location of on-site monitoring locations is shown on Figure 1.

<u>Mini-Piezometer Installation</u>: Two shallow groundwater monitors or mini-piezometers were installed within the on-site tributary on May 21, 2008. The purpose of these monitors was to assess vertical hydraulic gradients relative to the water levels beneath the intermittent drainage course and to determine whether it is under discharge or recharge conditions. These consist of 3.8mm diameter threaded steel pipe segments that were fitted with a stainless steel screen. These were installed into the creek bed through a shallow hand auger hole and driven a short distance into the subsurface by pounding with a metal weight. Construction details of the mini-piezometers are shown in Appendix 2.

<u>Drilling /Monitor Installation</u>: Drilling of the boreholes and installation of the groundwater monitors was completed by Lantech Drilling Services Inc. under the supervision and direction of Norbert M. Woerns, Hydrogeologist. The boreholes were drilled using a track mounted CME 75 auger drilling rig and 108mm inside diameter hollow stem augers. The outside of the augers measures about 200mm creating a borehole diameter of between 200mm to 250mm in diameter. Split spoon soil samples were obtained at 1.5m intervals during the drilling of the boreholes. Representative soil samples were submitted for laboratory grain size analysis by Alston Associates Inc. Grain size results are provided in Appendix 2.

Drilling and monitor installations were completed between June 16 and 17, 2008. Groundwater monitors were installed at five (5) locations within the site. One of these locations, BH1 at the northern end of the property had both shallow and deep monitors installed to determine vertical hydraulic gradients. The remaining three sites had one monitor completed at each location into the groundwater table. The depth of the deep monitor is 12.2m from surface. The shallow monitors were installed at depths of between 6.1 and 7.6m.

Groundwater monitors consist of 50mm diameter threaded PVC pipe with no. 10 machine slotted PVC screens. The PVC pipe segments were threaded and the bottom of the screen was fitted with a tapered PVC end. PVC slip caps were fitted to the top of the monitors. A protective steel casing with a locked cap was installed over the PVC monitoring pipes. The steel casing measures about 102mm square and about 1.2m in length.


The borehole annulus around the PVC screens were backfilled with No. 3 silica sand to about 0.6m above the top of the screen. A bentonite gravel seal (holeplug) was installed above the sand for a minimum thickness of about one (1) meter to the surface. The shallow monitor at Borehole 1 had about 0.5m of holeplug above the silica sand. Above this was about 2.0m of bentonite grout which was capped with about a meter of holeplug to surface. The holeplug was hydrated with the addition of clean water from the water tank and the bentonite grout was also mixed with clean water in a pail prior to installation. Bentonite grout (quickgel) was installed above the bentonite gravel seal to just below ground surface. The remaining upper one to two metres of borehole annulus between the PVC monitor and the borehole wall was backfilled to surface with bentonite gravel that was hydrated with clean water. Stratigraphic descriptions of the subsurface units and monitor construction details are provided in Appendix 2. Surface elevations of the monitors were checked in the field with a hand held GPS unit (Garmon Etrex Vista) and were adjusted to conform to the topographic survey plan by J.D. Barnes Limited, April 29, 2008.

<u>In-Situ Hydraulic Conductivity Testing</u>: In-situ hydraulic conductivity testing was completed at each groundwater monitor. In-situ hydraulic conductivity testing was completed with the injection of a clean PVC slug measuring 92.7 cm in length and 3.5 cm in diameter. Water level data was collected manually using a Solinst electronic water level meter. These data were analysed using a computerized analytical analysis, Aquifer Test version 3.5, by Waterloo Hydrogeologic Inc. This testing was completed on June 25, 2008 eight days following completion of the last groundwater monitor. The results of this analysis are provided in Appendix 2.

<u>Well Survey</u>: A field survey of local wells was conducted on May 21, 2008, June25, 2008 and July 10, 2008 for properties adjacent to and in the immediate area of the site. Properties included in the survey are shown on Figure 2. Well survey forms were filled out to the extent possible during on-site interviews with local residents. A survey form was dropped off with a self addressed and stamped return envelop at two residences where no one was home. Information provided on seventeen (17) individual properties is summarized in Appendix 3. A well survey was not completed at the property located at 150 Cemetery Road north of the subject property due to a locked gate and the absence of a mail box in which to deposit a well survey form. Three other properties did not respond to the well survey form left at each residence.

Water Quality Sampling:

A water sample was taken from one private residence up-gradient of the property and one sample was taken from the on-site residence. Additional groundwater quality samples were taken from the deep monitor (BH1D) and the shallow monitor at BH3 on July10, 2008. A surface water sample was also taken from ponded seepage water along the intermittent drainage channel on the property. The sample locations are shown on Figure 1. Water Quality results are reported in Appendix 4.

3.0 Results

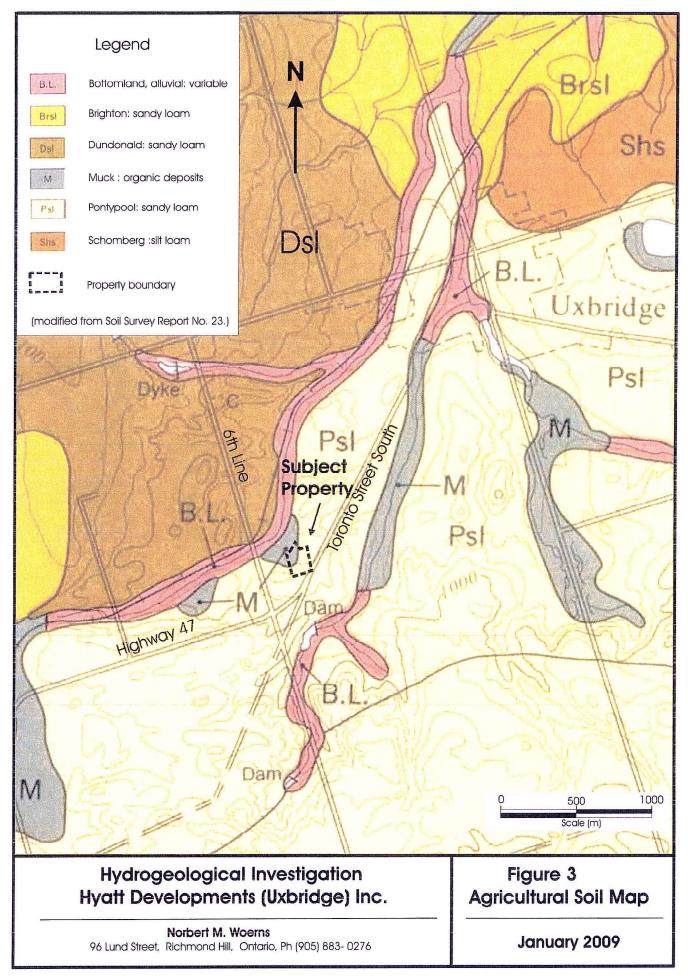
3.1 Physical Setting

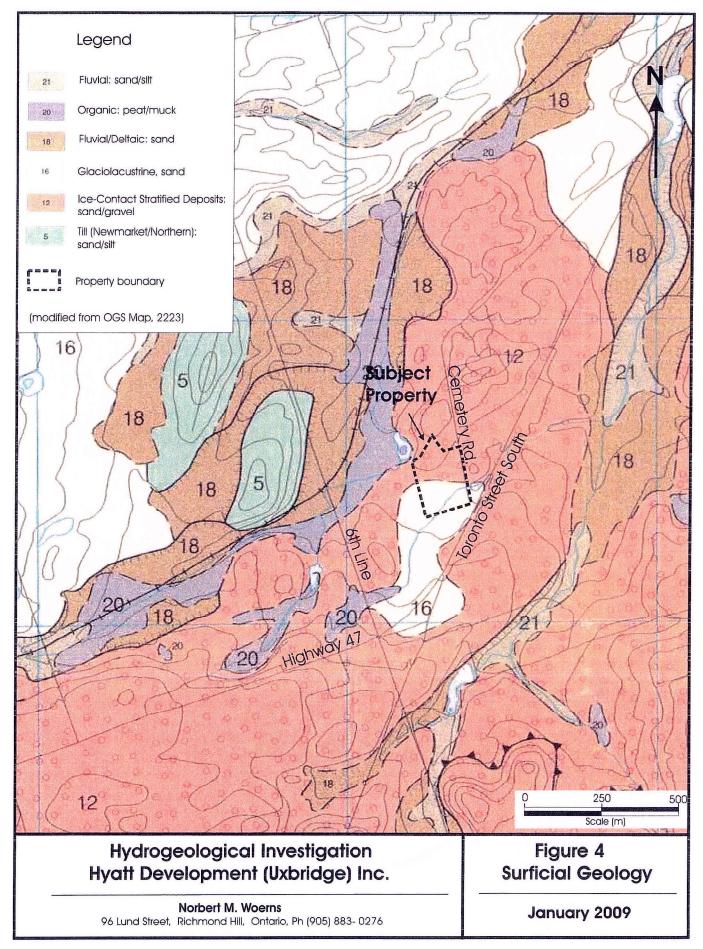
The site is located at the northern edge of the Oak Ridges Moraine physiographic region (Chapman and Putnam, 1984). The site is characterized by hummocky to gently rolling topography at the north end of the property and relatively flat low lying terrain at the south end of the property. The latter is associated with wetlands and an intermittent drainage course. This hummocky terrain forms a height of land that rises about 9m above the adjacent areas to the south. In the southernmost portion of the property the land is gently rolling to flat. This area is underlain by glacial outwash deposits consisting predominantly of silt and sand. Glacial meltwaters may have eroded the underlying till deposits and deposited sand, and silt over the till surface.

Regional agricultural soils mapping completed for this area (Olding and Wicklund, 1956, reprinted 1990) indicates two soil types underlying the subject, property, the Pontypool Sandy Loam (Psl) and organic soils mapped as Muck (M) as shown on Figure 3. The Pontypool soils are developed on calcareous sand deposits which generally have good drainage and normally occupy rolling to hilly terrain. The areas of organic soil or muck soil units consist of well decomposed organic deposits and occur within topographic depressions at the western end of the property which are generally associated with local wetland features. Drainage within these soil units is therefore very poor. Due to the regional scale of mapping the boundaries of the soil units should be considered approximate.

Surface elevations on the property range from about 296 meters above sea level (mASL) at the northern end of site to about 286 mASL at the southeast corner. The site is drained by an intermittent surface drainage course that flows eastward into a culvert beneath Cemetery road. There is evidence of groundwater seepage along the drainage course with evidence of iron staining.

3.2 Geological Setting


Bedrock Geology


The underlying bedrock consists of light brown to brownish grey shales of the Georgian Bay Formation. (Ontario Geological Survey 1991) formerly identified as the middle member of the Whitby Formation (Liberty 1969). The depth to bedrock within the area varies from 113 m at MOE well no. 14797 northeast of the property to about 126m at MOE well no.14667 southwest of the property. The bedrock in local well records is described as black shale.

Surficial Geology

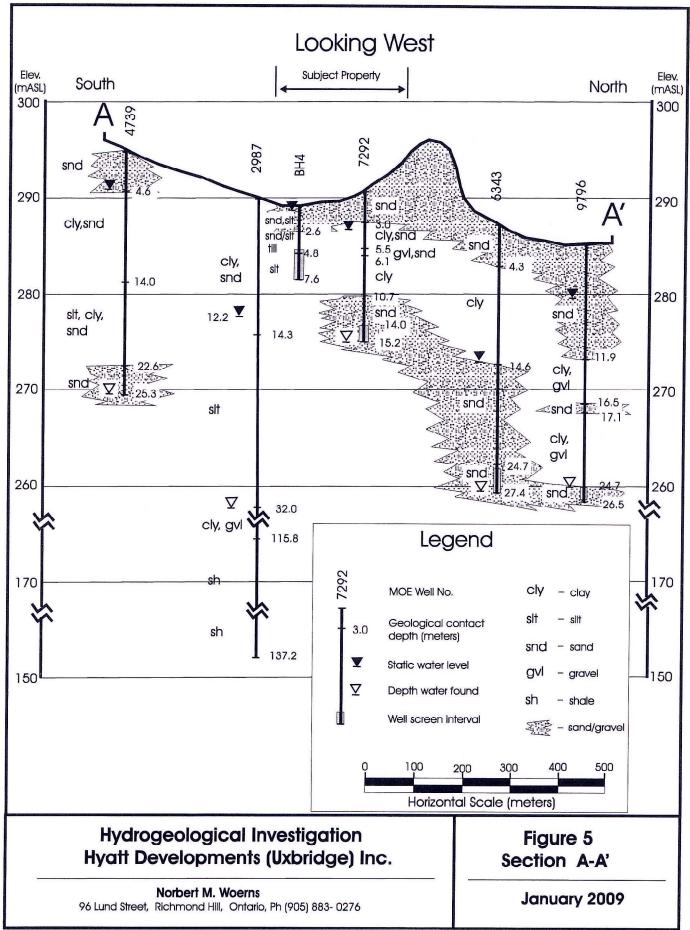
The thickness of surficial deposits within the area, as noted above, is between 113 and 126 metres thick and consists of a complex sequence of overburden materials. Two major surficial deposits have been mapped within the property, ice-contact stratified consisting primarily of sand and gravel and glaciolacustrine sand. The ice contact deposits are typical of the Oak Ridges Moraine which extends over the entire area. Surficial geological mapping of the area was completed by the Ontario Geological Survey (Barnett, and Dodge, 1996) at a detailed scale of 1:20,000 as shown on Figure 4. Regional Surficial Geology mapping was completed by the Geological Survey of Canada (Barnett and Gwyn, 1997). This encompassed a larger area including Uxbridge at a smaller regional scale of 1:50,000.

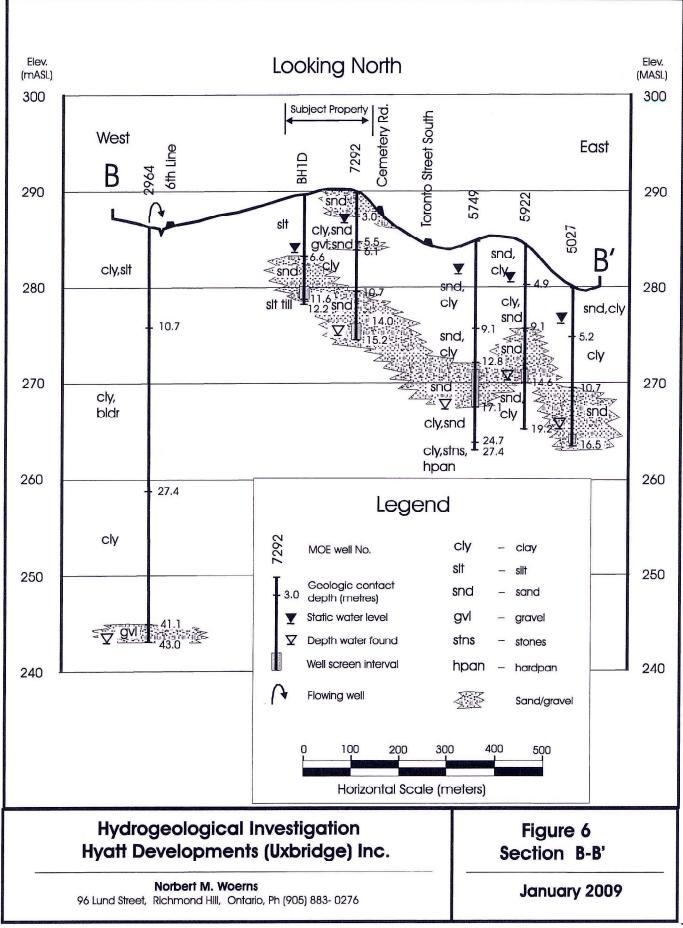
Surficial geology was confirmed with the completion of four shallow boreholes holes to depths of between 6.1 and 7.6m and one slightly deeper monitor at 12.2 m. Borehole locations are shown on Figure 1.

The subsurface conditions is illustrated in Sections AA', Figure 5 and Section BB', Figure 6 from Ontario Ministry of the Environment well record information summarized in Appendix 1. Well records in the vicinity of the property show sand deposits at surface varying in thickness from 2.6m to 11.9m. Buried sand and gravel deposits are also found at varying depth between 6m and 27m. Finer grained soil described as clay/sand, clay/silt, or sand/clay occur locally at surface with thicknesses of between about 7m and 12m. Finer grained soil units occur at greater thicknesses of between 18m to 116m to the south and west of the property.

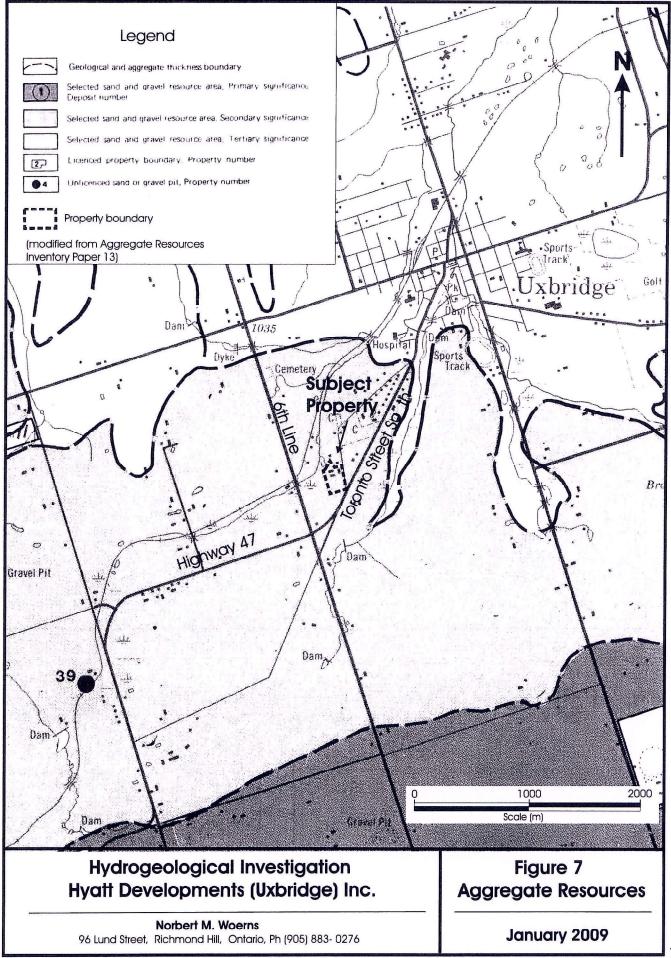
Much of the site is underlain by a fine sand and silt to a depth of between 2.6m in BH 3 to 9.3m at BH 1. Grain size results are provided in Appendix 2. Sandy silt to silty sand till occurs at depths of between 2.6m at BH4 to 9.3m in BH1. This soil unit also occurs at the bottom of boreholes BH1, BH2, and BH3. At BH 4, the silt to sand till unit is about 2.2m thick where it is underlain by silt to sandy silt. Local glaciolacustrine and ice-contact stratified drift deposits consisting of sand and gravel deposits are considered to be of secondary significance from a construction aggregate perspective (OGS, 1980). The upper portion of these deposits are predominantly sand and quantities of crushable aggregate are considered limited. However resources of aggregate for road sub-base course, sand cushion and fill appear to be extensive throughout the area. The distribution of these deposits is shown on Figure 7.

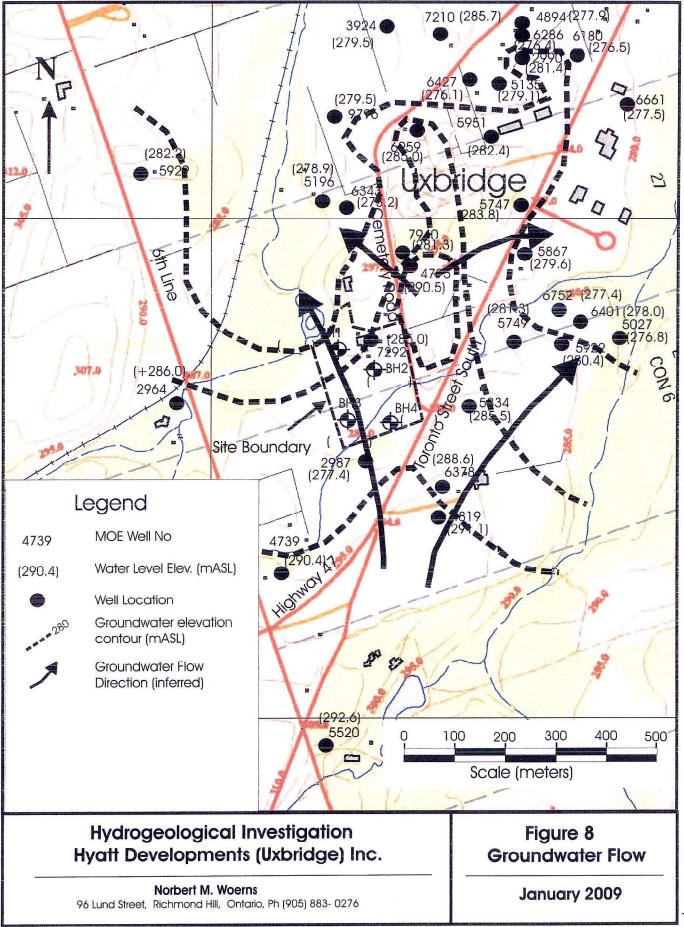
3.3 Hydrogeological Setting


Hydrogeological conditions are shown on the two sections noted above. Groundwater levels vary between flowing conditions west of the subject property to about 14.0m below surface north of the property. Groundwater elevations generally decrease from south to north and from west to east as shown on Sections AA' and BB'.


Well records show that most wells are completed into a shallow buried sand and gravel aquifer between 7m and 30m from surface. Water levels in private wells in the buried sand and gravel indicate groundwater flow directions in a northeasterly and northwesterly direction as shown on Figure 8. The shallow and deep monitor pairs at BH1 shows a slight downward hydraulic gradient indicating groundwater recharge conditions on the site. The two mini-piezometers installed within the on-site creek showed downward hydraulic gradients as shown in Appendix 2. This indicates groundwater recharge conditions along the creek at the time of the water level measurements. This may change seasonally.

Wells yields in the buried sand and gravel aquifer vary between 0.38L/sec to 0.076 L/sec (5 igpm and 10 igpm). A few wells have been tested at rates of between 1.51L/sec and 2.27L/sec (20 igpm to 30 igpm). The test pumping rates indicates that there is generally more than adequate groundwater availability for most private domestic wells. The majority of water use is reported to be for domestic consumption although some minor industrial and commercial use and stock water is also reported. A few wells have been completed for municipal water use. Water quality is reported to be fresh with one exception in well 2987 south of the site which recorded salty water. This well was completed into shale bedrock which typically has poor water quality.


3.4 Well Survey/Water Use


A well survey was completed for the immediately adjacent areas of the property that were not serviced by municipal services. This included residences within about 500m of the property. A total of 20 residences were included in the survey including the existing property. Interviewed for 15 residences were completed on three dates, May 21/08, June 25/08 and July 10/08. Two residences sent in a

completed survey form and no interviews or responses were available from the remaining three residences. The location of the well survey interviews is shown on Figure 2. The results of the well survey are summarized in Appendix 3. Well depths are reported to be between about 11.3 m and 61m. Most residents reported adequate supplies of water although in a couple of cases it was reported that there was limited water supply. This was corrected in one case by deepening the well and in another case the problem was resolved though changes in water use. In most cases, the water was reported to have high iron and was hard with high calcium. Sulphur was noted in three cases. Water softening is commonly used as a treatment method. One resident reported using ultra violet light and another reported using a reverse osmosis treatment system. One well was reported to flow periodically.

Two well water samples were taken on May 21/08 during the well survey. Water quality results for one resident north of and down-gradient of the site and the on-site well is provided in Appendix 4. These results show generally good water quality for domestic consumption. Hardness and turbidity are elevated above the aesthetic objective in the Ontario Drinking Water Standards (ODWS) for both wells. Iron is elevated for the up-gradient well as summarized below:

Parameter	Sample 1 On-site	Sample 2 Down-gradient	ODWS	
Iron (mg/L)	ND	0.86	0.3 (AO)	
Hardness (mg/L)	130	250	80-100 (OG)	
Turbidity (NTU)	5.1	8.9	5 (AO)	

Table 1. Well Water Quality Summary

Notes: ODWS – Ontario Drinking Water StandardsAO – Aesthetic ObjectiveOG – Operational GuidelineND – Not DetectedNTU – Nephelometric Turbidity Units

The reported levels of iron and hardness can be readily treated with water softening and iron filtration. Turbidity level in the on-site well, 5.1 NTU is only slightly above the aesthetic objective of 5.0 NTU. In the down-gradient well, the level 8.9 NTU is quite likely related to the elevated iron levels. The bacteriological results are summarized as follows:

Table 2.	Well Water	Microbiological	Quality Summary
----------	------------	-----------------	------------------------

Parameter	Units	Sample 1 On-site	Sample 2 Down-Gradient	ODWS⁺
Fecal Coliform	CFU/100ml	0	0	0
Coliform	CFU/100ml	0	0	0
E. coli	CFU/100ml	0	0	0
Heterotrophic plate count	CFU/ml	130	6	500
Background	CFU/100ml	35	370	200

⁺- Ontario Drinking Water Standard for treated water supplied through a water works as defined under Section 52 of the Ontario Water Resources Act. (OWRA). Not directly applicable for untreated raw water samples such as domestic well samples.

The microbiologic parameters for the on-site sample and the down-gradient sample meets the ODWS for treated water supplied for domestic consumption for most bacteriological parameters. The exception to this is the background colonies within the down-gradient well sample with 370 CFU/100 which exceeds ODWS of 200 background colonies on a total Coliform membrane filter for treated (i.e disinfected) water supplied through a distribution system. A re-sample of this water for bacteriological results should be completed to confirm this result.

Two on-site groundwater samples and one surface water sample were taken on July 10/08. One groundwater sample was taken from shallow monitor (BH3) and the deep monitor (BH1-D). A surface water sample was taken from standing water within the low lying wet area along the intermittent creek at the south end of the property. The groundwater samples were taken from BH 1-D and BH 3 using a dedicated Waterra pump and polyethylene tubing. Three volumes of water were removed from the deep monitor BH 1-D prior to sampling. The water was very silty and was therefore decanted into a pail and allowed to settle for a few minutes before decanting through a 0.45 micron filter. A duplicate sample was taken for quality control purposes on the laboratory results. Sampling of BH3 was completed without removal of water prior to sampling. The surface water sample was relatively clear but was also filtered through a 0.45 micron filter. The surface water sample was not filtered in the field but was filtered in the lab prior to analysis.

The groundwater quality results within the shallow and deep on-site monitors shows generally good water quality. The aesthetic objective for iron (0.3 mg/L) was slightly exceeded at 0.33 mg/L within the shallow monitor and the operational guideline level for hardness (80-100 mg/L) was exceeded in both the shallow and deep monitor at 380 mg/L and 120 mg/L respectively. The sodium levels were 74 mg/L for BH1-D and 63 mg/L for BH3. These are within the 200 mg/L aesthetic objective but exceed the 20 mg/L level at which the local medical officer of health should be advised should this be used as a source of drinking water. The surface water quality from the intermittent drainage channel is similar to the on-site groundwater quality. Iron and hardness are in excess of their respective aesthetic objective and operational guideline. The chloride and sodium levels are elevated above those found within the on-site groundwater. The ratio of sodium to chloride within surface water suggests the source of these parameters is salt, probably from local winter road maintenance activities. The level of chloride in surface water (280 mg/L) exceeds the aesthetic objective (250 mg/L) for drinking purposes and the sodium level (180 mg/L) is in excess of the health advisory level of 20 mg/L but below the 200 mg/L aesthetic objective for drinking water purposes. These results are summarized in Table 3 below.

Parameter	BH 1-D	BH3	Surface Water	ODWS
Iron (mg/L)	ND	0.33	0.33	0.3 (AO)
Hardness (mg/L)	120	380	300	80-100 (OG)
Colour (TCU)	5	4	55	5 (AO)
Chloride (mg/L)	23	170	280	250 (AO)
Sodium (mg/L)	74	63	180	200 (AO);20 (advisory level)

Table 3. Water	Quality Results	s Summary – On-site	Groundwater and	Surface Water
----------------	-----------------	---------------------	-----------------	----------------------

Notes: AO – Aesthetic Objective OG – Operational Guideline The water quality in the on-site groundwater and surface water appears to be relatively good, however there are indications of urban impacts with increased sodium and chloride in the surface water and to a lesser extent the on-site shallow to intermediate depth groundwater.

The property lies along the edge of a wellhead protection zone for the Uxbridge municipal wells. It also lies within an area identified within the Regional Official Plan as a high aquifer vulnerability area as shown on Schedule B Map B2 of the Official Plan of the Regional Municipality of Durham Region . These designations impose restrictions upon certain land uses as outlined in Tables E5 and E6 of Appendix E of the Regional Municipality of Durham Official Plan. The Oak Ridges Moraine provisions relating to wellhead protection apply to the property as well as relevant provisions of the regional and local municipal official plans. The implications of this are discussed in Section 6.2 Wellhead Protection.

3.5 Groundwater Recharge/Discharge

The property lies within a regional groundwater recharge area the Uxbridge Infiltration Area. This area is recognized as requiring storm water infiltration measures, LSRCA (1997). There is visual evidence some localized groundwater discharge associated the onsite intermittent stream at the south end of the property. Recharge conditions are reflected by well record information and the on-site groundwater monitors showing downward hydraulic gradients. Groundwater recharge is facilitated by the relatively permeable soils beneath most of the property and downward hydraulic gradients. Locally the small unnamed creek has cut into overburden materials at the south end of the property where the groundwater table is very close to surface and likely intersects the ground surface during seasonally higher groundwater levels within the spring and fall of the year.

The surficial soil consisting mostly of silt, sand and trace of clay, has a moderate permeability and groundwater recharge potential depending upon the sand and silt content. Silt till soil which occurs at depth below the site is expected to have a relatively low permeability. Typical recharge rates for the silty soil are in the range of 125 to 150 mm/yr (MOEE 1995). Recharge rates could vary depending upon the density of the soil, the degree of weathering and local topographic conditions. Maintenance of the recharge and discharge functions of the property are important in maintaining the ecological health of the on-site wetland and down stream aquatic and terrestrial habitats associated with the river valley systems.

4.0 Pre-Development Water Balance

4.1 Meteorological Data and Climatic Water Balance

Long term meteorological data from the Uxbridge Meteorological Station (42°12'N, 79°10'W) was used to prepare the water balance. The data from this station was selected as it represents the longest period of record available locally and is considered representative of long term climatic trends for the area. These data include temperature and precipitation data for the period between 1954 and 1975. Environment Canada requires a continuous period of climate data over a period of at least 10 years for calculating long term climatic water balance. The mean annual water surplus was calculated using the method described in Thornthwaite and Mather (1957). These data were tabulated on a monthly basis which is summarized in Appendix 5. Soil moisture storage of 200 mm/yr is assumed for moderately deep rooted plants including pasture which is characteristic of this property. This is considered representative of both sandy silt and the fine grained silty till surface soils found on the property as documented in subsurface soil investigations.

A summary of the climatic water balance for existing conditions is provided in Table 1 below. This table shows average conditions from the meteorological data for moderately deep rooted plants typical of pasture lands. The property consists primarily of agricultural pasture fields. There is a small forested area adjacent the north western portion of the site. In addition there is a riparian area associated with the creek in the southeastern portion of the property. The riparian area contains tree cover with a shrub understory. Both the forest and the riparian area are to remain undisturbed under post-development conditions. For purposes of the water balance a soil moisture of 350 mm/yr has been used due to the tree cover. The mean annual precipitation is 783 mm/yr. The total annual surplus is the amount of water available after evapotranspiration has occurred. Evapotranspiration is the largest component of the water balance and increases with increasing depth of the roots of plants. The remaining surplus is available for runoff and infiltration. The pre-development climatic water balance is summarized below:

Soil Moisture	Precipitation (mm/yr)	Potential ET (mm/yr)	Actual ET (mm/yr)	Surplus (mm/yr)
Soil Moisture 100 mm/yr				
(shallow rooted plants – lawns)	783	598	518	265
Soil Moisture 200 mm/yr		he point that a start		
(moderately deep rooted plants -				
pasture)	783	598	570	213
Soil Moisture 300 mm/yr				
(deep rooted plants - trees)	783	598	592	191

Table 4 Water Balance Summary 1954 – 1975, Uxbridge, Ontario

Note : Data from Meteorological Service of Canada, 2008 ET – Evapotranspiration Numbers rounded off

The potential evapotranspiration is the amount of evapotranspiration that could take place if there was sufficient precipitation available during the drier summer months. This becomes relevant where runoff from impervious surfaces is directed to pervious areas under post-development conditions as discussed below.

The site includes a wetland associated with and adjacent to the un-named creek flowing across the southern portion of the property. The wetland represents a small portion of the property and will remain unchanged under post-development conditions. It will therefore be included as part of the riparian area for purposes of the water balance analysis. Since there are no significant areas of standing water or ponds on the property, pond evaporation is therefore not applicable to the water balance. Storm water management ponds are also not proposed for the post-development condition.

4.2 Infiltration Factors

The partitioning of the water surplus between runoff and infiltration depends upon soil type, topography and cover type. Water infiltrates relatively easily through sands compared to clay. Flatter slopes tend to promote infiltration over steeper slopes and naturally vegetated areas promote infiltration over bare soils. Infiltration factors take into account these main factors in estimating the amount of infiltration that will occur under given site conditions. Infiltration factors were calculated according to a method cited in MOEE (1995), and MOE (2003). Infiltration factors were calculated by summing individual sub-factors representative of the topography, soil type, and cover conditions.

The development area has varying conditions across the property. Infiltration factors have taken these conditions into account and reflect the predominant or typical conditions. Pre-development cover conditions consist predominantly of pasture lands characterized as containing plants with moderately deep roots. This cover type is assigned an infiltration sub-factor of 0.15. The topography is predominantly gently rolling with generally moderate gradients with the exception of the extreme southern portion of the property adjacent to the intermittent drainage channel and the wetland area which is relatively flat. The wetland area has a high groundwater table and is considered a discharge area. Therefore there will be little or no infiltration within this area. An average sub-factor of 0.20 is assigned to the topography representative of rolling topographic conditions.

Surface soils consist primarily of fine sand and silt underlying most of the property. The hydraulic conductivity of the major hydrogeological units was determined with in-situ hydraulic conductivity testing. Slug injection and withdrawal tests were performed on the on-site groundwater monitors on June 25, 2008. The analytical results are provided in Appendix 2. A Hvorslev analytical method was used to determine the hydraulic conductivity of the screened hydrogeological units. Groundwater monitors were screened into the different soil units found beneath the site including silty sand, silt, and silt till (BH1D),silt and sand (BH1S), sand and silt (BH2), sandy silt till/sand/silt (BH3), silt/silt and sand till (BH4). The analysis was completed using the Waterloo Hydrogeologic Inc. software package called Aquifer Test v3.5.

Hydraulic conductivity results varied from 2.23E-05 m/s for the sandy materials at BH1S to 3.74E-07 m/s for fine sand /silt/silt till at BH3. The geometric mean of the combined hydraulic conductivity results for the surficial sand and silt soil is 5.76E-06 m/s. The grain size analysis completed by Alston Associates Inc. (Appendix 2) indicates the predominant soil types to consist primarily of sand and silt. The equivalent soil percolation rate for the predominant soil type, sand and silt (SM soil classification) is estimated to be in the range of 75 mm/hr to 30 mm/hr (8 to 20 min/cm) as per Supplementary Guide SG-6 of the Ontario Building Code 1997 (Appendix 6). Infiltration trenches and pervious pipe infiltration systems require a minimum percolation rate of 15mm/hr (MOE, 2003). The predominantly fine sand and silt surficial soil types are considered to be suitable for infiltration trenches and pervious pipe infiltration systems.

Grading of the property and compaction of the soil due to heavy equipment movement may reduce the infiltration capability of the surficial soil until weathering processes and the action of roots from vegetation restore the pre-development conditions. As a conservative measure, a slightly lower infiltration sub-factor for the soil component of 0.25 has been selected to account for the reduced infiltration capacity under post-development conditions. The change in cover type from pasture lands to urban lawns will also result in a slight increase in runoff and a reduced infiltration factor from 0.15 for pasture lands to 0.05 for urban lawns. Summation of the infiltration sub-factors for the study area provides an infiltration factor of 0.65 for pasture lands under pre-development conditions. The sum of the post-development infiltration sub-factors changes to 0.50 under post-development conditions due to soil compaction and the change from pasture to manicured lawns. These are consistent with that indicated from the Base Flow Index for the area (Moin and Shaw, 1986) which indicates 55% to 60% of the water surplus is accounted for as stream base flows for this area. The slightly higher infiltration estimated for the site under pre-development conditions is due to the localized presence of more permeable soils. The Moin and Shaw analysis is based upon stream flows which are influenced by a

wider variety of soil conditions within the stream catchment areas. The wooded riparian area associated with the wetland remains unchanged under post-development conditions. For water budget purposes the wooded riparian area is treated as wetland. Infiltration factors for the site under pre-and post-development conditions are summarized in Table 2.

Sub Factors	Description	Pre-Development	Post-development
Pasture /Lawns		Pasture	Lawns
Topography	rolling	0.20	0.20
Soil	fine sand and silt	0.30	0.25*
Cover	pasture/lawns	0.15	0.05
Total		0.65	0.50
Tree Cover (ri	parian areas)	Trees	Trees
Topography	rolling	0.20	0.20
Soil	fine sand and silt	0.30	0.30
Cover	trees	0.2	0.2
Total		0.70	070

Table 5.Average Infiltration Factors

* Represents Compaction under Post Development Conditions

The pre-development water balance calculated for average annual conditions is summarized in Table 3.

Evapotranspiration is the largest component of the water balance representing about 70.5% of the total precipitation under pre-development conditions. The remaining water surplus represents about 29.5% of total precipitation. Of the surplus, 65% will infiltrate according to the infiltration factors. The remaining runoff will constitute 35% of the surplus. The current land use includes existing farm buildings with the remainder of the development area either pasture land or wetland.

	Area (ha)	Precipitation (m ³ /yr)	Evapotranspiration (m ³ /yr)	Infiltration (m ³ /yr)	Runoff (m ³ /yr)
	2.49	19,497	13,749	2,927	2,820
		783 mm/yr	552 mm/yr	118 mm/yr	113 mm/yr
% of Total Precipitation		100%	70.5%	15.0%	14.5%

Table 6.	Water E	Balance -	Existing	Conditions
----------	----------------	-----------	----------	------------

* Numbers rounded off

5.0 Post-development Water Balance

The distribution of water under post-development conditions was modeled for the proposed development. Post-development conditions were compared to pre-development conditions specifically with respect to changes in infiltration, runoff, evapotranspiration and evaporation. The water balance

analysis also addresses measures that will promote the maintenance of groundwater recharge under postdevelopment conditions.

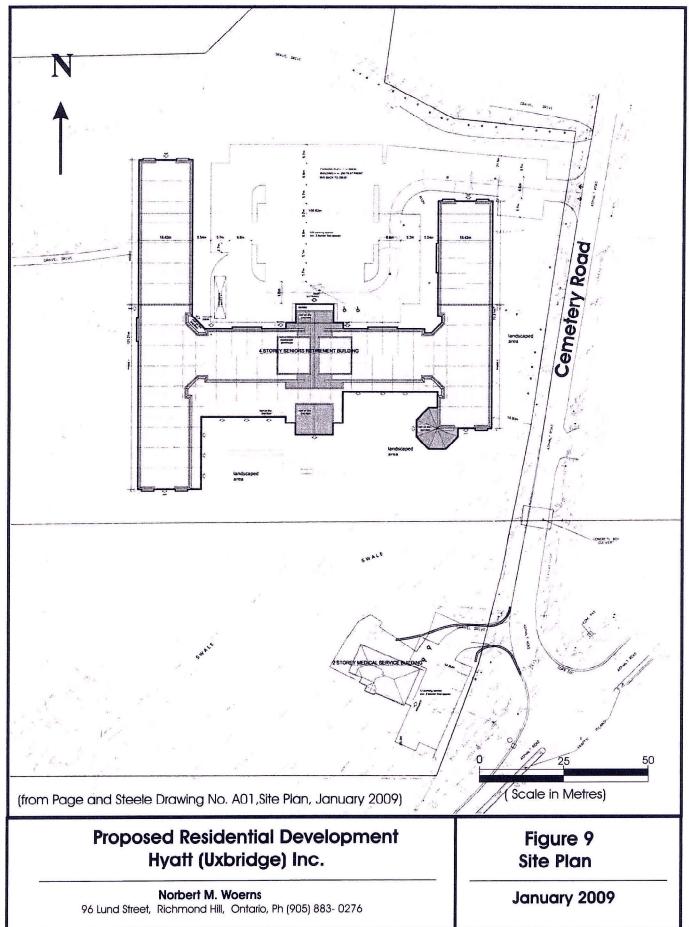
5.1 Proposed Land Uses

Details of the proposed development were provided on the Site Plan by, Page and Steele, January 2009. The proposed development plan includes a retirement residential complex and a medical building as shown on Figure 9. The proposed land uses, their respective areas, and the percent impervious for each land use as provided by Sernas is summarized in Table 4 below and shown on Figure 10.

Average % Impervious (from Wa	63.0	
Total	2.49	
Wetland	0.27	0
Wetland Buffer	0.43	0
Landscaped Terrace	0.16	80
Landscaped Area	0.49	0
Parking	0.60	100
Medical Office	0.06	100
Retirement Residential	0.48	100

Table '	7.	Proposed Land Uses	S
THOID		I Topobed Balla Ober	•

Note: * Wetland area assumed impervious


The per cent imperviousness of each land use category was provided by Sernas Associates. The change in land use with the proposed development will result in the creation of impervious surfaces described above. This will affect the water balance by redistributing the infiltration, runoff and evapotranspiration. The runoff will increase while the infiltration and evapotranspiration will decrease. In order to account for the movement of water on the property under post-development conditions, three functional categories, pervious, impervious connected, and impervious disconnected, were defined.

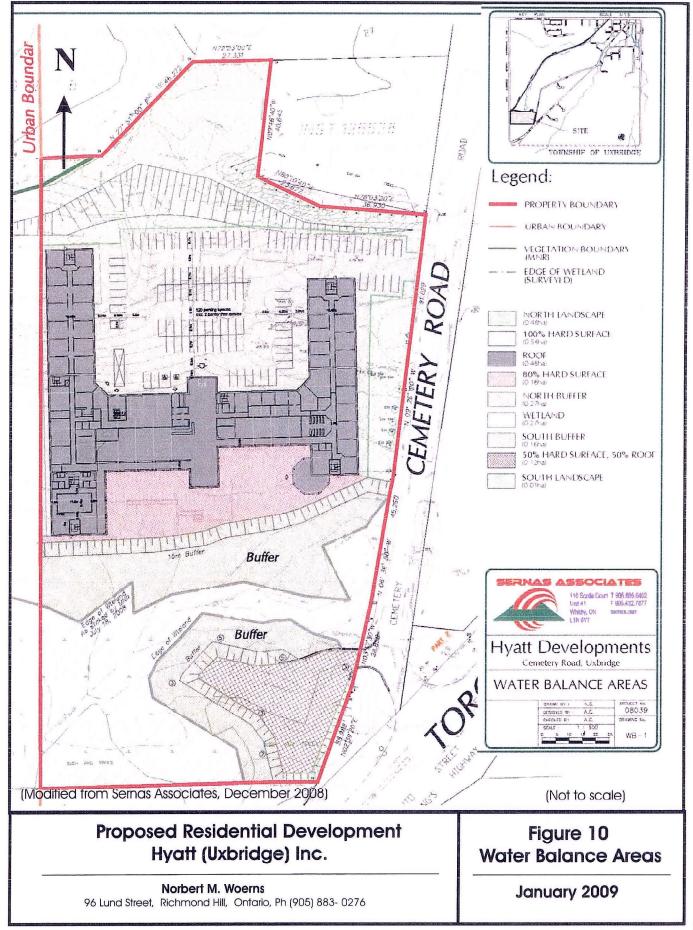

Within the pervious areas it is assumed that the surplus water will either runoff or infiltrate according to the appropriate infiltration factors. Runoff from pervious surfaces will ultimately flow into the storm water management system prior to discharging into local drainage ditches. The 'Connected' areas are those impervious surfaces that are connected to or drain directly into storm sewers. These consist primarily of parking areas and roadways. Concrete sidewalks are also considered to be connected to the storm sewer system. Functional categories are summarized in Table 8.

Table 8.	Functional	Categories	for	Post-develo	pment Land Use

Land Use Category	Pervious	Impervious		
	%	Connected %	Disconnected %	
Retirement Residential	0	100	0	
Medical Office	0	100	0	
Parking /Driveways	0	100	0	
Patio	20	0	100	
Buffers/Landscaped Areas	100	0	100	
Wetland	100	0	100	

Cemetery Road, Uxbridge Ontario, Hydrogeological Investigation, February, 2009

5.2 Water Movement from Impervious Surfaces

The surplus water for both pervious and impervious surfaces is partitioned for the various land uses in the post-development water balance. Paved surfaces such as driveways and parking area shed water relatively rapidly. These are relatively flat surfaces with very gentle slopes toward catch basins that lead directly to storm sewers. A runoff factor of 0.85 is used for these areas to account for minor depression storage of water and evaporation. The remaining 15% is assumed to be lost to evaporation. Sloped roofs of the retirement residential units and the medical office building will have less opportunity for depression storage and more rapid runoff of precipitation. Sloped roofs are therefore given a runoff coefficient of 0.9 with the remaining 10% lost to evaporation. No flat roofs are planned however they would be treated similar to paved parking areas and driveways. Runoff factors are consistent with commonly accepted runoff coefficients for urban areas (MTC Drainage Manual, 1984).

In pervious areas, infiltration and runoff are partitioned according to soil type, topography, and cover as described in Section 4.2 and summarized in Table 8 above. The precipitation and evapotranspiration as well as pond evaporation components are provided by Meteorological Service of Canada (MSC). Where runoff from roof areas is directed onto pervious areas, there will be additional water available for infiltration, runoff, and evapotranspiration. In these instances the roof runoff is assumed to be directed either to the storm sewer or to pervious surfaces for infiltration after accounting for10% evaporation loss from the sloped roof of the proposed buildings. As a mitigation measure, roof runoff is directed onto pervious surfaces such as landscaped areas. The additional roof runoff added to the normal precipitation was used to calculate an 'effective precipitation' for the pervious areas receiving this water.

Roof runoff was used to calculate the amount of 'effective precipitation' that would be available for infiltration. The resulting effective precipitation was partitioned using a Thornthwaite and Mather (1957) analysis provided by the MSC. It was assumed that the distribution of the effective precipitation was proportional to the normal monthly precipitation. The resulting surplus water from this analysis was then modeled to either infiltrate or runoff using an infiltration factor.

The 'effective precipitation' was used to calculate a theoretical surplus using the potential evapotranspiration as the upper limit of evapotranspiration. The 'effective precipitation is the amount of water directed onto pervious surfaces that includes the normal precipitation plus any additional water directed from rooftops and patio runoff. Surplus water was calculated by subtracting the theoretical evapotranspiration from the effective precipitation. Infiltration was calculated on the resulting surplus by applying an appropriate infiltration factor to the surplus. A maximum infiltration value is based upon the soil hydraulic conductivity. The geometric mean hydraulic conductivity of the shallow sand and silt soil (5.76E-06 m/s) was used to establish a maximum theoretical infiltration. Under saturated soil conditions with soil porosity of about 0.3, this could theoretically result in about 50m of infiltration per year. Under a worst case scenario in the water budget analysis it was estimated that the soil would be required to infiltrate less than 2.0 m /yr. This indicates that average soil conditions on the property are capable of infiltrating the surplus water calculated from the effective precipitation values.

It is intuitively recognized that excess water generated from roof runoff may not infiltrate as efficiently as under normal precipitation conditions due to higher peak runoff volumes. This is dependent upon rate and method used to distribute runoff onto pervious areas. There is no established method to accurately account for this loss of efficiency in infiltration. One method proposed a reduced infiltration factor for incrementally higher volumes of water directed onto pervious surfaces. This has resulted in relatively minor changes to infiltration for values of additional water that are less than twice the normal precipitation. In the current analysis, most of the additional water directed onto pervious areas was within this range of values. It was therefore not considered necessary to adjust the infiltration factor for the effective precipitation.

5.3 Post-development Water Balance Results

The water balance analysis for post-development conditions for the proposed development on the Cemetery Road property was completed by considering two development scenarios to assess the impact of the proposed development. The result of this analysis is presented in spreadsheets in Appendix 7.

Scenario 1

Initially it was assumed that under worst case conditions, all runoff from roofs and impervious surfaces would be directed to the storm water system via storm sewers. The results of this analysis indicated a loss of infiltration of about 1,683 m3/yr. With this loss of infiltration, the post-development infiltration was 1,245 m3/yr which represents about 6.4 % of total precipitation. The loss of infiltration is equivalent to a flow of 0.05 L/sec. Pre-development infiltration represents 15.0% of total precipitation compared to post-development infiltration of 6.4 % of total precipitation. Evapotranspiration was also reduced from 70.5 % to 39.1 % of total precipitation. The reduction in evapotranspiration is equivalent to 31.4 % of total precipitation. These changes resulted in a significant increase in runoff equivalent to 40.1 % of total precipitation. Runoff changed from about 14.5 % of total precipitation under pre-development conditions to about 54.5 % of total precipitation in Scenario 1 post-development conditions.

Scenario 2

Subsequent analysis considered different methods to promote infiltration. Directing runoff from roof areas onto the pervious surfaces in the residential areas was found to be an effective and practical method. Scenario 2 of the water balance analysis included directing of roof runoff to landscaped or natural open space areas. The calculated result indicates that there will be a significant improvement in the groundwater infiltration such that there will be a potential increase in infiltration under post-development conditions. There will be a net increase in infiltration of about 500 m3/yr which is equivalent to 0.02 L/sec. This represents a change from about 15 % of total precipitation under predevelopment conditions to about 17.6 % of total precipitation under post-development conditions. The approximation of total precipitation under predevelopment conditions to about 17.6 % of total precipitation under post-development conditions. The

The Scenario 2 analysis relies upon surface runoff from roofs and patio area to be directed onto pervious surfaces. It is assumed that the roof runoff could feasibly be directed toward pervious surfaces. The direction of runoff from roofs and hard surfaces has been partitioned as follows:

North Roof Area Runoff

- 40% to North Paved Parking Area
- 15% to East Landscaped Area
- 45% to North Buffer

South Roof Area Runoff

- 100% to South Buffer Area

Patio Runoff

- 100% to North Buffer area

North and South Paved Areas

- 100% to storm drainage system

Roof runoff directed toward pervious surfaces is assumed to infiltrate according to the infiltration factors as discussed in Section 4.2. This takes into account the slightly reduced infiltration potential of the pervious areas due to soil compaction from construction activities. This applies to landscaped areas but not to the wetland buffer areas which are assumed to be left relatively untouched. The water budget areas are shown on Figure 10.

Infiltration Options

Infiltration measures such as infiltration trenches are considered a feasible option to augment infiltration. The soil units underlying the surface silt consist of sand and silt soil with areas. Infiltration trenches are considered to be suitable within these soils due to their granular texture and the relatively deep water table across the site. The silt and sand till (SC Soil Type) found at depth is expected to have a percolation rate in the range of 50 mm/hr to12 mm/hr (12 to 50 min/cm). These soils have estimated percolation rates that are marginally suited for infiltration trenches. They occur at sufficient depths that they are not expected to pose significant limitations to infiltrating surface runoff if infiltration trenches are considered. The local groundwater table is not considered a limitation over most of the property with the possible exception near the wetland boundary within the buffer areas. The construction of shallow swales around the outside edge of the buffer areas is recommended to promote infiltration of runoff that is directed into the buffer areas and to prevent direct runoff into the wetland through overland flow.

The resulting change in infiltration between pre- and post-development conditions is summarized in Table 9 below. Detailed results of each water balance scenario are presented in Appendix 7.

Scenario	Description	Infiltration Change Post-development Conditions			Infiltration % of Total Ppt.
		(m ³ /yr)	L/s	% of Ppt.	
Pre-development		0	0	0	15.0
1	Runoff to Storm Sewers (No mitigation)	-1,683	-0.05	8.6	6.4
2	Runoff to pervious areas from 100% of roof areas	501	0.02	2.6	17.6

 Table 9.
 Summary of Infiltration for Water Balance Analysis

Note : Ppt. = Precipitation

In the above post-development scenarios, the infiltration varies from a loss of about 1,683 m3/yr to a net gain of about 500 m³/yr for Scenario 1 and 2 respectively, from pre-development conditions. The potential gain in infiltration is achieved by directing roof runoff onto pervious surfaces in such a manner that infiltration is encouraged by proper grading and assuming the native sandy soil is retained at surface and is not removed by grading or covered with finer textured fill materials. Surface swales are recommended around the periphery of the wetland buffer areas in order to intercept roof runoff and facilitate infiltration rather than runoff directly into the wetland.

Scenario 2 offers a significant improvement in post-development infiltration resulting in a potential gain in infiltration representing a 2.6 % increase in infiltration. Alternative measures such as the construction of infiltration trenches to accommodate roof runoff for infiltration also appear to be feasible but are not

considered necessary. The hydrogeological conditions provide favourable conditions for infiltration. Preliminary calculations indicate that an infiltration trench constructed within the sandy surficial soil and above the seasonally high water table can potentially accommodate the roof runoff from the main building.

6.0 Impact Assessment

6.1 Water Balance

The proposed development will result in about 63 % of the property as impervious surfaces which will result in a significant loss of infiltration (57%) without mitigation measures. The property has predominantly sandy and silty soil at surface. Site conditions are suitable for infiltration techniques such as directing of runoff onto pervious surfaces, infiltration trenches and third pipe infiltration schemes.

Mitigation measures including the directing of the majority of roof runoff toward the pervious surfaces will result in a substantial improvement in post-development infiltration with potentially a net increase of about 17% from pre-development conditions. This can be achieved with the direction of about 60% of the roof runoff from the north building and 100% of the roof runoff from the south building to pervious surfaces of the landscaped areas and the wetland buffer areas. The potential increase in infiltration using relatively clean roof runoff will result in a small increase in baseflow to the adjacent wetland. The slightly increased baseflow from the property should be beneficial to the maintenance of the adjacent wetland although the relatively small increase in baseflow will not be measurable.

Additional mitigation measures such as infiltration trenches would provide a slight increase in infiltration but would also require ongoing maintenance to achieve this result over the long term

Passive design features such as grassed swales along the periphery of the wetland buffer areas is the preferred approach to maintaining infiltration. This would provide similar benefits to infiltration trenches and would not require the ongoing maintenance of infiltration trenches.

The results of the water balance analysis shows that mitigation measures such as directing the majority (i.e. 60%) of the roof runoff to pervious surfaces will provide substantial benefits to infiltration such that there will be a potential increase in post-development infiltration. This should be beneficial in the maintenance of the wetland feature at the southern end of the property.

6.2 Wellhead Protection

The property is located just beyond and along the western edge of the well head protection zones for the Uxbridge municipal wells as shown in Appendix 8. The nearest municipal well is located about one kilometer to the northeast of the property. The vicinity of the property is considered to have high aquifer vulnerability to contamination. The property lies on the western edge of the modeled twenty-five year time of travel for the municipal well capture zones. An incident of groundwater contamination within this area is anticipated to reach the municipal wells in a period of over 25 years. The wellhead protection provisions of the Oak Ridges Moraine Conservation Plan therefore do not apply to this property. The proposed residential development does not constitute a risk to groundwater according to Schedule E-Table E5 'Land Use Groups by Risk to Groundwater, in the Durham Region Official Plan (2008).

The proposed commercial building at the south end of the property is to provide commercial office space likely to accommodate medical offices. This land use is also not considered to provide a significant risk to groundwater and may be classified as a low risk if it includes medical laboratories.

A Phase 1 Environmental site assessment has been completed on the subject property. Any contamination issues identified within this report will need to be addressed and remediated prior to site re-development.

The subject property is shown to lie within an area of high aquifer vulnerability. Normal urban land use activities such lawn maintenance with the use of fertilizers and herbicides, and winter road maintenance with the use of deicing products may pose a long term risk to groundwater quality and protection. The use of lawn maintenance chemicals and winter road maintenance chemicals should be reduced or eliminated within critical recharge areas of the wellhead capture zones. The subject property, although outside the 25 year time of travel wellhead protection zone, is up-gradient of the municipal well. The above property management measures should be encouraged.

6.3 Private Well Interference

The well survey results showed that most properties directly down-gradient to the northeast of the property are serviced by municipal water. The existing property as well as a number of properties to the north along Cemetery Road as well as the area to the west is serviced by private wells. Most nearby wells are reported to be between 11.3 m to about 61 m deep with the majority of the wells greater than 20 m deep. Well record information for this area suggests that there are two major aquifers supplying local wells. A shallow surficial aquifer that extends from surface to about 12 m deep and a second buried aquifer that found beneath fine grained soil at depths of about 7 m to greater than 27 m. The buried aquifer appears to be well protected from surface disturbance. The shallow surface aquifer extends north of the property and is more susceptible to surface disturbance. Most private wells north of the property are completed into the deeper buried aquifer and are protected from surface disturbance by a finer grained soil layer consisting of clay, gravel and sand deposits interpreted to consist of glacial till. As part of the proposed development there will be a small mechanical room located below ground requiring a full basement in this area. It is proposed to locate this facility in an area proposed for fill. The footings of this facility will be above existing ground (Aaron Christi, Sernas Associates, personal communication January 29, 2009. Therefore no dewatering is anticipated as a result of this below grade facility. The shallow groundwater level in the northern portion of the property was measured at about 6 m below surface in late June 2008. This is expected to vary seasonally. Re-grading and cutting proposed at the north end of the property will not result in lowering of the water table provided that the cut areas do not intersect the seasonally high groundwater table. This will need to be confirmed with The seasonally high water table generally occurs during the spring (April/May) and detailed design. fall (October/November) months.

To ensure that there are no unanticipated impacts on the groundwater system, routine groundwater level monitoring prior to and during the construction phase of this development should be undertaken at selected groundwater monitor locations. Quarterly monitoring is recommended to establish seasonal variations in groundwater levels.

7.0 Conclusions

The results of this hydrogeological investigation provide the following conclusions:

- 1) The property is underlain predominantly by sand and silt soil units.
- 2) The site has moderate infiltration potential and lies within a regional groundwater recharge area (Uxbridge Infiltration area).
- 3) The property contributes groundwater seepage to the maintenance of stream base flow for an intermittent stream and associated wetland located at the southern portion of the property.
- 4) Groundwater flow across the property within the underlying aquifer is towards the northwest with a northeasterly component of flow east of the property.
- 5) The property is located outside the 25 year time of travel wellhead protection area for the nearest Uxbridge municipal well.
- 6) Local ground water wells are completed in granular overburden deposit at depths of between 12 to 50 m. Most private wells appear to have adequate supplies of water that is generally of good quality. Locally the water quality is reported to be hard with noticeable iron content and in a few cases high sulphur content was noted.
- 7) The proposed development will result in the creation of impervious surfaces which will impact the natural water balance for the site. The proposed development, without mitigation measures, is expected to result in a significant loss of infiltration.
- 8) Site conditions are suitable for implementing groundwater infiltration mitigation measures such as directing roof runoff to pervious surfaces, infiltration trenches, and infiltration systems.
- 9) Directing of roof runoff onto pervious surfaces will potentially result in a net gain of infiltration of about 17% from pre-development levels. This is anticipated to provide some minor improvements to baseflow to the intermittent stream and wetland area at the southern end of the property.
- 10) The site is located in an area considered to have high aquifer sensitivity.
- 11) The proposed development is not anticipated to adversely affect adjacent and nearby private wells

8.0 Recommendations

The following recommendations are submitted for your consideration.

1) Roof runoff from residential institutional and commercial building should be directed onto pervious surfaces to mitigate the loss of infiltration from the creation of impervious surfaces.

- 2) Additional measures such as the construction of grass swales are recommended to facilitate infiltration of roof runoff within pervious areas. These should be located around the periphery of the wetland buffer areas and suitable landscaped areas where roof runoff can be directed.
- 3) Additional infiltration measures such as infiltration trenches may be considered to facilitate infiltration where site conditions prohibit the discharge of roof runoff onto pervious surfaces.
- 4) During construction, measures should be taken to reduce or eliminate the risk of petroleum fuel spills on the property. This should include the establishment of a secure refueling area for construction equipment with spill containment facilities and the storage of petroleum fuels or any other hazardous chemicals off-site during construction.
- 5) On-site groundwater level monitoring is recommended on a quarterly basis at selected groundwater monitors prior to and during construction to establish baseline groundwater information and to monitor for possible unanticipated impacts to the groundwater system.
- 6) The results of the water quality analysis from private wells should be forwarded to the respective landowners. Re-sampling of the down-gradient private well for microbiological parameters should be completed by the homeowner to confirm the microbiological results.
- Any unused wells discovered on the property during the course of construction should be properly plugged and abandoned by a licensed well driller according to Ontario Regulation 903 as amended by Regulation 128.
- 8) The future use of lawn maintenance chemicals and winter road maintenance chemicals should be reduced or eliminated on this property since it lies within an area of high aquifer vulnerability. Further specific direction on this is anticipated from Source Water Protection Plans currently in progress.
- 9) Environmental sensitivity of the site with respect to the protection of groundwater supplies for the community is an important consideration if groundwater supplies are to be protected in the long term. An environmental awareness program should be integral to the construction and sale of the proposed development parcel.

The above noted report was has been compiled from existing hydrogeological information available at the time of this study and supplemented with on-site subsurface investigations to confirm shallow soil and groundwater conditions.

Prepared By :

Norbert Woems

Norbert Woerns, M.Sc., P.Geo.

9.0 References

Barnett, P.J., 1992: Quaternary Geology of Ontario, in Geology of Ontario, Ontario Geological Survey Special Volume 4, Part 2, pp.1011-1088.

Barnett, P.J., and Q.H.J. Gwyn, 1997: Surficial Geology of the Newmarket Area, NTS 31D/3, southern Ontario, Geological Survey of Canada; Open File 3329. Scale 1:50,000.

Barnett, P.J., and J.E.P. Dodge, 1996: Quaternary Geology, Uxbridge Area, Ontario; Ontario Geological Survey, Map 2633, scale 1:20,000.

Chapman, L.J. and D.F. Putnam, 1984: The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2, 270 p. Accompanied by Map P. 2715 (coloured), scale 1:600,000.

Durham Region. 2008: Office Consolidation of the Official Plan of the Regional Municipality of Durham, June 5, 2008.

Ecologistics Limited, 1982: Environmentally Significant Areas Study, South Lake Simcoe Conservation Authority.

Lake Simcoe Region Conservation Authority (LSRCA), 1997: Uxbridge Brook Watershed Plan, Prepared by the Lake Simcoe Region Conservation Authority for the Township of Uxbridge, Eight Chapters and Bibliography.

Liberty, B.A., 1969: Paleozoic Geology of the Lake Simcoe Area, Ontario, Geological Survey of Canada Memoir 355, 201p.

Ministry of Municipal Affairs and Housing, 2002: Oak Ridges Moraine Conservation Plan, 82p.

Ministry of the Environment (MOE), 2003: Stormwater Management Planning and Design Manual, 8 Chapters and 9 Appendices.

MOEE, 1995:

MOEE hydrogeological Technical Information Requirements for Land Development Applications, unpublished document prepared for the Ontario Ministry of the Environment and Energy and the Ontario Ministry of Municipal Affairs, by Gartner Lee Limited, 6 Chapters with 4 Appendices.

Moin, S.M.A. and M.A. Shaw, 1986:

Regional Flood Frequency Analysis for Ontario Streams, Volume 2, Multiple Regression Method, Water Management and Planning Branch, Inland Waters Directorate, Environment Canada, 34 p. with Appendices C,D,E,F,G, and H.

Ontario Building Code,1997: Supplemental Guideline SG-6 Percolation Time and Soil Descriptions

Ontario Geological Survey (OGS), 1980: Aggregate Resources Inventory of Uxbridge Township, Regional Municipal

Aggregate Resources Inventory of Uxbridge Township, Regional Municipality of Durham, Southern Ontario, Ontario Resources Inventory Paper 13, 32p.

Ontario Geological Survey, 1991: Bedrock Geology of Ontario, southern sheet, Ontario Geological Survey, Map 2544, scale 1:1,000,000.

Sanford, B.V., 1969: Geology Toronto-Windsor Area, Ontario, Geological Survey of Canada, Map1263A, Scale 1:250,000.

Thornthwaite C.W., and Mather, J.R., 1955:

The Water Balance, Publications in Climatology, Volume VIII, Number 1, Drexel Institute of Technology, Laboratory of Climatology, Centerville, New Jersey, 104 p.

Thornthwaite C.W., and Mather, J.R., 1957:

Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance, Publications in Climatology, Volume X, Number 3, Drexel Institute of Technology, Laboratory of Climatology, Centerville, New Jersey, 311 p.

Toronto and Region Conservation Authority (TRCA) 2002:

Performance Assessment of a Swale and Perforated Pipe Stormwater Infiltration System, Toronto, Ontario, prepared by Stormwater Assessment Monitoring and Performance (SWAMP) Program, 30p with 6 Appendices.

APPENDICES

- Appendix 1 MOE Well Record Summary
- Appendix 2 Site Field Data
- Appendix 3 Well Survey Summary
- Appendix 4 Water Quality Results
- Appendix 5 Climatic Water Balance
- Appendix 6 Ontario Building Code, Supplementary Guide SC-6
- Appendix 7 Water Balance Analysis
- Appendix 8 Uxbridge Wellhead Protection Area Map

APPENDIX 1

MOE WELL RECORD SUMMARY

Hyatt, Cemetery Road, Uxbridge, Hydrogeological Investigation, January, 2009

GROUND WATER BUILIFIIN REFORT	SCREEN OWNER DEPTH LENGTH DEFTHS IN FERT TO WHICH FEET FEET FORMATIONS EXTEND		ROHWER NICK CONST BRWN SAND 0003 BRWN SAND CLAY 0040 RED SAND 0054	INI CONST 0001 BBWN SCHN CINY 0030 BRMM MANN	MSND CLAY	JAY.M HOLDINGS LTD. JAY.M HOLDINGS LTD. BRWN CSND CLN LOOS 0045 BRWN STLT CSND 0055 BRWN STLT VERY FSND 0090 BRWN SILT FSND HARD 0105 BRWN STLT KSND 0140 BRWN SAND STLT LOOS 0155 BRWN STLT FSND LOOS 0165 BRWN STLT CSND 0150 BRWN STLT FSND LOOS 0165 BRWN STLT CSND	JAY,M HOLDINGS LTD. JAY,M HOLDINGS LTD. RRWN 2AMD LOCS 0018 BRWN SILT SAND SGFT 0030 FRWN CLAY STLT 0043 BRWN SILT VFRY FSND 0080 BRWN SILT VERY FSND 0035 BRWN SILT VFRY FSND 0090 PRWN SILT MSND 5TNS 0100 BRWN SILT MSND 0120 PRWN SILT MSND 5TNS 0150 BRWN SILT FSND 10205 OL60 DEWN CLAY NASE 0150	Y CLARANCE	TAYLOR, LISA BICK LOAM 0002 BRWN CLAY SOFT 0012 BRWN SANC 0017 BRWN CLAY SOFT 0046 BRWN CLAY GRVL HARD 0660 BRWN GPVL 0068	NER C E SAND 0047 BLUE FSND STNS BLDR 0177 GPEY		HAWN SAND OORO BLUE CLAY 0098 RAWN FSND 0112 JAYN MOLDINGS BRWN SAND 51LT 5TNS 0096 GFEY CLAY SAND 51LT 0130 GREY STNS 51LT SAND 0140 GREY CLAY SAND 51LT 0782 GREY STNS SAND CLAY 0312 GREY CLAY SAND 5TNS 0350 CREY STNS SAND 51LT 0366 GREY CLAY SAND 5TNS 0350 CREY STNS SAND 51LT 7TNS 0412 HICK SUM 5116 0415	GREY GREY 01.78 CLAY	JAY, M HOLDINGS JAY, M HOLDINGS BRWN SAMD 0084 FRWN SILT SAND GRVL 0096 GREY SAND GRVL CLAY 0152 GRFY SILT GRVL CLAY 0197 GREY SAND GRVL CLAY 0782 GREY GRVL SILT CLAY 0304 GREY SAND GRVL SILT 0308 GREY SAND GRVL. CLAY 0336 GREY SAND SILT GRVL 0369
	SEN LENGTI FEET		4			~	04		m		70	9 Ci	c	
	SCREEN DEPTH LEN FEET FE		00200			0151 04			0065 03			0 2040 6 1 20	0374 10	
	WATER USE		20	8	8	8	NO MNOISI	Q	8	8	8			
	TEST TIME W HR:MN U		0: 2	••		2 :0	54 :	0: 0	2 : 30	30	0: 2	: 20		
	TEST T PLATE T GPM H		9			~	0 E	52	10	10	40	300		
	PUMP T LVL R FEET G		ŝ			150	150 3	42	20	ж сл	60	C 2		
DURHAM	STAT P LVL L FEET F		4	20	35	60	5.7	a. E	-17	19	45	Ę		
COUNTY: D	WATER S FOUND L FEET E		1 \$500	0030 2	0040	0155 6	0155	6200	0060	0172	3600	0374	0374	
COU	KIND OF WATER		£В	FR	F.F.	R	21 11	FR	Ц.	61	FR	Ц.	۲.	
126	DIA DIA INS W		05 F	30 F	30 1	06 1	- 29	03	90	05	90	90	05	
PAGE:	DRILLER		1413	5459	5459	4615	4645	6874	5459	1413	4743	54 59	5459	5450
	DRT	-	5	0	Ч	C	10	10	10	90	04	01	2.0	05
	DATE	RIDGE	1050 1974/0	1/1751 0701	1/1/61 0/01	1995/1	1995/	19661	2001/	1000 1973/	1075 1974/	2000/	2000/	/0002
2002	RLEV FEET DATE	(UXB)	1050	1070	1070					1000	107			
Sep 09	UTM WELL EASTING NO NORTHING	UXBRIDGE TOWNSHIP (UXBRIDGE)	647497 4881395	647550 4881200	46- 647530 04937 4881220	19- 648446- 12657 4881634	19- 648446- 12656 4881634	648446- 4881634	618317- 4882020	649230 4882260	46- 649030 05660 4660701	19-02-033 4682404 14667 4882404	19- 648190- 14665 4982404	19- 648190- 14664 4882404
(STEM	WELL E	L 35015	46- 6 05837 4	46- 6	46- 6	19- 6	12656	12922	19- 15055	46-05552	46-	14667	19- 14665	19- 14664
TA SI	TO.	UXBI	023	0.3	023	023	023	023	\$ 20	024	024	025	026	025
LI. DA	LITY ON	NG	02 0	0.5 0	02 0	50 50	50	05	05	05	50	02	05	05
WATER WELL DATA SYSTEM	MUNICIPALITY CONCESSION ETC	CONTINUING.	CON	CON	CON	NOC	CON	NOC	CON	CON	CON	CON	CON	NCC

GROUND WATER BULLETIN REPORT	OWNER DEPTHS IN FEFT TO FORMATIONS EXT		<pre>4 HOLDINGS 5 SAND 0090 BRWN SAND 51LT 0128 GREY SNDS 51LT CLAY 0248 GREY</pre>	SILT GRVL CLAY 0350 GREY 4 HOLDFNGS GRVL 0114 GREY CLAY SNDS 0142 GREY CLAY SNDS SILT GREY CLAY SNDS SILT 0198 CLAY SNDS SILT 0296 GREY	CLAY SNDS SILT 0336 GREY SNDS JDINGS 0001 BRWN SAND 0029 BRWN CLAY GREY SILT CLAY 0091 GREY CLAY CREY CLAY SILT 0164 GREY SILT	UNCLUTE SAND STAS U286 GREY SAND DEPA GREY CLAY CLN 0414 BLCK SHLE M HOLDINGS M HOLDINGS I.CAM 0001 BRWN SAND SILT 0029 BRWN 0078 GREY SAND STNS SILT 0091 GREY 0122 GREY CLAY STNS 0164 GREY SILT	EAND CLU JAN ULUG GREN FSND DRTY SAND CLN 0414 SERG HAROLD 20 MSND CLN 72000 0010 MSND 0120 MSND CLN 72000		CLAY MSND STNS 0099 MSND GRVL LOOS 0045 GREY SAND CLAY 0065	BUT OUR OKEL SAND CLAY UI26 WBRG 0130 ER 0045 BLIFE CLAY CAND 0122 CPCV	0127 MAGON A SAND DRY 0011 BRWN CLAY DNSE	GREY STNS 0024 BRHN SNDY 0082 BLUE CLAY	AND STNS 0110 JOSEPH SAND 030 REWN SAND CLAN STNS SAND 0030 REWN SAND CLAN ODEO CPEC	STUS 0200 GREY SAND 0200 GREY ND, PAT LOAM 0003 BRWN SAND 0208 LOAM 0003 BRWN SAND 50FT 0052 GREY HARD 0088 GREY CLAY BLDR 0097 GREY 0103 BRWN SAND S0FT 0116 GREY CLAN	GREY CLAY BLDR 0193 BLCK CLAY HARD 0192 FTEB. HOSP. FTEB. HOSP. FCKD 0080 GREY CLAY STNS GRUL CMTD 0220 GREY CLAY CSND CGVL CLA 0242
	SCREEN DEPTH LENGTH FEET FEET				0376 34	0080 10			0127 03	0124 03	0051 04	0106 03	04 04	83 05	50 03
	a:						8						0204	0183	0239
					NN	NN	ST	8	8	8	8	00	DO	8	8
	TEST TIME HR:MN				•	0: E	0: 4	4 :0	3:0	0 : 30	1 :30	2 :0	3:0	2:0	(N)
	TEST RATE GPM				10	D	ŝ	2	10	10	10	15	1.0	Q	200
÷	PUMP LVL FEET				65		200	06	65	65	3E	106 1	1 02	180 6	220 2
DURILAM	STAT I LVL 1 FEET 1					0				с С		-			
	TER S IND L				4 7 2	90 9	C 25	0 45	6 33	(n)	5 16	Ś	9 60	3 58	60
COUNTY:	WATER FOUND				0294	0286	0180	0100	0126	0122	0055	0106	02.08	0183	0242
	KIND OF WATER				Ĕ	FR	FR	ER	é.R	UK	FR	FR	FR	FR	R
: 922	CSG DIA INS				06	02	06	04	06	06 1	90	06 1	05 1	06 1	07 E
PAGE:	DRILLER		5459	5459	5459	5459	2306	3414	4743	4743	1413	5459	13	4743	1413 -
						5	0	æ	8	~	c.	9	٥١ ١٨	~	
	DATE	(DGE)	2000/05	2000/02	50/1661	0/1991/0	1964/	1961/0	0/1/0	12261	985/	984/	1375/	1989/03	1998/09
2002	ELEV FEFT DATE	(UXBRIDGE)		22.0			1015 1964/1	1065	1055	1060 1977/0	1000 1985/0	1025 1984/0	1050 1975/08	1056 1	T.
60	INC E) dIF	- 1	- 10	- ⁶	~ [0]									2 52
Sep	UTM WELL EASTING NO NORTHING	TOWNSHI P	648190~ 4882404	648190- 4882404	643190~	648190~ 4882404	649017~ 4882775	648052 4895544	4882400	648200 4882600	649000 4882500	19- 647150 07267 4862250	647784 1882429	648200 4882568	19- 648057~ 13801 4882796
SYSTEM	NO	UXBRIDGE	19-	19- 14663	19- 13286	19- 13287	46- 02985	-95 12461	19-	19- 04685	19- 07481	19- 07267	46- 06297	19- 79797	.9- .3801
	LOT	UXB	025	025	025	025	025	520	025	025	025	025 1	025 4	025 1	026 1
WATER WELL DATA	NC NC	4C	05 0	0 20	0 50	0 50	0 50	05 0	0 50	05 0	0 50	02 0	0 50	02 03	05 03
R WEI	MUNICIPALITY CONCESSION ETC	CONTINUTNG	-	675.	700		-	~	-	5	U,	5	5	5	ō
WATE	MUNI CONC E	CONT	CON	CON	CON	CON	CON	CON	CON	CON	CON	CON	CON	CON	CON

GROUND WATER BULLETIN REPORT	DWNER TH DEPTHS IN FEET TO WHICH T FORMATIONS EXTEND		KUEHL F	0001 BRWN CLAY I, HARVEY	SAND PCKD 0010 BRWN LYRD PCKD 0053 BRWN	CLAY HARD 0082 GREY CLAY GRVL LYRD SAND PCKD 0108 GREY CLAY GRVL HARD	- 0	HUNTINGTON, B BRWN SAND 0006 YLLW CLAY 0018 BRWN SAND 0025 BRWN STLY 0064 IEBEV FTAY 0064 FEEV HUNDA	CLAY GRVL 0076 BRWN GRVL SAND 0077	CLAY SILT 0035 CLAY BLDR 0090 CLAY 0135 GRVL 0141	0.000	BLUE CLAY SAND SLTY WSKI H	LOAM 0002 BRWN CLAY STNY 0023 BLUE CLAY SNDY 0034 BLUE CLAY SLAY 0041	D, LUCY	FWEN GORDON	PRDG 0040 HPAN 0140 McGhaughlin g	LOAM MSND 0001 YLLW CLAY MSND 0007 MSND 0017	ACHLAN G M	CLAT STAN UUSS SILT CLAY 0060 CLAY GRVT, 0064 Blue Clay 0152 CSND 0166 EWENS GORDON	LOAM MSND 0002 BRWN CLAY MSND 0012 BLUE CLAY	D WILLIAM 0002 BRWN CIAY 0004 GBVT CEND 0015	0024 GRVL 0026 GREY CLAY	BRWN SAND GRVL 0068 GREY CLAY GRVL 0090 GRFY GRVL STLT 0094 GREY CLAY 0158 BRWN SAND 0163 PAPESH C	BRWN MSND 0045 BLUE CLAY 0055 BLUE CLAY STNS 0080 BLUE CLAY STNS 0169 BLUE CLAY STNS	NN STNS HARD DOOS CBEY CLAY STNS	IN SAND FSND 0032 GREY CLAY	0029	GREY CLAY GRVI 0152 0169 BRWN SAND 0173	L R 0002 CLAY STNS BLCK GRVL 0150
	SCREEN DEPTH LENGTH FEET FEET			0202 12											0			0158 08				0159 03	0163 04		0166 06		0166 04		D00145 05
	WA'TER USE		8	IN			2	3	8		8	8		8	sr Do	8		8			20	8	8		8		8		ST DC
	TEST TIME HR:MN		6:0	3 :				2			0:30	0: 8		••	5 : C			0: i			••	3:0	1 :30		1:0		2:0		5:0
	TEST RATE GPM			200				27			נע				5	2		12			e	10	15		150	,	٩		25
MM	PUMP LVL FEET			1.40			03	Ş			27				45			84			34	95	120		160		140		110
DURHAM	STAT I.VL FEET		15	50			10	1 3	FLW		10	14			5	10		7Р			24	87	74		40	ł	5 0	t man	60
COUNTY :	WATER FOUND R FEET		0015	6714			0076		0141		0100	0024			0140	0100		0166			0024	0163	0162		0173		6970	1990) 1997	0140
	KIND OF WATER		Ĕ	FR			ä		FR		¥5	E			FR	FR		FR	DRY		ER.	FR	ER		FR	£	2		£
: 923	CSC DIA INS		30	90			06	2	90	1	30	30			04	34		05	30		30	90	05		06	20			01
PAGE:	DRILLER		3109	1413			1350		3414		5177	31.09		6874	1413	542.0		1413	5420		2214	1350	5459		1413	1 26.0	2	ļ	3519
		a	y	4			~	8	5		٥		3	~	S			-	2			5	4						
	ELEV FEET DATE	(UXBRIDGE	1050 1980/0	1988/0			1990		1966/0		0/1/67	1979		0/8661	1,953/0	1960/10		1961/0	1965/1		1968/1	1972/0	1971/0		1989/12	1 9 9 8 / 0 3			1966,
9 2002			1050				1004 1990/1		970		6901	1000 1979/12			1000	1050		1060	1000		1075	1065	1075		1020				1080 1966/10
Sep 09	UTM EASTING NORTHING	d THSNMOL	647200	648057~ 4882796			648876	4882933	648908	OTLOOP.	4882800	647950 4883000	0000001	647801~ 4863578	648695 4884078	647935	1863819	647823 4883715	648695	0704004	646900 4883200	647000 4883050	646870	18832.20	4883987	647672-	4883959	0.111	02769 4883923
SYSTEM	NO NO	UXBRI DGE	19- 05825	19- 09135			19-	10868	46-02964	10-10	04832	19- 05601		13701	46-		99	46- 02967	46- 07968		46- 03806	46- 05329		4943	9- 0361	-61	76	- 94	2969
	TOT	UXBI	026	026			026 1	-	027			027 1			028 4	028 4		028 4	028		028 4	028 4	028 4		D	029 1			
LL DA		ИG	05 0	05 0			05 0		05 0	5		05 0			05 0	05 0		05 0	05 0		02 03	02 03	02 03		70 60	05 02		05 020	
WATER WELL DATA	MUNICIPALITY CONCESSION ETC	CONTINUING.	CON	CON			CON		CON	NOU		CON			CON	CON		CON	CON		CON	CON	CON		NO2	CON		UNUCON D	

GROUND WATER BULLETIN REPORT	OWNER NI DEPTHS IN FFET TO WHICH F FORMATIONS EXTEND		WAYNE GINDY BRWN SAND CLAY 0050 BLUE CLAY SAND SOFT 0082 BRWN SAND CLAY MUCK 0120 RAWN CLAY SAND 0130 GREY SAND SILT 0145 GREY SAND CLAY STAY 0157 GREY SAND SILT 0145 BLUE SAND CLAY 0173 GREY	YILUM SAND CLAY MUCK SILT CLAY SOFT DIRG	BLUE CLAY STNS 0062	CLAY 0070 BLUE SAND 0074 CLAY STNS HARD 0012 BLUE CLAY STNS HARD 0012 BLUE GRVL LYRD 0090 BLUE CLAY UDAN 0120 DLUE CLAY	CLAY 0114 CLAY 0114 B CLAY SAND LOAM CLAY SOFT 0052	CGRU 0065 BRWN SAND CLAY LYRD 0070 ELCHPD CLAY STNS 0024 GREY CLAY SILF 0035 SAND 0042 GREY CLAY 0124 GREY CLAY SAND 0042 GREY CLAY 0124 GREY CLAY	GREY CSND 0155 TDGE WORKS DEPT CLAY SAND SOFT 0012 BRWN SAND GRVT BRWN CLAY SAND SOFT 0112 BRWN CGVL	e	LOAM 0002 BRWN FSND 0012 BLUE SAND STNS 0023 LANGENHUTZEN A	LOAM 0002 CLAY 0005 CLAY 0018 ADDISON J BLCK LOAM 0001 BRWN CLAY SINS 0004 BRWN GRVI	CLAY 0095 GREY SAND	WILDMARK, PAUL/JUDY WEICK LOAM PCKD 0002 BRWN CLAY SAND PCKD 0012 BLCK LOAM PCKD 0002 BRWN CLAY SAND PCKD 0012 GREY CLAY STNS HARD 0126 GREY CLAY SAND 128 BLCK SAND GRVL PORS 0150 GREY CLAY SAND 17000). 0012 BRWN SAND GRVL LOOS CMTD 0137 BLCK GRVL 6117	BLCK GRVL SAND CLA 0178 37 ONT. LTD. SAND CLAY PCKD 0017 GREY CLAY STNS BLCK GRVL SAND SLTY 0167 BLCK GRVL	HARD 0165
	SCREEN DEPTH LENGTH FEET FEET		EO	60	04	03	06	03	03		13	04		03	03	60	60
	SCI DEPTH FEET		0175	0186	0100	0141	0062 1	0152 (0113		0005	0162 (0147 (0175 0	0174 0	0182 0
	WATER USE		Q	8	8	8	00	0(1	5 S	04	8	8		8	8	8	8
	TEST TIME HR:MN		5 :0	2 :0	0: E	5 :0	3:30	1 :0	0.			5 :0		3 :30	1 :0	1 :0	0
	TEST RATE GPM		10	10	cu L	10	10	10	20		e	5		10	40	10	15 1
Σ	PUMP LVI, FEET		145	07.1	74	95	36	145	62			140		135	160	160 ,	175 1
DURHAM	STAT LVI, FEET		70	55	45	75	5	95	52	ę	S	120		128	119	119	135 1
COUNTY:	WATER FOUND FEET		0175	0186	0700	0141	0062	0145	2110	0023	0005	0160		0150	0178	0177	0185
COU	KIND OF WATER		LL	H	FR	มส	E	ER	ER	FR	ER	E.R.		E.	FR		
126	CSG K DIA INS W		06 F	06 F	06 F	06 F	06 F	06 F	4 90	30 F	30 E	06 F		06 F	06 F	06 ER	06 FR
PAGE:			4743	4743	56	6743	4743	5459	4738	5459	3102	4743		1413	1413 (1413 (1413 (
щ	DRILLER				07 54				C1	9				• •	67	m	1.0
	DATE	IDGE)	/878/	1978/09	1974/0	1976/09	/2661	2001/02	1983/	/21.61	1968/1	1973/08		1/9661	1994/0	1994/0	11/6601
2002	FEET	(UXBR	1050 1978/03	975	1075	1075	1070 1992/1		1050 1983/1	1010 1972/0	1087 1968/07	1050			-	-	
Sep 09	UTM EASTING NORTHING	. UXBRIDGE TOWNSHIP (UXBRIDGE)	64 69 00 4 8 8 3 6 0 0	648550 4884200	647900 4884183	647800 4883850	647732 4883761	647545~ 4884349	646900 4884300	648450 4884730	647065 4884525			647412~ 4884716	647412- 4884746	647412~ 4884746	19- 647412~ 11834 4884746
KSTEM	NO	SIDGE	19- 05000	19- 05136	46- 06008	46- 06642	19- 11758	19- 14988	19- 06793	46-05315				19- 13029	1927	19-	19-
TA S	I.OT	UXBI	620	029 1	029	029 4	029 E	030	030	030 4	031 4	031 4		031 1	031 1	031 1	031 1 1
LL DA	LI TY DN	•	05 0	02 0	05 0	05 0	02 0	0 50	05 0	05 0	0 50	05 0		02 0	05 0	020	02 0
WATER WELL DATA SYSTEM	MUNICIPALITY CONCESSION ETC	CONTINUING.	CON	CON	CON	CON	CON	CON	CON	CON	CON	CON		CON	CON	CON	CON

CON	CON	CON	CON	CON	CON		CON	CON		CON		CON		CON	CON	CON			CONTINUTION.	MUNICIPALITY CONCESSION ETC	WATER
05	05	05	00	05	05		05	50		05		05		05	05	20		0,50	0190	SION	WELL
034	034	034	000		033		033	033		033		033		650	033	032		1100	; :	H	DATA
46- 05425	19- 05316	19- 14686	05666		19- 05105			46-	13900	19-	13901		13935	13934	19-	19-	56860	19- 19-		WELL T NO	WATER WELL DATA SYSTEM
647770 5 4886110	647150 5 4886650	647008~ 5 4885948	4885634		648150 4885700			648036 4885867		647147~	4885542		4885542	4885542				4884683			Sep 09
1085 1973/04 3414	1075 1979/04 1413	2000/07 1413	1085 1973/11 2214	1976/08 2402	1085 1978/07 4743		1090 1977/08 1413	1090 1965/12 1413		1998/12 5459		1998/12 5159		1999/01 5459	1999/01 5459	2000/02 1663	1909/03 1413	1073 1989/05 1413 .	(TDGE)	DRILLER	2002 PAGE:
30 (05 1	06 1	UC UC		06 1		05	0.5 1		06 1		06 1		06 I						DIA INS W	925
UK	FR	FR	FR	DRY	FR		FR	FR		FR		FR		FR			1			KIND OF WATER	COL
0060	0295	7610	0015		0218		0185	0193		0183		0173		0240			0770	0131		WATER FOUND FEET	COUNTY :
15	135	140	15		160		147	153		148		147		164			4 0	105		R STAT D LVL FEET	DURHAM
66	197	197	81		200		156	165		180		173		230			112	115		T PUMP LVL T FEET	НАМ
\$	œ	60	J		ъ		ω	10		10		υ		თ			ţ	. 15		P TEST RATE T GPM	
-	ω ···	۰.	μ		Lu		13	ω				13								T TEST E TIME HR:MN	
Ċ	: 30		:0		:0		.0	:0				: 30		: 30			Ű	0		2	
8	ST	DO	8		DO		8	ST DO		8		8		8	NU	NU	20			ER	
	0291	0194			0224		0177	000185		0184		0174		0240			0123			SCE DEPTH FEET	
	04	60			05		08	80		06		03		03			03	03		SCREEN TH LENGTH T FEET	
0286 GREY GRVL 0027	QUAKER RIDGE QUAKER RIDGE CLAY PCKD 0018 BRWN CLAY STNS SAND GRVL LOOS 0063 GREY CLAY BRWN SAND GRVL CHTD 0163 BLCK	ANAN, JANET LESLI SAND PCKD 0014 GREY CLAY	LOAM 0001 BRWN CLAY SILT 0015 BRWN	MONTGOMERY R L Clay 0132 Grvl Hpan 0174 Hpan 0215 Clay 0220	CLAY SAND 0018 BLUE	BRWN CLAY STNS HARD 0026 BLUE CLAY STNS HARD 0135 BLUE CLAY DNSE 0150 BLCK CLAY STNS DNSE 0166 GREY SAND GRVL SILT 0185	CLAY 0175 BLCK MSND CRVL 0193 MONTCOMEDV WITTERN	H G	SAND 0019 0114 CREY GREY SAND	GRVL 0177	BRWN SAND SILT 00?3 GREY CLAY HARD 0037 GREY CLAY SNDY 0106 BRWN CLAY SNDY 0115 GREY CLAY SOFT 0146 GREY GRVL CLAY 0153 GREY CLAY SOFT	FSND 0243	SNDY 0019 BRWN SAND CLAY 0027 GREY CLAY HARD 0160 GREY CLAY CLAY 0230 GREY STIT CLAY 0240	BARTON, MR	CARTON, MR	0126 MULTIMATIC	EINTELMAN, DICK J BRWN CLAY SOFT 0025 BRWN GRVL SAND LOOS 0035 BRWN SAND FSND 0043 GREY CLAY STNS HARD 0055 GREY CLAY STNS HARD 0120 BLCK GRVL SAND LOOS	CLAYTON LOAM 0002 BRWN CLAY STNY 0019 GREY CLAY STNY 0125 BRWN CLAY STNY 0131 GREY SAND CSND 0133		OWNER H DEPTHS IN FEET TO WHICH FORMATIONS EXTEND	GROUND WATER BUILLETIN REPORT

GROUND WATER BULLETIN REPORT	OWNER TH DEPTHS IN EEET TO WHICH T FORMATIONS EXTEND		AS HC		0001 BRWN FSND 0041 : M	BRWN MSND 0015 BRWN CIAY MSND 0046 BRWN SILT Clay msnd 0014 RED FSND 0083 Clanditan Trv Cort	04 BRWN SAND GRVL LOOS	TRANSPORT CO L SAND CLAY LOOS 0017	FSND 0054	BRWN CLAY 0005 BRWN GRVI. 0009 BRWN SAND CLAY 0028 BIUF SAND 0034 BLUE SAND CLAY 0054 BRWN	UU62 AMSON BUICK SAND CLAY LOAM 0030 BRWN SAND CLAY	RWN CLAY SAND	SAND CLAY 0016 BRWN CLAY	BRWN SAND	BRWN SAND DRY 0008 BRWN CLAY DNSE 0023 GREY CLAY DNSE 0040 GREY SILT SOFT 0046	WOOD DCUG RED SAND 0030 BRWN SAND SILT 0078 GREY FSND	0085 THOMPSON F A			, D	LOAM 0002 BRWN SAND WERG LOOS 0027 SAND LYRD 0051 BRWN CLAY SAND MUCK	BERM SAND CLN 0075 BRWN CLAY SNDY MGRD 0080 Vangihoush, Hubert Brwn Sandd Pckd 0077 brwn sand clay sosy ogs	FSND 0102	LOAM 0001 CLAY MSND 0047 SILT 0105 GREY CLAY GRVL 0380 BLCK SHILE 0450	GREY CLAY STNS 0015 BRWN	0025 BKWN CLAY MSND 0045 BRWN CSND 0055 Foster C W Loam 0002 Brwn Clay Msnd 0008 Brwn Msnd Grvl	SAND LOOS 0016 DRY 0055 BRWN	
	SCREEN DEPTH LENGTH FEET FEET		04	04	08	ЯU	3	04	03		12	2	5		1	66	06		08	03		08					12	
	SC DEPTH FEET		0040	0053	C075	120000		0500	0059		0044	1200		~		000010	0050		D00042	0072		1 1600					0058 1	
	WATER USE		8	8	8	XI NI		8	8		8	c,	?	OCI DN		20.25	g		ST DC	8		00	g	1	Dri	8	8	
	TEST TIME HR:MN		2:30	18:30	2:30	2 : 0		2:0			3:0	۲. ۲.				n: 7	2 :0		2:0	2:15		1 :			0: •	3:0	: 30	
	TEST RATE GPM 1		ى س	7	on.	15		œ	15		20	a					ch		12	-		10		r		22	20 2	
×			44	44	77	35		99	50		28	5	2		ç	0	23		30	70		26			2	18	45	
DURHAM	STAT PUMP LVL LVL FEET FEET		10	13	15	15		17	e		12	51				0	18		2	2		30	40		2	e E	17	
	WATER FOUND FEET		0014	0041	6800	0055		0048	0054		0056	0048			1000		0058		0040	01.00		0102	0105		1000	0019	0055 1	
COUNTY:	KIND W OF F WATER F																											
936	CSG KI DIA C INS WP		6 FR	4 FR	5 ER	6 UK		06 FR	06 FR		06 FR	06 ER			5		5 FR		6 FR	6 FR		6 FR	SA	25		ER.	E E E	
PAGE:			3 06	4 04	.3 05	3 06								ŝ	50		3 05		3 06	3 06		3 06	14 04	90		4 06	3 06	
đđ	DRILLER		5 4743	1 3414	5 1413	9 4743		5 4743	5 5459		1 4743	1 4743		1413	2171 1		141 V		1 4743	9 474		4 141	8 341	.010		2104	6 4743	
	DATE	(DGE)	1982/0	1962/1	1971/0	0/2261		1978/0	1982/0		1050 1960/07	1050 1980/1		1980/0	1074/1		1974/0.		1975/1	1988/0		2000/01	1961/08	1969 /07		1969/04	1977/06	
2002	ELEV FEET I	(UXBRIDGE)	922	668	975	026		920	925		1050	1050		1050	97r.		950		016	902			950	а <i>л</i> е 1		895 1	970 1	
Sep 09	UTM EASTING NORTHING	TOWNSHI P	649727 4883568	650859			4883200	649800 4863550	651000 4883600	000000	649600 4883550		0	649500 1884200		4		•)	4883754			649891~ 4883842	649294 4883297		4884100	650830 8 4884170	649400 4883700	
SYSTEM	WELL E		10	46- 6 07986 4			04819 4	5.1	15.4		19- 6 05749 4		05922 4	5	2	78			BA			33	182	- ve 	02	91	35	
A SY	1 TOI	UXBRIDGE		9			Ō)			0								5							
TAG		÷	5 026	5 02	5 026	5 026		5 026	5 C26		5 026	5 026		5 026	5 026		5 026		020	026		027	027	027		027	027	
WATER WELL DATA	MUNICIPALITY CONCESSION ETC	CONTINUING	06	90	06	90		06	06		06	06		90	00		90	č	90	90		06	90	06		06	06	
WAT	MUN CON	CON	CON	CON	CON	CON		CON	CON		CON	CON		CON	CON		CON		CON	NOC		CON	CON	CON		CON	CON	

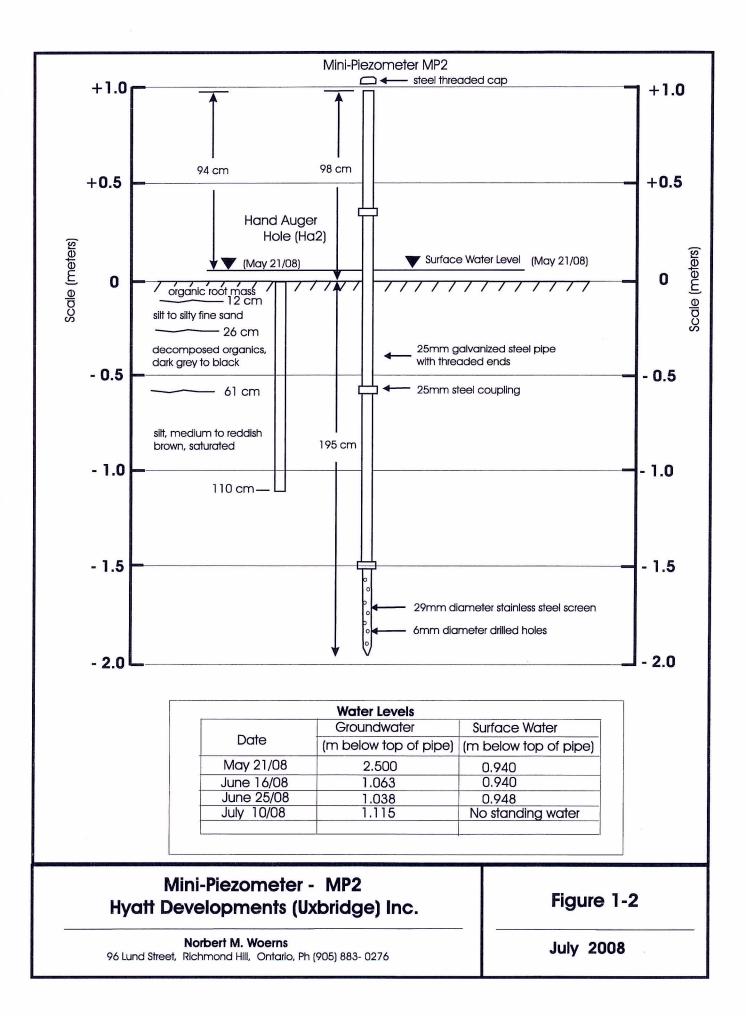
 GROUND WATER BULLETIN REPORT	OWNER H DEPTHS IN FEET TO WHICH FORMATIONS EXTEND		LTD LYRD 0018 BRWN	FSAD 0040 GAEI ESND 0048 GAEY CLAY 0061 GREY CLAY 0065 JMSON MOTORS ZAND DYONG CEEV SAND DEVEN DOED	LOGS 0.059 MISON ESSO CTR ANNON ESSO CTR ANNO CLAY 0020 BRHN SAND PCKD 0053 BLUE CLAY SATT SOFT DOCK	AND COUCH THE TAXE THE AND COUCH AND	BRWN BRWN NIE 0004 GREY	1000 1 AUTO GLASS 1000 SAND CEVT. 0010 SAND DAGE SAND	CINES SCOU ARES ATON	SCOTT	RED SAND LOOS 0045 G G SAND LOOS 0045 SAND LOOS 0010 BRWN CLAY SAND	0020 BRWN CLAY SOFT BRWN SAND LOOS 0046	CREY SILT CLAY 0064	SILT SILT	0039 RED SAND	VIT 0028 BRWN FSND 0055 V WD 10028 BRWN FSND 0055 V WD 1005 0047 PREM 5000 1000	WERG EXCH DOSS BRWN SAND JUNE DOSS WERGER DOSS BRWN SAND CIN DO69 URELAND DEVELP. FSND LOOS D006 BRWN CIAY STNS HARD	BRWN FSND LYRD 0069 BRWN GRVL CLAY LYRD 0071 BRWN GRVL CLAY LYRD 0074 BRWN FSND 1005 0085 GREY CLAY SAND LYRD 0106 GREY CLAY GRVL LYRD 0117 GREY CLAY SAND LYRD 0106 GREY FSND GRVL LYRD 0116 GREY CLAY SAND LYRD 0308 GREY FSND GRVL	LYED 0375 54WN 54DS 11KU 0363 54WN 17ED 0375 11, MARLENE 11, MARLENE CHTD 0012 BRWN SAND 0026
	SCREEN TH LENGT T FEET		16	04	11	90	64	04	04	04	04	08	80	80	08	04	80		
			0032	0055	0042	0082	0073	0053	0048	1100	0046	0046	0117	0046	0046	0065	0308		
	WATER USE		8	NI	8	8	8	8	8	8	8	8	8	8	8	8	00		8
	TEST TIME HR:MN		6:0	1 :30	2 :0	3 :0	: 30	0:	0:	:30	0:	:30	:30	0:	0:	: 30	0:		
-	TEST RATE - GPM		25	~	20 2	ۍ. ,	10 2	10 0	5 5	6 1	N	~	12 2	1	10 1	2	æ		25 2
5	PUMP LVL FEET		24	50	30	76	60	44	ō,	30 6	¥ 5	ŝ		3		9	113 6		
DURHAM	STAT STAT		17 2	ц					8		92	55	1 73	73	43	60			26
	m ()			Ч	12 21	0 47	2 45	0 18	~	5 10	0 15	6 21	5 28	1.1 5	8 8	8 35	6 2.5		11 (
COUNTY:	D WATEI FOUNI SR FEET		0048	6500	0042	0600	0072	0900	0055	0045	0020	0046	0125	0054	0028	0058	0316		0020
	KIND A OF MATER		R	FR	Е.	Ĕ	£	FR	Æ	æ	FR	FR	F	FR	Ë	ž	H		£
E: 937	CSG DIA R INS		06	05	06	90	90	06	06	05	05	06	06	05	80	90	06		30
PAGE:	DRILLER		4743	1413	4743	1413	1000	1672	1672	1413	1413	4743	1413	1113	3136	4743	3903		6874
		E)	01	10	60	04	10	11	12	10	4	2	8	-1	-		5		C
3	ELEV FEET DATE	BRIDG	1050 1980/	1983/	1980/	1982/	1986/	1985/	1985/	1985/	1985/0	1986/0	1976/0	1974/0	1995/1	1987/07	1991/0		2000/1
9 200		DXU) 4	1050	950	1050	900	968				950		895	922					
4 Sep 09 2002	UTM FASTING NORTHING	- UXBRIDGE TOWNSHIP (UXBRIDGE)	649600 4883800	649700 4883600	649600 4883700	649250 4883800	649384 4883706	649891~ 4883842	649891~ 4883842	649891~ 4883842	649250 4883550	649891~ 4883842	650800 4884000	649628 4883692	649891~ 4883842	649891~ 4883842	649891~ 4883842		19- 649761~ 14838 4884220
ER WELL DATA SYSTEM	NO	BRIDG	19- 05747	19- 06752	19- 05867	19- 06343	19- 07940	19- 07592	19- 07599	19- 07511	19- 07292	19- 07891	46-06611	0	19- 12654	19-08514	19-		19- 14838
DATA	r Lor	ži L	027	027	027	027	027	027	02.1	027	1.20	027	027 4		027	027 1	027 1 1		
ELL	ALIT	ING.	06	90	90	06 (06 0	06 0	06 0	06 0	06 0	0	0 90		06 0.	06 0	06 02		6 028
ER 1	MUNICI PALITY CONCESSION ETC	CONTINUING.	CON	CON	CON	CON	CON	CON	CON	CON	CON	CON	CON		CON	CON	CON		CON D6

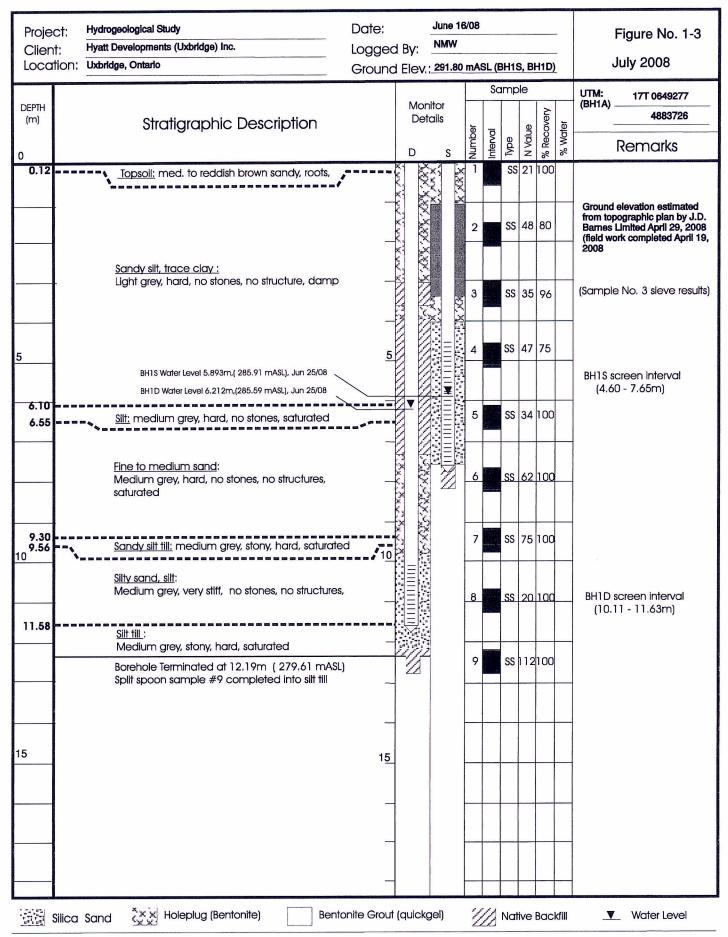
GROUND WATER BULLETIN REPORT	OWNER TH DEPTHS IN FEET TO WHICH ST FORMATIONS EXTEND		WARDE, STICKS BRWN CLAY 0028 BBWN SAND CLAY ODA'3 BDWN CLAY	SAND SILT 0057 LCK GC SUDV 0026 BURN SCAID 0055 DIVIN		LOAM SOFT 0003 BRWN FSND STNS HARD 0080 GREY CLAY	SHI,E HARD	CLAY STNS SILT AAAF L	GRVL MSND 0004 FSND 0090 MSND CLAY 0100 MSND GRVL 0106 GRVL 0107	LOAM 0002 BRWN CLAY MSND 0024 MSND 0077	PEW ROSS Loam 0001 msnn 0025		FUND ULS	BRWN CLAY MSND 0030 FSND 0034 CLAY 0036 MSND GRVL 0037 THAMPGON H	BRWN SAND 0020 GREY SILT 0071 RED SAND 0081	BRWN MSND 0020 RED MSND CLAY 0060 RED FSND		MSND 0018 CLAY MSND 0057 MSND 0066 Hursell g		MUKLEY LECK TRANS LT BRWN SAND 0040 BRWN SAND WBRG 0046	0001	CLAY 0062 BLUE SAND 0075	BRWN LOAM 0001 BRWN CLAY 0020 BLUE CLAY 0067 BLUE FSND 0078 WOOP R	BRWN CLAY PCKD 0010 GREY CLAY DNSE 0040 GREY SAND LOOS 0045	LOAM	00/4 BLUE SAND 0077 D WATSON AUTO SALES BRWN SAND LOOS 0040 GREY FSNN VFBY ANGE CDEV	0062 0052 000 0052 000 000 000 000 000 000	BRWN SAND LOOS 0023 YILW CLAY 0047 GREY CLAY SOFT 0063 GREY SAND CLAY 0066 GREY FSND 0070	SAND
	SCREEN DEPTH LENGTH FEET FEET		0054 03	0052 03										0073 08			0058 08	0075 04	00.79 04		0069 06	0076 03	0041 04	50 100		0059 03	0066 04		0066 04
	WATER USE			8				8	2	2 2	8	8	8	8	8	ŝ	g	8	Z	3 2	3		8	ş		S	8		8
	TEST TIME HR: MN			1 :30	τ.			0:30		. ,			6:0	: 30			0:	: 30	c ·			: 30	: 30	c ·		0:	0:	e e	05:
	TEST RATE GPM			30				20 (ç			9 6	6	<i>c</i>		сч 6	6 9	8			5 2	3			12 3	N		-
Σ	FEET 6			35				40					18	19	. 90		25	76	35			68	40	0		41 1	60 6	r 	~ e
DURHAM	STAT LVL FEET			80				v	ŝ	ŭ	ŋ	15	ω	. 07	() ()		18	20	12			25 (5	25		10 4	23 6	10	
	WATER FOUND FEET		0048	0055				0106	0025	5		0020	1500	1800	0067		0066	0083	0040			00.76	0045	0074 3		0040 1	0063 2	1 5900	
COUNTY:	KIND W OF F WATER F				Y		X															õ	00	00		00	00	00	2
856	CSG KI DIA O INS WA		06 UK	6 FR	DRY		ряу	06 FR	0			0 FR	S FR	5 12	E E		5 ER	ER ER	5 FR			ě:	FR.	ER		FR	FR	5B	
PAGE:			a	90 69	6		6		9 30			30 30	3 05	3 05	3 05		3 05	3 05	3 06			7 06	3 05	7 06		8 06	3 06	3 0 6	
Id	DRILLER		0 545	3 545	8 5459		8 5459	8 1415	0 3109	1 3102		0 4102	1 1413	1 1413	8 1413		0 1413	1 141	1 4743			1 2407	1413	2407		1738	4743	2 47 4	
	DATE	(3DCE)	1/6661	2000/0	2000/0		2000/0	0/196	1/196	1/1961	-	1959/1	968/1	1/1/1	1969/0		1968/1	1971/1	1978/0	1976/09		1981/0	1981/08	1980/10		1983/04	1979/04	1978/09	5
2002	ELEV FEET D	(UXBRIDGE)	1	2	2		Ň	925 1	925 1	1 066		- 	ຕ ຫ	950 1	925 1		935 1	950 1	915 1	945 19		950 19	900 19	1050 19					
09 21			- 0	1 0	2 0		~ 0						92			0									0	850	675 0	925	
Sep	UTM EASTING NORTHING	TOWNSHI P	649764~ 4884220	649764- 4884220	649764~ 4884220		649764~ 4884220	649811~	649703-	4884362 649587~		669879 4884571	649620 4884330			4884300	649350	649650	649900	4884300	4884350	649600 4884150	650700	649550	488395	649800 4884000	649800 4884250	649550	48841.50
SYSTEM	NO	UXBRIDGE	19- 14300	19- 14417	19- 14797		19- 14799	46- 02000	46-	02991 46-	05620	9 6-	46-03776	-96-	04894 46-	04116	46-	46-	19-	04966 19-	04518	19- 06286		19-		19- 06661	19-05323		135
DATA S'	LOT	. UXB	028	028	028		028	028	028	028 4			028 4	028	028 4	_	028 4	028 4	028 1	028 1	0	028 1	028 1	u 628 1	5	028 1	028 1	028 1	0
IU 111	NU.ITY	NG.	06 (06 (06 (06 (06 (06 (96			06 0	06 0	06 0		06 0	06 0	06 0	06 0		06 0	06 0	0 90		06 0	0 90	0 90	
WATER WELL	MUNICIPALITY CONCESSION ETC	CONTINUING	CON	CON	CON		CON	CON	CON	CON	NOD		CON	CON	CON		NOL	CON	CON	CON		CON	CON	CON		NOC	CON	CON	

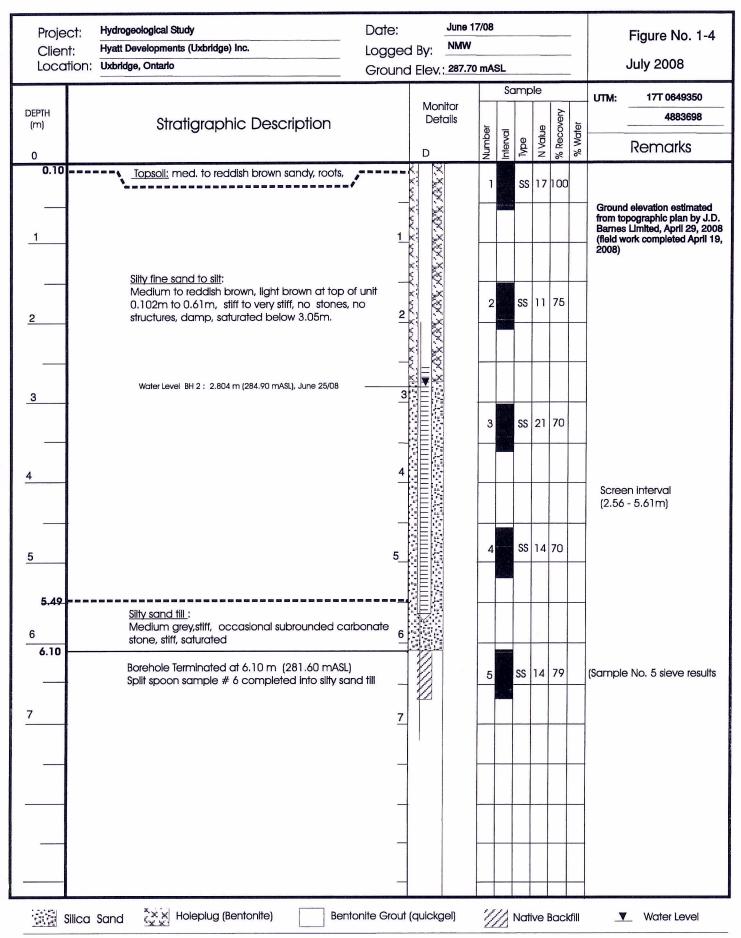
	CON		CON	CON	8			CUN	2011	CON		CON			CON		CON	CON	CON		CON		CON			CON		CON		CON		CON		CON	CON	CON	WAT
	06		06	06		00	2	90	2	06		06			90		90	90	06		90		90			90		0		0		0			CONTINUING.	CONCESSION ETC	WATER WELL DATA SYSTEM
	028		028	028		870 0		820		820 0		5 02			6 028		6 028	6 028	6 028		6 028		6 028					06 0:		06 0		06 0		06 0	Ğ.	NC	LL DA
												æ														028 1		028 1	-	028 1	~	028		820	UXB	LOT	VTA S
	9- 2216	5928	46-	46- 05196		46-06386		46-		19-		46-		60	19-	33	46-		46-05428	06427			19-08083		69	19-		19- 07591	01210	19-	06959	19-		19- 05766	UXBRIDGE	WELL	YSTEM
	649764~ 4884220	4884449	650621	649200 4883810		649897 4884335		649713 4884106		649764~ 4884220		649987		4884220	649764~	4884400	4883872	648843	649660 4884360	4884060	649500		649734 4884382		4884220	649764~		649764~ 4884220	4884120	649450	4883950	649400		649500 4984250	TOWNSHI P	UTM EASTING NORTHING	Sep 09
			900	950		915		940				006					920	950	925		950		932							925		950		1050		ELEV G FEET	9 2002
	1994/11		1974	1972/08		1975		1975		999 I		1975			1999		1974	1974	1973		1976		1986			1986		1986		1984		198,			(UXBRIDGE)	/ DATE	
			80/			/12		975/02		80/666		/12			70/666		974/07	974/08	973/04		10/976		986/12			986/05		986/02		1984/08		1984/05		1980/06	3		
	5459		1413	1413		4743		1413		5459		4743			5459		1350	1413	1413		1413		4743			4743		4743		4743		1413		1413		DRILLER	PAGE:
	06		05	05		90		05				30					90	05	05		90		06		1	06		06		90		06				CSG DIA INS	939
	FR		FR	FR		FR		FR				PR					-	FR	PR		FR		FR		1	FR		FR		FR		FR				OF WATER	
	0126		2800	0065		0040		0072				0056				0000	2500	0065	1900		1600		0048			0052		0047		0045		0052				WATER FOUND R FEET	COUNTY :
	50		12	20		8		εε				w					10	1.2	12		26		œ			-		15		14		15				ER STAT ND LVL F FEET	
	120		65	50		35		50				20				5	یں ج	45	5	ţ	60		55		ť	45		40		33		ω				AT PUMP LVL ET FEET	DURHAM
	N		თ	10		15		7				15				d	ת	10	9	ļ	10		10		10	10		8		7		80				IP TEST RATE T GPM	
	N	1	N	יי יי		<u>н</u>		د ۲ 				ω 				N		N) 	ч	1	~		∾ 					بر 		•• ••							
	: 30	,	 0	: 30		0		: 30				0				c	>	0	: 30		30		30		50	5		: 30		: 30		: 30		••		4	
	Ю		8	8		8		IN				8				50		Ю	8		8		8		2			8		8		8		NU		SCF WATER DEPTH USE FEET	
	0129		0074	0050		0040		0064				0057				1000	1.6 00	0056	0045	0000	FROO		0050		0000	0068		0050		0049		0045				SC DEPTH FEET	
	06	č	80	80		08		80				63				00		90	80	00	08		04		04	04		07		04		07				SCREEN TH LENGTH T FEET	
5	BR	SP 00		JA PB		FR	BR	BE		NO	SA	BU	្ពន្ល	BR	SA	SA	BR	EW	HA	AB	FS	SA	808	35	BL	CL	BR	Yo	BR	AR	BR	LS I	្អ	BR		5	
URD 0	POSTILE, FRED BRWN SAND 0030 BRWN CLAY SILT 0062 GBEY CLAY SAND	SAND CLAY 0022 0065 BRWN CLAY	FSND 0065	JAMES R	0048 GREY FSND	FRAZER GORDON	BRWN SAND	BEACH STAN EQUIP	GREY SAND SILT 0062	WOODEN, STICKS	SAND 0038 GREY FSND	BULLERWELL	GREY CLAY STNS	BRWN SAND SLTY	ND OU	SAND CLAY 0012 (WN SI	EWAN SANDY	HARVEY J	ARWN SAND CLAV	FSND 0058 GREY	SAND LOOS 0046	BOAKE, RT	LOOS O	BLCK LOAM 0004	CLAY STNS HPAN	BRWN CLAY SAND BRWN FSND 0057	YOUNG, DAVID	0	ARTS P	BRWN SI	STNS HARD 0100	CLAY DI	BRWN SAND		EPTHS	G
126 0	AND O	RWN C		024 8	REY F	GORD	AND 0	STAN	ND S	STIC	0 80 0 80 0	VELL	AYS	STTC	45	AY O	ND C	NDY B	J		958 G	LOOS 0	RT	0012 YLLW	MAK 0	INS H	AY SND O	DAVID	AYS	P SOOT	SAND P	ARD O	DNSE 0			OWNER HS IN FEET FORMATIONS	ROUNE
REY	ED 030	022			FSND 0062		0033	EQUI	STUS	KS	DO1 REY	<	THS	ĸ	1	012	LAY	RWN	107.		REY	0046					AND 057			0052	0	100		DRY			WAT
SAND	BRWN	SAND		SAND	CLAY	CB54	BLUE				GREY	01.00	0117	0062		CLAY	0052	SAND	0111	CTT 7	CLAY	GREY	(LN		BRWN	0077	BRWN		1.00S		0012		GREY	8000		TO WHICH EXTEND	ER BI
SIL	CLAY	CLAY		0055	0052		SAND		GREY		CLAY		GREY	BRWN		0017	RED	SILT	0077	TLUU	STKY	CLAY	0012	DRTY	LOAM		CLAY		0012		BRWN		SILT	BRWN		41CH	JLLEI
0135	SOFT	SILT		RED	GREY		SILT		SAND		GRVL		SAND			SILT	FSND	0050	NEU		0062	0048			0006		SAND		BRWN		CLAY		SOFT	CLAY			IN RI
5	F 0047	r 0059		D SAND	GRVL	2	r 0057	0	STNS		GRV1.		STNS	SIL		CLIN	0065	GREY	, LOND	D D D D D D D D D D D D D D D D D D D		BRWN		BRWN	BRWN		C SAND		SAND		DNSE		r 0046	DNSF			GROUND WATER BULLETIN REPORT
0	B GREY		i i	ID 0057	7L 0054				IS SILT		D BRWN		IS 0127	T STN		Y SAND	υ	Y SAND				D 0038		N CLAY	N CLAY		D PCKD		D 0045		E 0043		6 GREY	F 0023			121
5		RED SP					RED FS									ND 0035		ND 0061	TEON SC								64 GREY		45 BRWN		43 BRWN		EY CLAY				
5	CLAY	SAND		BICK	BLUE	5	FSND		6800		CLAY		GREY	689		Ū,		161	TEL	2		CLN		SOFT	GRVL		EY		WN		WN		AY	GREY			

HARD 0126 GREY SAND SILT 0135

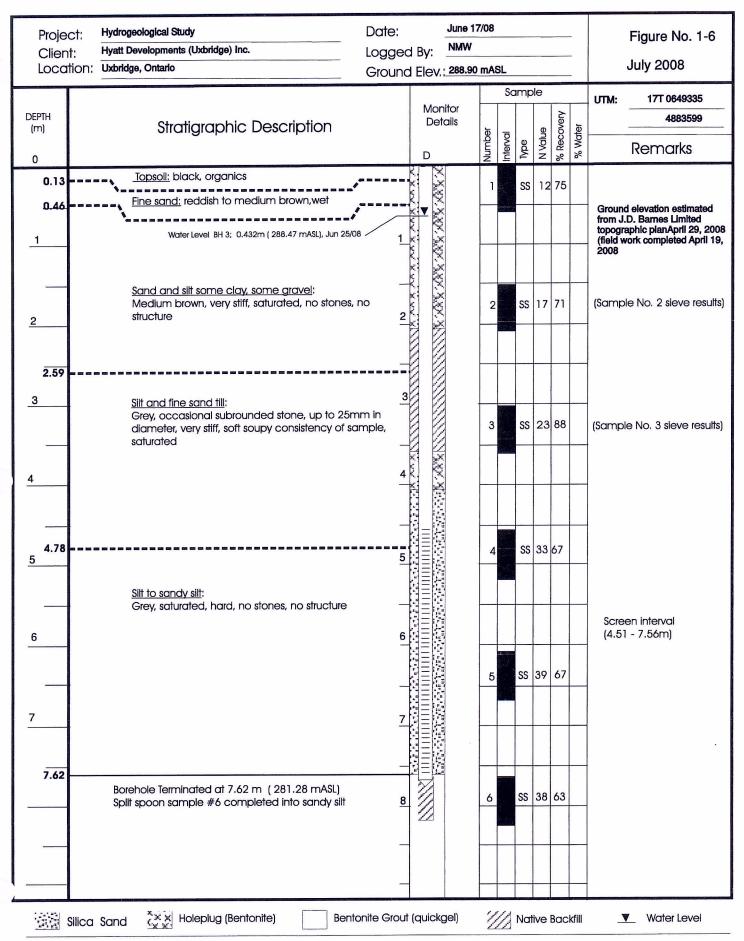
ALACTER BILL MATER	HLAEG		NBER, T. Loam 0002 brwn clay sand 0017	SAND LYRD 0072 BRWN GREY CLAY STWS 0022	0031 GREY CLAY STNS BOCK 0189 0195 GREY CLAY STILT 0201 GREY	PASTILE, FRED	EAU, D	BRWN CLAY 0012 BRWN SAND CLAY LYRD 0026 BRWN CLAY SOFT 0051 BRWN SAND FSND 0060 GREY CLAY SILT 0070 GREY CLAY STNS HARD 0070	LOAM WTHD 0002 BRWN SAND	CLAY GRVL HARD 0054 BRWN SAND SOFT 0056 GREY CLAY GRVL HARD 0051 BLCK SAND HARD 0087 BROWN, GEORGE	BRWN LOAM SCFT 0002 BRWN SAND SOFT 0027 GREY CLAY GRVL SAND 0068 BRWN CSND LOOS LOOS 0073 SAUDER, L	GREY GRVL CLN 0090 CCH, AK	BHWN LUAM BLDR LOOS 0003 BRWN CLAY SOFT 0015 GREY CLAY HARD 0027 GREY SAND LOOS 0032 BRWN SAND 0069	JUP, URBRIDGE	WOODEN STICKS GC	WOODEN STICKS GC	WOODEN STICKS PC	evol to	STICKS	WOODEN STICKS GC	REGION OF DURHAM BLCK LOAM 0001 BRWN CLAY GRVL SNDY 0023 FSND LOOS 0040 GREY CLAY SNDY SLTY 0050 GREY CLAY SNDY HARD 0057 GREY CLAY GRVL HARD 0065 GREY CLAY GRVL SNDY 0106 GREY CLAY GRVL FSND 0142 BLDA VERY HARD 0144 GREY CLAY GRVL FSND 0146 GREY CLAY SNDY 0238 BRWN CLAY SNDD 0166 GREY CLAY SNDY 0238 BRWN CLAY SNDD 0166 O261 BRNN GRVL CLAY SNDY 0296 GREY CLAY GRVL SLTY 0307 GREY CLAY GRVL HARD 0323
	SCREEN DEPTH LENGTH FEET FEET		06	EO			60	-	c)	04		e				1.			- ,	-	
	SCI DEPTH FEFT		0074 (0201 0			00500		1 1000	0069 0		0066 03									
	WA'TER USE		8	8		2	8	٤		8	8	ß		NU							NW DN
	TEST TIME HR:MN		2 :0	5:0		••	4 :30			2 :30	2:15	2:0		••	••		ι.				
	TEST RATE GPM		12	2			¢.	د		10	10	10 2									
WVD	PUMP LVL. FEET		4 5	107			40			50	26	50									
DURHAM	<pre>% STAT % STAT % LVL FEET</pre>		19	18			13	18		v	16	٢									
COUNTY:	WATER FOUND FEET		0072	0201			0050	1800		0069	0076	0066									
	KIND OF WATER		FR	FR			FR	FR		FR	FR	FR									
. 940	CSG DIA INS		90	06			90	06		90	06	90									
PAGE :	DRILLER		4743	5459		5459	6743	4743		4743	6743	4743	9659		5459	5459	5459	5459	5459	100	TOP
		3E)	1994/05	10/5661			60/2661	1989/03		1988/07	1987/10	1991/05	, 01/666T		80/8661	1998/08	1998/08	1998/08 5	1998/08 5	C CU/ LL01	
02	EV ET DA:	(UXBRIDGE)	199	199						198			199		199	199	199	199	1991	.1.01	
9 2002	ELEV G FEET						526	945			912	266								306	
Sep 09	UTM EASTING ELEV NORTHING FEET DATE	UXBRIDGE TOWNSHIP	649764~ 4884220	19- 649764- 12334 4884220		4864220	4884345	649237	4883987	649764~ 4884220	649891 4884525	649763 4884298	649637~	4884582	649637~ 4884582	649637- 4884582	649637- 4884582	649637-	4884582	4884582	4884850
YSTEM	ON MELL	RIDGE	19- 11942	19- 12334	19-	35	6	19-	967.60	19- 09390	19- 08683	19-	-6I	66	8	01	13769 4		19-6	13766 4	22
ATA S	LOT	. UXB	028	028	028			028		028	028	028	029				029]	029 1	1 620	029 1	
U III	ION VLITY	NG.	06	90	06.0			06 (06 (06 (06 0	06 0	000			06 0	0 90	06 0	06 0	
WATER WELL DATA SYSTEM	MUNICI PALITY CONCESSION ETC	CONTINUING.	CON	CON	CON	NOC	100	CON		CON	CON	CON	CON	NOD			CON	CON	CON	CON	


APPENDIX 2


SITE FIELD DATA

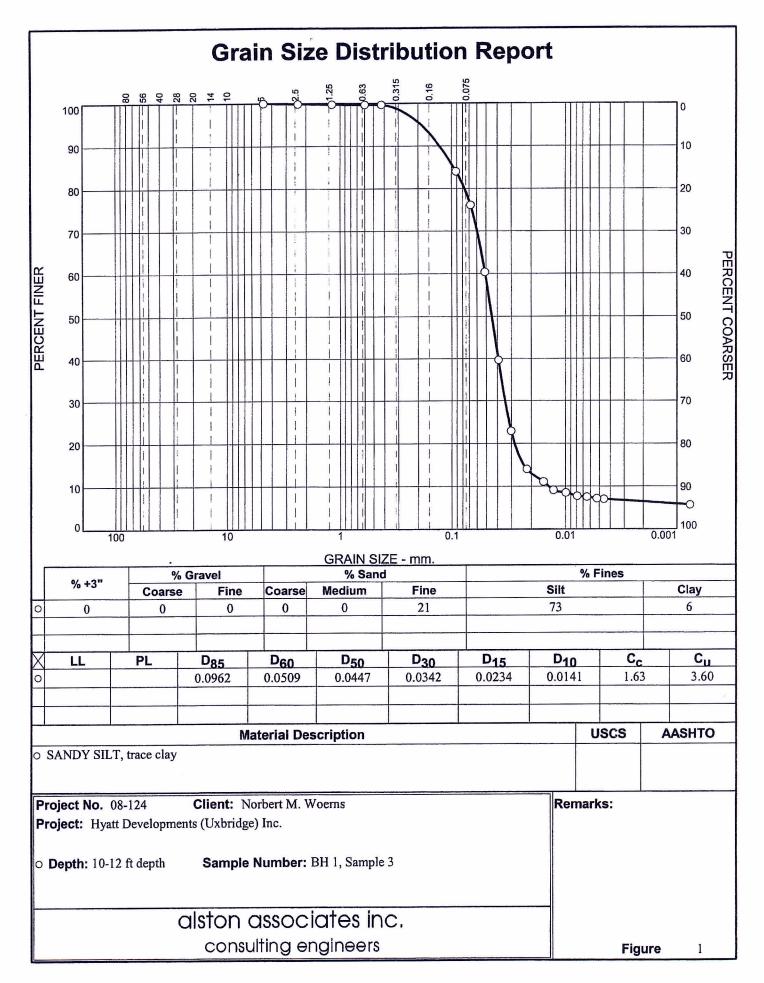

- Mini-Piezometer Construction Details
- Borehole Logs
- Grain Size Laboratory Analysis
- In-Situ Hydraulic Conductivity Testing Results

Hyatt, Cemetery Road, Uxbridge, Hydrogeological Investigation, January, 2009

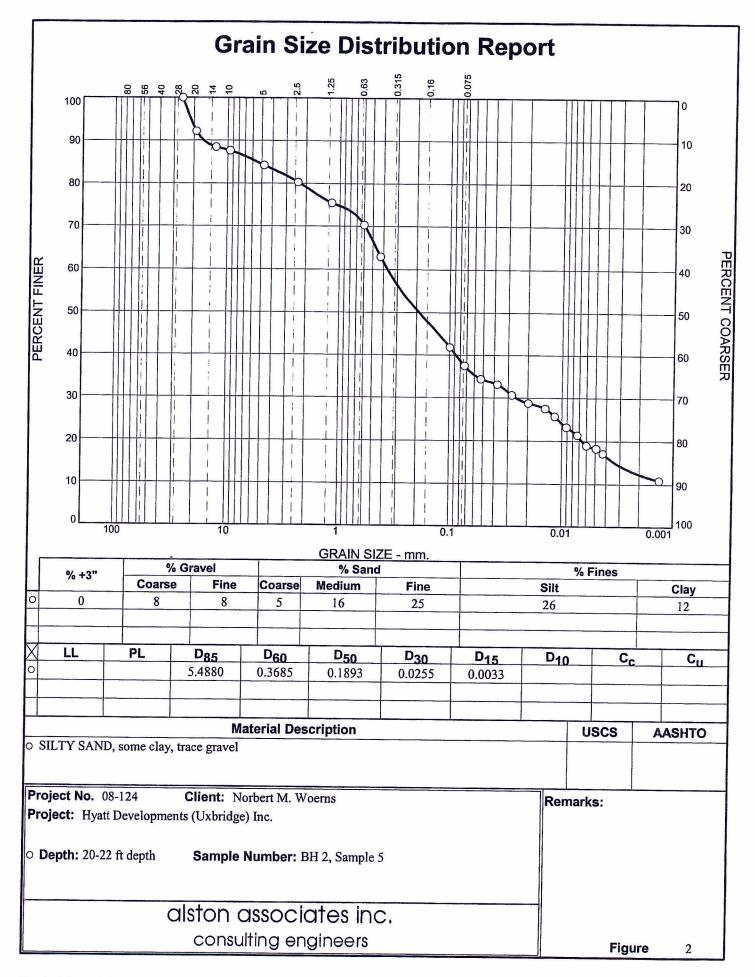


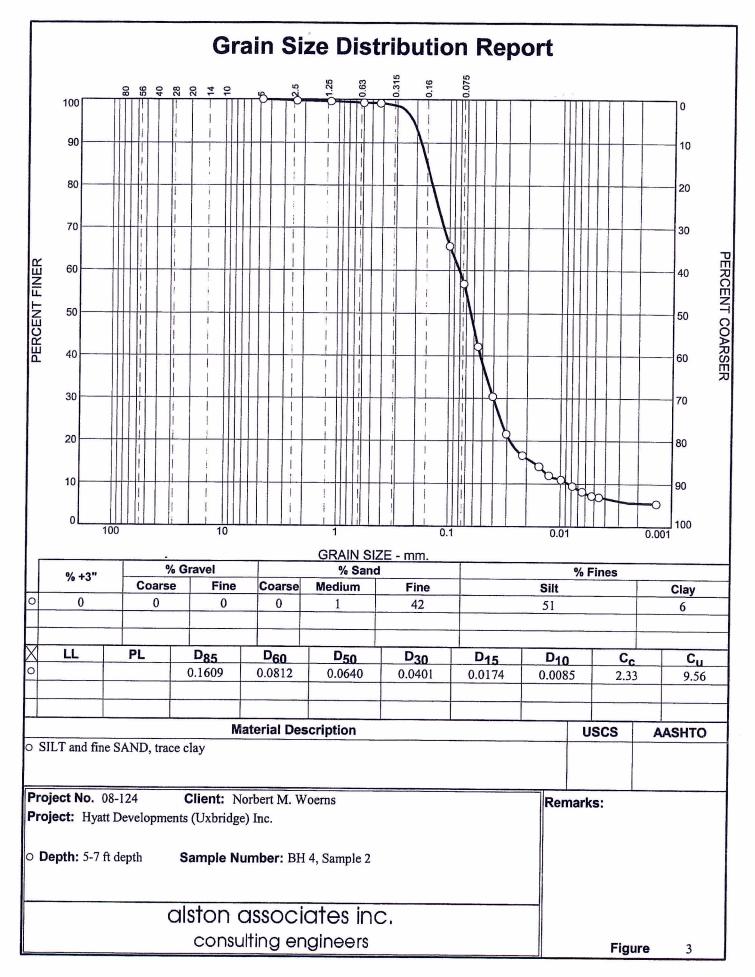
Project: Client: Location:	Hydrogeological Study Hyatt Developments (Uxbridge) Inc. Uxbridge, Ontarlo	Date: Logged By: Ground Elev.	June 17 NMW 288.46		-			_	Figure No. 1-5 July 2008
DEPTH (m)	Stratigraphic Description	Mon Det			Sam		Recovery	ter	UTM: 17T 0649284 4883626
0				Number	Two	N Value	% Rec	% Water	Remarks
0.13 	Topsoll: black, organics Fine sand: reddish to medium brown Water Level BH 3; 0.764m (287.70 mASL), Jun 25/08]	S	S 9	80		Ground elevation estimated from J.D. Barnes Limited topographic plan April 29, 2008 (Field work completed April 19, 2008)
2	<u>Fine sand and silt:</u> Grey, very stiff, saturated, no stones, no structure			2	S	5 23	58		
<u>3</u> 2.93				3	S	5 8	71		
5	<u>Sandy silt till</u> : Grey, firm to very stiff, occasional subrounded carbonate stone, up to 32mm in diameter, satu	rated 5		4	s	S 18	100		Screen interval (2.94 - 5.99m)
<u>6</u> <u>6.10</u>	Borehole Terminated at 6.10 m (281.83 mASL) Plit spoon sample # 5 completed into silt till	6 6 1 1 1 1 1 1 1 1 1 1 1 1 1		5	SS	5 20	88		
7		7							
		_							
Silica	Sand	nite Grout (quickg	jel)] No	ntive	Bacl	kfill	_ Water Level

EMAIL

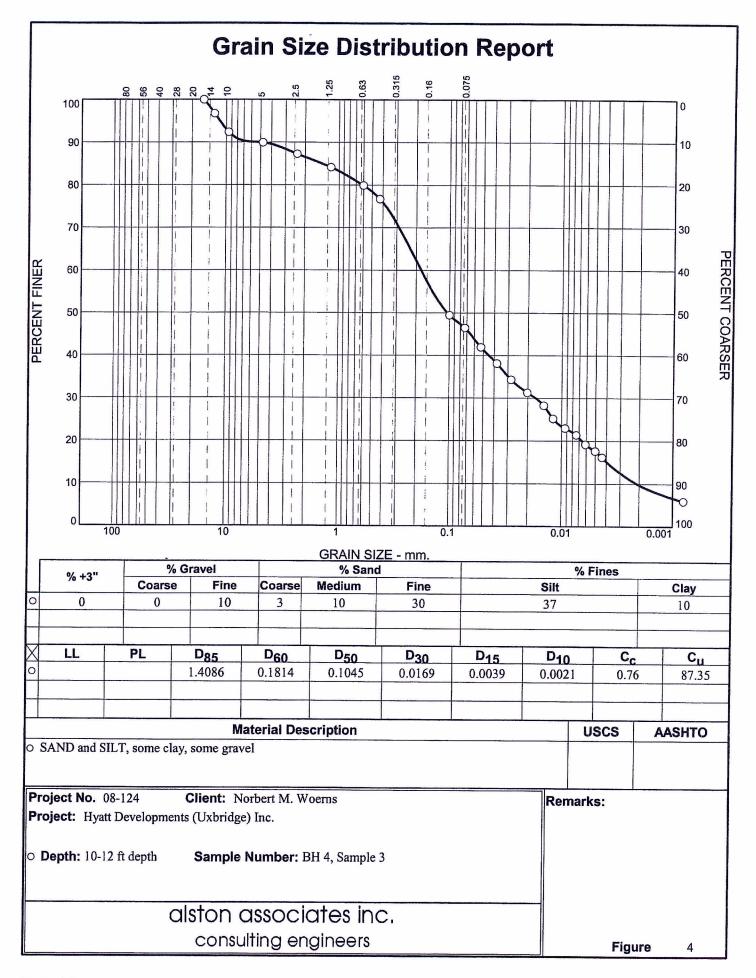

Email to :	Norbert Woerns	Email Addre	ss	:	nwoerns@sympatico.ca
From :	Jonathan Bond	Date	•		7 July 2008
Ref. No. :	08-0124	Page 1 of 5			
Subject :	Laboratory Results Hyatt Developments (Uxbridge) Inc.				

Please find attached the Grain Size Distribution Test Reports for the samples received in our office on 26 June 2008. Originals will follow by mail.


If you have any questions please contact our office.


Regards

l. Cond



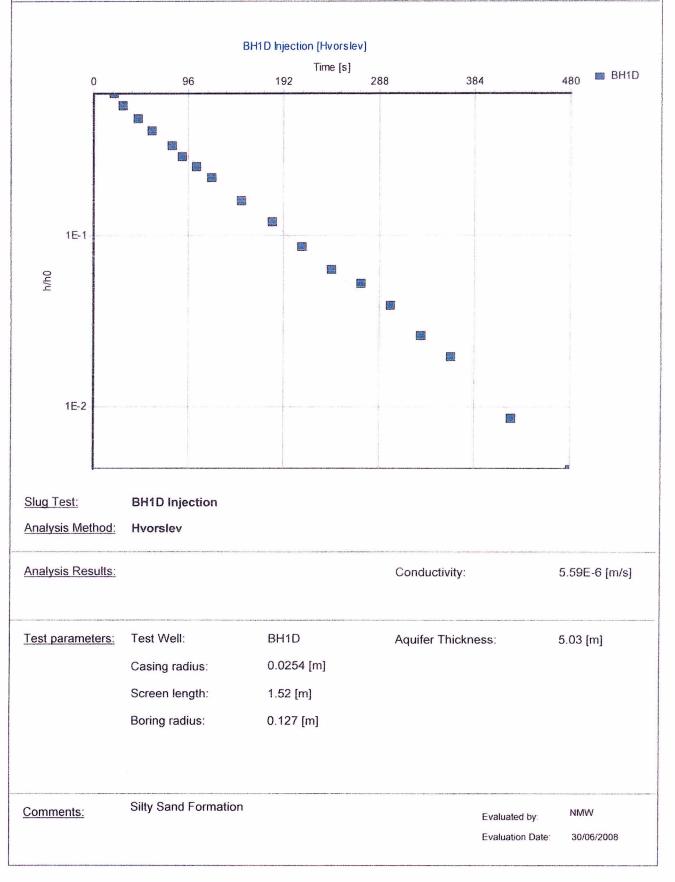
Checked By: JB

Checked By: JB

Checked By: JB

Hyatt Developments (Uxbridge) - Slug Test Results Summary

Borehole	Test Result	Hydraulic Conductivity	Soil Unit(s)
No.		(m/s)	
BH1D	Hvorslev (injection test)	5.59E-06	Silty Sand
BH1D	Hvorslev (withdrawal test)	5.18E-06	Silty Sand
BH1S	Hvorslev (injection test)	2.23E-05	Silt and Sand
BH1S	Hvorslev (withdrawal test)	1.59E-05	Silty Sand
BH2	Hvorslev (injection test)	7.40E-06	Sand and Silt
BH2	Hvorslev (withdrawal test - early)	3.02E-06	Sand and Silt
BH4	Hvorslev (injection)	2.55E-06	Silt to Sandy Silt
BH4	Hvorslev (withdrawal)	2.07E-06	Silt to Sandy Silt
	Geometric Mean	5.76E-06	Sand and Silt
BH3	Hvorslev (injection test)	6.77E-07	Fine Sand/Silt Till
BH3	Hvorslev (withdrawal test)	3.74E-07	Fine Sand/Silt/Silt Till
	Geometric Mean	5.03E-07	Sand/Silt Till

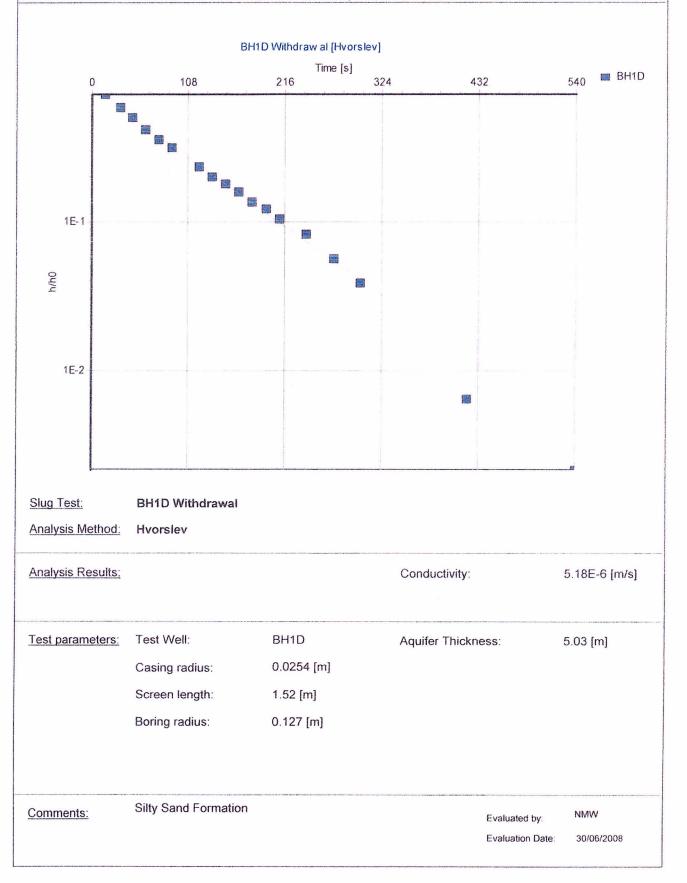

96 Lund Street Richmond Hill, Ontario, L4C 5V9 Phone: (905) 883-0276

Slug Test Analysis Report

Project: Hyatt Developments (Uxbridge)

Number: Client: Hya

Hyatt Developments (Uxbridge) Inc

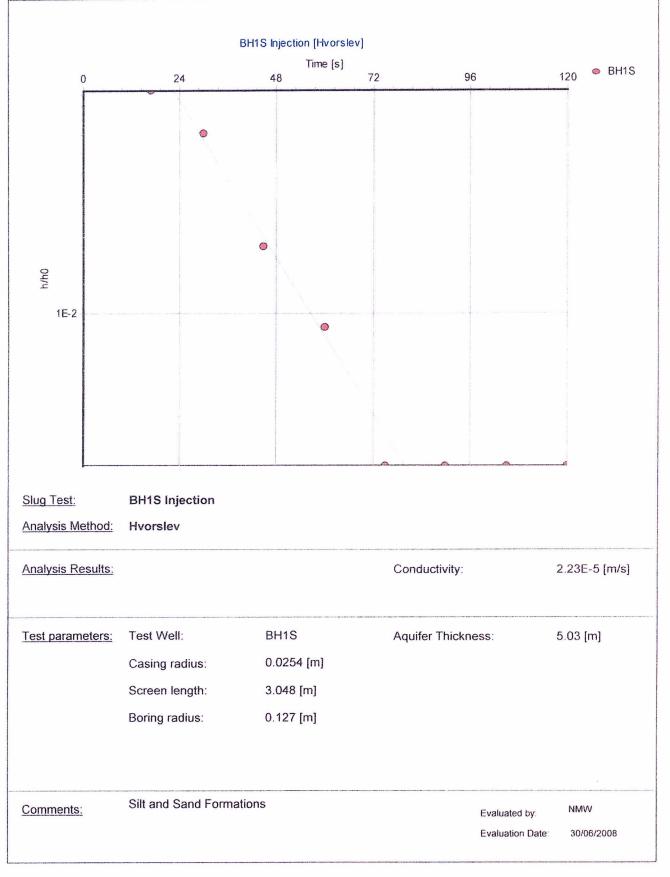

96 Lund Street Richmond Hill, Ontario, L4C 5V9

Phone: (905) 883-0276

Slug Test Analysis Report

Number:

Project: Hyatt Developments (Uxbridge)

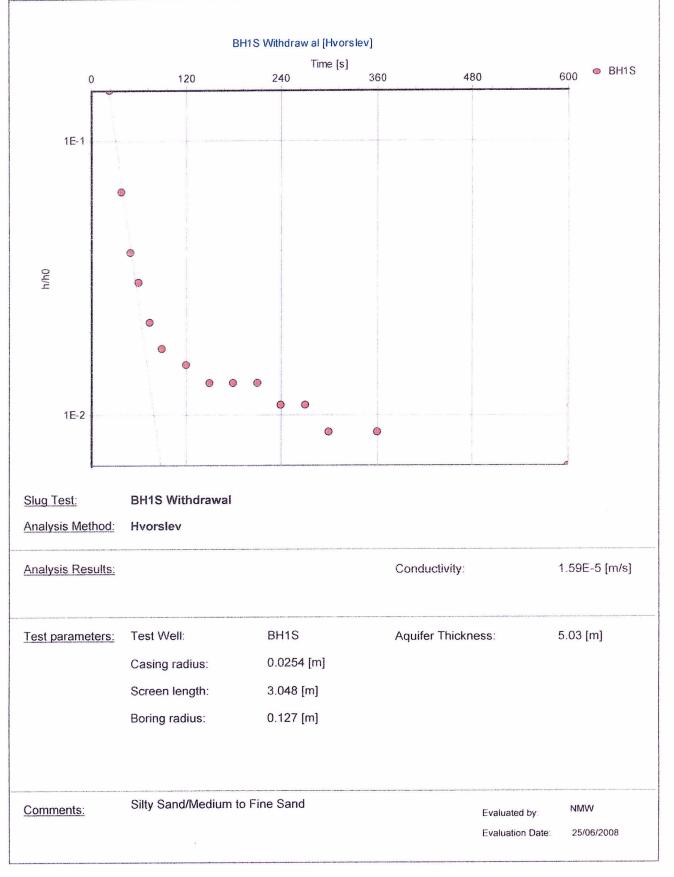

Norbert M. Woerns 96 Lund Street Richmond Hill, Ontario, L4C 5V9 Phone: (905) 883-0276

 Slug Test Analysis Report

 Project:
 Hyatt Developments (Uxbridge)

 Number:

 Client:
 Hyatt Developments (Uxbridge) Inc



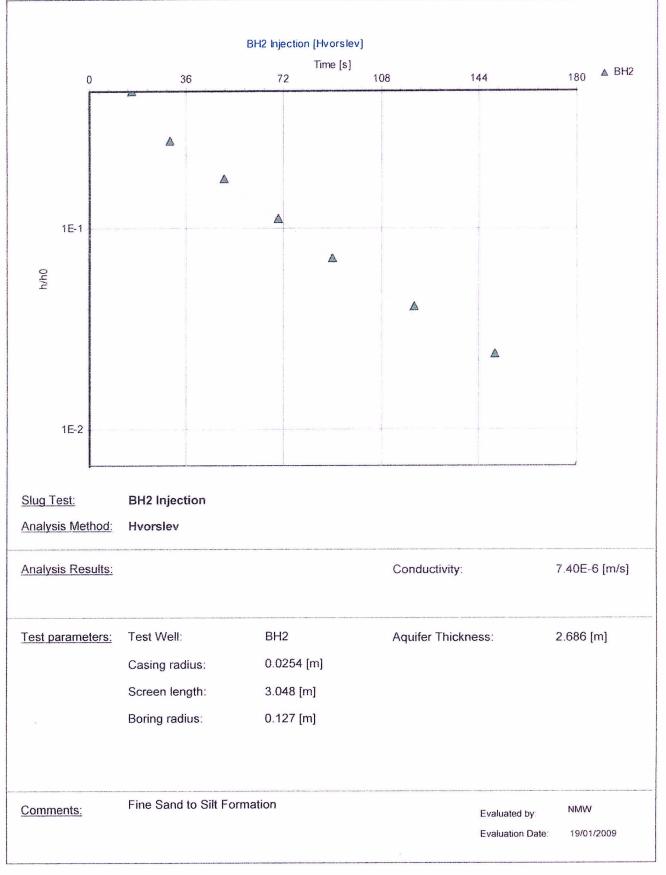
Norbert M. Woerns 96 Lund Street Richmond Hill, Ontario, L4C 5V9 Phone: (905) 883-0276

 Slug Test Analysis Report

 Project:
 Hyatt Developments (Uxbridge)

 Number:
 Hyatt Developments (Uxbridge) Inc

96 Lund Street Richmond Hill, Ontario, L4C 5V9


Phone: (905) 883-0276

Slug Test Analysis Report

Project: Hyatt Developments (Uxbridge)

Number: Client: ^H

Hyatt Developments (Uxbridge) Inc

96 Lund Street Richmond Hill, Ontario, L4C 5V9

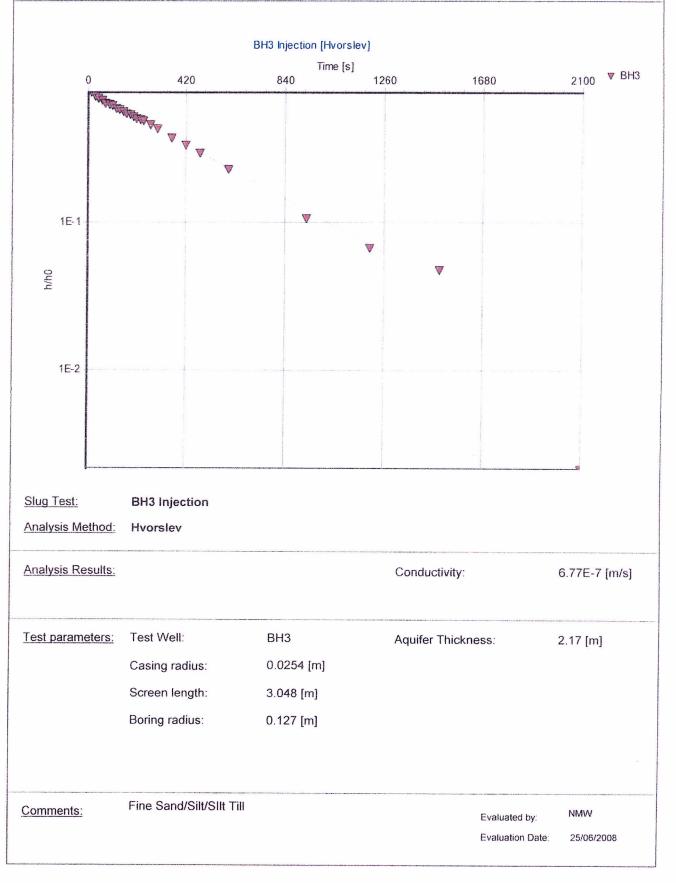
Phone: (905) 883-0276

Slug Test Analysis Report

Project: Hyatt Developments (Uxbridge)

Number: Client: Hya

Hyatt Developments (Uxbridge) Inc

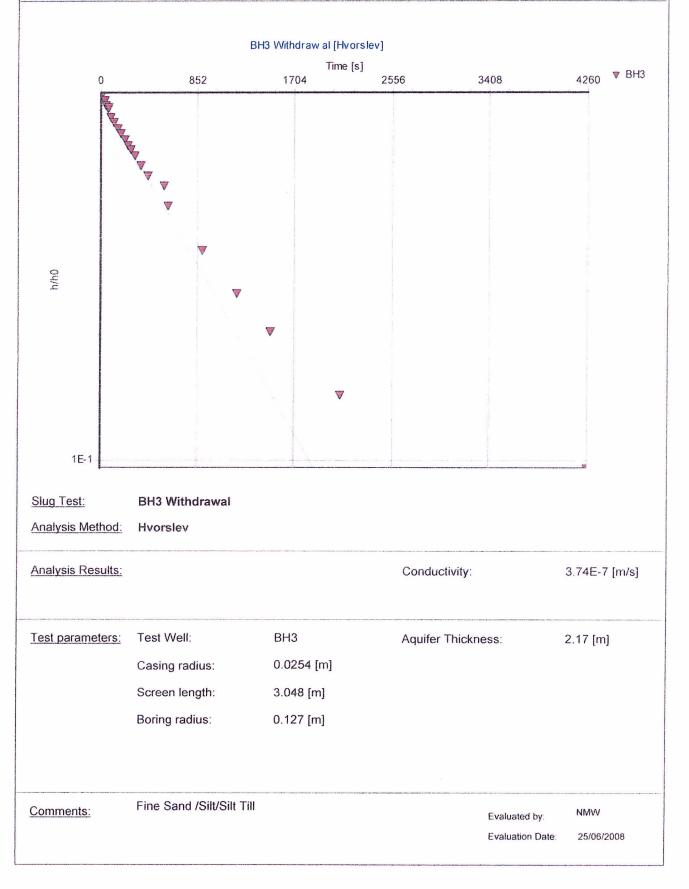

96 Lund Street Richmond Hill, Ontario, L4C 5V9

Phone: (905) 883-0276

Slug Test Analysis Report

Number:

Project: Hyatt Developments (Uxbridge)

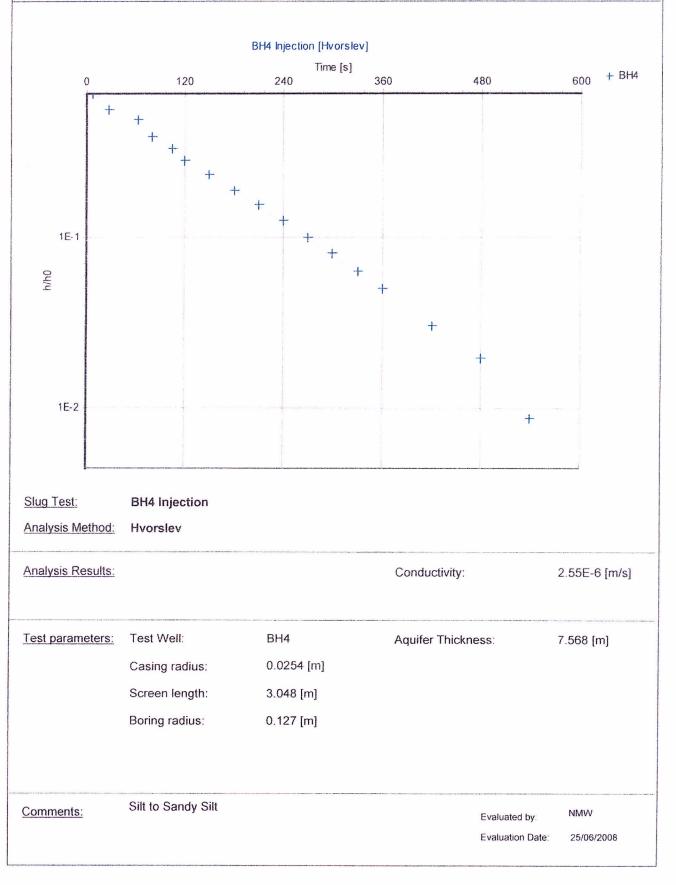


Norbert M. Woerns 96 Lund Street Richmond Hill, Ontario, L4C 5V9 Phone: (905) 883-0276

Slug Test Analysis Report

Project: Hyatt Developments (Uxbridge)

Number:


Norbert M. Woerns 96 Lund Street Richmond Hill, Ontario, L4C 5V9

Phone: (905) 883-0276

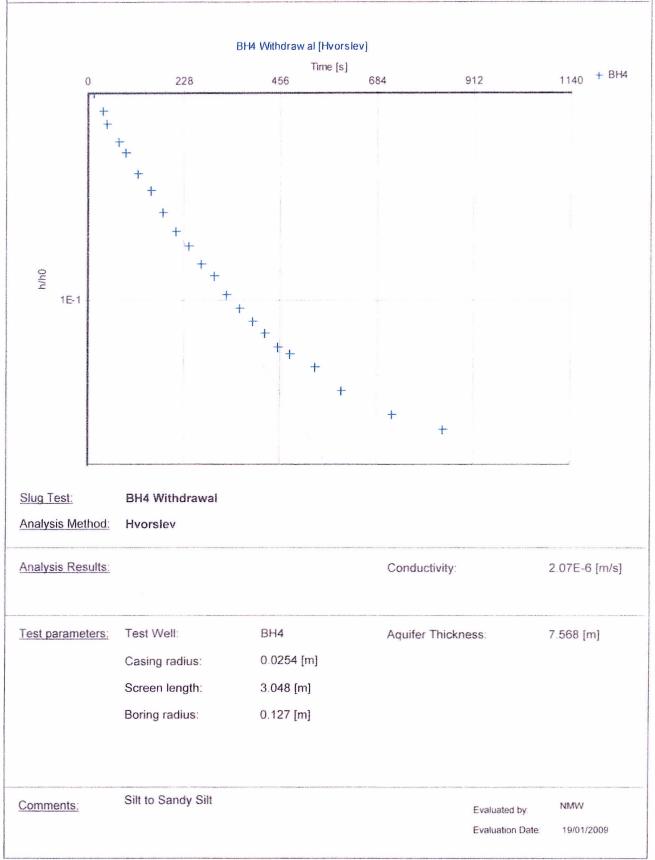
Slug Test Analysis Report

Number:

Project: Hyatt Developments (Uxbridge)

Norbert M. Woerns

96 Lund Street


Richmond Hill, Ontario, L4C 5V9

Phone: (905) 883-0276

Slug Test Analysis Report

Project: Hyatt Developments (Uxbridge)

Number: Client: Hyatt Developments (Uxbridge) Inc

APPENDIX 3

WELL SURVEY SUMMARY

Hyatt, Cemetery Road, Uxbridge, Hydrogeological Investigation, January, 2009

Hyatt Developments (Uxbridge) Inc. Well Survey Summary

Interview #		Mailed in	Street	Well Type	Well Depth			Issues	Comments
	Interview	Survey	Address		(m)	Level (m)	Quantity	Quality	
1	May 21/08		164 Cernetery Road	drilled	~24.4	N/A		V	Iron and sulphur smell, staining of toilet. Water softener. Good supply never had quantity problems except when horse accidentally turned on water. Domestic use for 5 people, previously had horses
2	Jun 25/08		154 Cemetery Road	dug	11.3	~9.8	V	1	Lots of calcium in water. Ultra violet treatment. Slow water level recovery, 1.2m of water in well. Domestic use for 4 people
3	Jun 25/08		153 Cemetery Road	drilled	~29.0	~6.1		×	Rusty water, have water softener Always enough water Well tested 4 to 5 years ago for subdivision application Domestic use for 2 people
4	Jun 25/08		151 Cemetery Road	drilled	31.1	N/A		V	Fine sediment in water when filling pool Reverse osmosis treatment House and well 4 years old Domestic use for 4 people
5	N/A	N/A	150 Cemetery Road	م الأماد	00.0	NI/A			N/A
6	May 21/08		149 Cemetery Road	drilled	36.6	N/A	V		High iron, water very hard, toilet bowl staining Previously ran out of water all the time, not a problem now Do not water lawn, careful with water use, 2 holding tanks Softener, iron filter, ultra violet treatment Domestic use for 5 people, do not drink water.
7	May 21/08		147 Cemetery Road	drilled	~27.4	N/A			No problems with supply, fill swimming pool High iron, hard, staining of fixtures Water softener. Domestic use for 2 people
8	Jun 25/08		145 Cemetery Road	drilled	~61.0	N/A			No supply problems. Sulphur odour, water softener Tested for bacteris 2 times /year, zero results Domestic use for 4 people
9	May 21/08		146 Cemetery Road	drilled					High iron,hard, no odour, bacteria levels O.K Water softener, drink bottled water Domestic use for 4 people
10	May 21/08		144 Cemetery Road	drilled	N/A	N/A			No supply problems,no quality problems Water softener, iron filter Do not water lawn Domestic use for 3 people
11	N/A	Jun 27/08	142 Cemetery Road	N/A	N/A	N/A			High iron Water softener No supply problems Domestic use for 2 people
12	Jun 25/08		138 Cemetery Road	drilled	36.6	N/A			Slight hardness to water Water softener Previous well about 12.2m deep not enough water, New well installed 2 yrs ago, no supply problems Domestic use for 4 people
13	Jun 25/08	8	134 Cemetery Road	drilled	N/A	8.74			Some iron staining,no treatment Silt produced whe filled hot tub, not normally a problem Water level measured from ground surface Domestic use for 5 people
14	Jun 25/08		130 Cernetery Road	drilled	~15.2	N/A			Enough supply,run out of hot water, No quality problems, water softener Domestic use for 6 people
15	May 21/08		131 Cemetery Road	drilled	N/A	N/A			No problems, no treatment Drink water, never tested water Never run out of water Domestic use for 2 people
16	N/A	Jun 29/08	126 Cemetery Road	drilled	26.5	N/A	V		Not a great flow rate Water softener and reverse osmosis Domestic use for 2 people
17	N/A	N/A	6th Line (6059)						N/A
18	Jul 10/08		6th Line (6121)	drilled	25.3	2.1			Good taste no staining, filtration for sediment Never had supply problems Water in well sometimes flows Domestic use for 2 people
19	N/A	N/A	6th Line (6100)						N/A
20	Jul 10/08		6th Line (6260)	drilled	N/A	1.8			Sulphur,hard, staining Water softener Silting when filling pool Domestic use for 2 people

APPENDIX 4

WATER QUALITY RESULTS

Hyatt, Cemetery Road, Uxbridge, Hydrogeological Investigation, January, 2009

Your Project #: HYATT DEVELOPMENT Site: UXBRIDGE, ONTARIO Your C.O.C. #: 82811-01

Attention: Norbert M. Woerns

NORBERT M WOERNS 96 Lund St Richmond Hill, ON L4C 5V9

Report Date: 2008/05/30

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A851546 Received: 2008/05/22, 07:37

Sample Matrix: Water # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Alkalinity	1	N/A	2008/05/26 CAM SOP-00448	SM 2320B
Alkalinity	1	N/A	2008/05/29 CAM SOP-00448	SM 2320B
Carbonate, Bicarbonate and Hydroxide	1	N/A	2008/05/28	
Carbonate, Bicarbonate and Hydroxide	1	N/A	2008/05/30	
Chloride by Automated Colourimetry	2	N/A	2008/05/28 CAM SOP-00463	SM 4500 CI E
Colour	1	N/A	2008/05/26 CAM SOP-00412	APHA 2120
Colour	1	N/A	2008/05/27 CAM SOP-00412	APHA 2120
Conductivity	1	N/A	2008/05/26 CAM SOP-00448	SM 2510
Conductivity	1	N/A	2008/05/29 CAM SOP-00448	SM 2510
Jissolved Organic Carbon (DOC)	2	N/A	2008/05/27 CAM SOP-00446	SM 5310 B
Hardness (calculated as CaCO3)	2	N/A	2008/05/28 CAM SOP 0102	SM 2340 B
Metals Analysis by ICPMS (as received) ()	2	2008/05/27	2008/05/27 CAM SOP-00447	EPA 6020
Ion Balance (% Difference)	1	N/A	2008/05/28	
Ion Balance (% Difference)	1	N/A	2008/05/30	
Anion and Cation Sum	1	N/A	2008/05/28	
Anion and Cation Sum	1	N/A	2008/05/30	
Coliform/ E. coli, CFU/100mL	2	N/A	2008/05/22 CAM SOP-00551	MOE E3407
Fecal coliform, (CFU/100mL)	2	N/A	2008/05/22 CAM SOP-00552	LSBE 3371
Heterotrophic plate count, (CFU/mL)	2	N/A	2008/05/22 CAM SOP-00512	SM 9215
Ammonia-N	2	N/A	2008/05/27 CAM SOP-00441	US GS I-2522-90
Nitrate (NO3) and Nitrite (NO2) in Water g	2	N/A	2008/05/26 CAM SOP-00440	SM 4500 NO3 I
PH	1	N/A	2008/05/26 CAM SOP-00448	SM 4500H
pH	1	N/A	2008/05/29 CAM SOP-00448	SM 4500H
Orthophosphate	2	N/A	2008/05/28 CAM SOP-00461	SM 4500 P-F
Sat. pH and Langelier Index (@ 20C)	1	N/A	2008/05/28	
Sat. pH and Langelier Index (@ 20C)	1	N/A	2008/05/30	
Sat. pH and Langelier Index (@ 4C)	1	N/A	2008/05/28	
Sat. pH and Langelier Index (@ 4C)	1	N/A	2008/05/30	
Sulphate by Automated Colourimetry	2	N/A	2008/05/28 CAM SOP-00464	EPA 375.4
Total Dissolved Solids (TDS calc)	1	N/A	2008/05/28	
Total Dissolved Solids (TDS calc)	1	N/A	2008/05/30	
Total Kjeldahl Nitrogen in Water	2	N/A	2008/05/28 CAM SOP-00454	EPA 351.2 Rev 2
Turbidity	2	N/A	2008/05/23 CAM SOP-00417	APHA 2130

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Metals analysis was performed on the sample 'as received'.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Your Project #: HYATT DEVELOPMENT Site: UXBRIDGE, ONTARIO Your C.O.C. #: 82811-01

Attention: Norbert M. Woerns NORBERT M WOERNS 96 Lund St Richmond Hill, ON L4C 5V9

Report Date: 2008/05/30

CERTIFICATE OF ANALYSIS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ANTONELLA BRASIL, Project Manager Email: Abrasil@maxxamanalytics.com Phone# (905) 817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

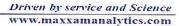
Total cover pages: 2

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENT Project name: UXBRIDGE, ONTARIO

RESULTS OF ANALYSES OF WATER

Maxxam ID		Y75258		Y75259		
Sampling Date		2008/05/21		2008/05/21		
COC Number	Unite	82811-01	DO Datab	82811-01		
	Units	#1	QC Batch	#2	RDL	QC Batc
Calculated Parameters						
Anion Sum	me/L	3.84	1518592	5.73	N/A	1518592
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	153	1518589	170	1	1518589
Calculated TDS	mg/L	190	1518597	321	1	1518597
Carb. Alkalinity (calc. as CaCO3)	mg/L	2	1518589	2	1	1518589
Cation Sum	me/L	3.19	1518592	5.91	N/A	1518592
Hardness (CaCO3)	mg/L	130	1518590	250	1	1518590
Ion Balance (% Difference)	%	9.32	1518591	1.53	N/A	1518591
Langelier Index (@ 20C)	N/A	0.482	1518595	0.822		1518595
Langelier Index (@ 4C)	N/A	0.232	1518596	0.573		1518596
Saturation pH (@ 20C)	N/A	7.65	1518595	7.29		1518595
Saturation pH (@ 4C)	N/A	7.90	1518596	7.53		1518596
Inorganics						
Total Ammonia-N	mg/L	ND	1521539	ND	0.05	1521539
Colour	TCU	ND	1521868	ND	2	1520778
Conductivity	umho/cm	363	1521344	570	2	1524754
Total Kjeldahl Nitrogen (TKN)	mg/L	0.2	1522464	0.3	0.1	1522464
Dissolved Organic Carbon	mg/L	0.5	1522815	0.7	0.1	1522815
Orthophosphate (P)	mg/L	ND	1522955	ND	0.01	1522955
рΗ	pН	8.1	1521339	8.1		1524753
Dissolved Sulphate (SO4)	mg/L	34	1522954	29	1	1522954
Turbidity	NTU	5.1	1520063	8.9	0.1	1520063
Alkalinity (Total as CaCO3)	mg/L	155	1521345	172	1	1524744
Dissolved Chloride (Cl)	mg/L	2	1522950	60	1	1522950
Nitrite (N)	mg/L	ND	1520808	ND	0.01	1520808
	mg/L	ND	1520808	ND	0.1	1520808



NORBERT M WOERNS Client Project #: HYATT DEVELOPMENT Project name: UXBRIDGE, ONTARIO

Maxxam ID Sampling Date	-	Y75258 2008/05/21	Y75259 2008/05/21	-	
COC Number		82811-01	82811-01		
	Units	#1	#2	RDL	QC Batc
Metals				1	
. Aluminum (Al)	ug/L	47	7	5	1521904
. Antimony (Sb)	ug/L	ND	ND	0.5	1521904
. Arsenic (As)	ug/L	ND	ND	1	1521904
. Barium (Ba)	ug/L	24	160	5	1521904
. Beryllium (Be)	ug/L	ND	ND	0.5	1521904
. Boron (B)	ug/L	27	11	10	1521904
. Cadmium (Cd)	ug/L	ND	ND	0.1	1521904
. Calcium (Ca)	ug/L	35000	80000	200	1521904
. Chromium (Cr)	ug/L	ND	ND	5	1521904
Cobalt (Co)	ug/L	ND	ND	0.5	1521904
Copper (Cu)	ug/L	360	2	1	1521904
Iron (Fe)	ug/L	ND	860	100	1521904
Lead (Pb)	ug/L	2.2	ND	0.5	1521904
Magnesium (Mg)	ug/L	9300	12000	50	1521904
Manganese (Mn)	ug/L	4	29	2	1521904
Molybdenum (Mo)	ug/L	1	ND	1	1521904
Nickel (Ni)	ug/L	2	ND	1	1521904
Phosphorus (P)	ug/L	ND	ND	100	1521904
Potassium (K)	ug/L	1600	1200	200	1521904
Selenium (Se)	ug/L	ND	ND	2	1521904
Silicon (Si)	ug/L	570	7100	50	1521904
Silver (Ag)	ug/L	ND	ND	0.1	1521904
Sodium (Na)	ug/L	14000	19000	100	1521904
Strontium (Sr)	ug/L	180	200	1	1521904
Thallium (TI)	ug/L	ND	ND	0.05	1521904
Titanium (Ti)	ug/L	ND	ND	5	1521904
Uranium (U)	ug/L	0.2	ND	0.1	1521904
Vanadium (V)	ug/L	ND	ND	1	1521904
Zinc (Zn)	ug/L	74	15	5	1521904

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENT Project name: UXBRIDGE, ONTARIO

MICROBIOLOGY (WATER)

Maxxam ID		Y75258	Y75259		
Sampling Date		2008/05/21	2008/05/21		
COC Number		82811-01	82811-01		
Amet / Marcon and and Marine Marcola and an and	Units	#1	#2	RDL	QC Batch
Microbiological				1	Г
Fecal coliform	CFU/100mL	0	0	N/A	1519061
Heterotrophic plate count	CFU/mL	130	6	N/A	1518937
Background	CFU/100mL	35	370	N/A	1518913
Coliform	CFU/100mL	0	0	N/A	1518913
Escherichia coli	CFU/100mL	0	0	N/A	1518913

Driven by service and Science www.maxxamanalytics.com

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENT Project name: UXBRIDGE, ONTARIO

GENERAL COMMENTS

Results relate only to the items tested.

Page 6 of 11

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENT P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report Maxxam Job Number: MA851546

QA/QC			Date			
Batch		Devemeter	Analyzed	Malua	11-2	00.11
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Lim
518913 MAB	RPD	Background	2008/05/22	NC	%	N
		Coliform	2008/05/22	NC	%	N
		Escherichia coli	2008/05/22	NC	%	N
518937 MAB	RPD	Heterotrophic plate count	2008/05/22	NC	%	9
519061 MAB	RPD [Y75258-04]	Fecal coliform	2008/05/22	NC	%	N
520063 PAL	QC STANDARD	Turbidity	2008/05/23	99		85 - 1
	Method Blank	Turbidity	2008/05/23	ND, RDL=0.1	NTU	
	RPD	Turbidity	2008/05/23	NC	%	
520778 PAL	Spiked Blank	Colour	2008/05/26	97	%	75 - 1
	Method Blank	Colour	2008/05/26	ND, RDL=2	TCU	
	RPD [Y75259-01]	Colour	2008/05/26	NC	%	
520808 CCI	MATRIX SPIKE	Nitrite (N)	2008/05/26	98	%	75 - 1
		Nitrate (N)	2008/05/26	92	%	75 - 1
	Spiked Blank	Nitrite (N)	2008/05/26	101	%	80 - 1
	opiniou bianni	Nitrate (N)	2008/05/26	93	%	80 - 1
	Method Blank	Nitrite (N)	2008/05/26	ND, RDL=0.01	mg/L	00-1
	mounou Diann	Nitrate (N)	2008/05/26	ND, RDL=0.1		
	RPD				mg/L	
	nru	Nitrite (N)	2008/05/26	NC	%	
	OO OTANDADD	Nitrate (N)	2008/05/26	NC	%	05 4
521344 JDE	QC STANDARD	Conductivity	2008/05/26	100	%	85 - 1
	Method Blank	Conductivity	2008/05/26	ND, RDL=2	umho/cm	
Marine Streetly shows Statemarker	RPD	Conductivity	2008/05/26	0.3	%	
521345 JDE	QC STANDARD	Alkalinity (Total as CaCO3)	2008/05/26	97	%	85 - 1
	Method Blank	Alkalinity (Total as CaCO3)	2008/05/26	ND, RDL=1	mg/L	
	RPD	Alkalinity (Total as CaCO3)	2008/05/26	0.3	%	
521539 ADB	MATRIX SPIKE	Total Ammonia-N	2008/05/27	98	%	80 - 1
	Spiked Blank	Total Ammonia-N	2008/05/27	104	%	80 - 1
	Method Blank	Total Ammonia-N	2008/05/27	ND, RDL=0.05	mg/L	
	RPD	Total Ammonia-N	2008/05/27	1.6	%	
521868 KTH	Spiked Blank	Colour	2008/05/27	99	%	75 - 1
0210001011	Method Blank	Colour	2008/05/27	ND, RDL=2	TCU	75 1
	RPD	Colour	2008/05/27	NC NC	%	
521904 HRE	MATRIX SPIKE	Colour	2008/03/27	NC	70	
021904 HRE			0000 05 07	07	01	00 4
	[Y75258-03]	. Aluminum (Al)	2008/05/27	97	%	80 - 1
		. Antimony (Sb)	2008/05/27	103	%	80 - 1
		. Arsenic (As)	2008/05/27	103	%	80 - 1
		. Barium (Ba)	2008/05/27	102	%	80 - 1
		. Beryllium (Be)	2008/05/27	102	%	80 - 1
		. Boron (B)	2008/05/27	104	%	80 - 1
		. Cadmium (Cd)	2008/05/27	102	%	80 - 1
		. Calcium (Ca)	2008/05/27	NC	%	80 - 1
		. Chromium (Cr)	2008/05/27	100	%	80 - 1
		Cobalt (Co)	2008/05/27	97	%	80 - 1
		. Copper (Cu)	2008/05/27	NC	(1) %	80 - 1
		. Iron (Fe)	2008/05/27	106	%	80 - 1
		. Lead (Pb)	2008/05/27	99	%	80 - 1
		. Magnesium (Mg)	2008/05/27	96	%	80 - 1
		. Magnesian (Mg)	2008/05/27	102	%	80 - 1
		. Molybdenum (Mo)	2008/05/27	104	%	80 - 1
		. Nickel (Ni)	2008/05/27	97	%	80 - 1
		. Phosphorus (P)	2008/05/27	94	%	80 - 1
		. Potassium (K)	2008/05/27	101	%	80 - 1
		. Selenium (Se)	2008/05/27	99	%	80 - 1
			2000/05/27	101		
		. Silicon (Si)	2008/05/27	101	%	80 - 1

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENT P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA851546

QA/QC Batch			Date			
Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value Recovery	Units	
1521904 HRE	MATRIX SPIKE		yyyy/mm/dd	value necovery	Units	QC Limits
	[Y75258-03]	. Sodium (Na)	2008/05/27	NC	%	80 - 120
		. Strontium (Sr)	2008/05/27	98	%	80 - 120
		. Thallium (TI)	2008/05/27	97	%	80 - 120
		. Titanium (Ti)	2008/05/27	103	%	80 - 120
		. Uranium (U)	2008/05/27	99	%	80 - 120
		. Vanadium (V)	2008/05/27	101	%	80 - 120
		. Zinc (Zn)	2008/05/27	99	%	80 - 120
	Spiked Blank	. Aluminum (Al)	2008/05/27	100	%	85 - 115
		. Antimony (Sb)	2008/05/27	102	%	85 - 115
		. Arsenic (As)	2008/05/27	104	%	85 - 115
		. Barium (Ba)	2008/05/27	103	%	85 - 115
		. Beryllium (Be)	2008/05/27	103	%	85 - 115
		. Boron (B)	2008/05/27	104	%	85 - 115
		. Cadmium (Cd)	2008/05/27	102	%	85 - 115
		. Calcium (Ca)	2008/05/27	103	%	85 - 115
		. Chromium (Cr)	2008/05/27	103	%	85 - 115
		. Cobalt (Co)	2008/05/27	99	%	85 - 115
		. Copper (Cu)	2008/05/27	99	%	85 - 115
		. Iron (Fe)	2008/05/27	109	%	85 - 115
		Lead (Pb)	2008/05/27	101	%	85 - 115
		. Magnesium (Mg)	2008/05/27	103	%	85 - 115
		. Manganese (Mn)	2008/05/27	104	%	85 - 115
		. Molybdenum (Mo)	2008/05/27	105	%	85 - 115
		. Nickel (Ni)	2008/05/27	99	%	85 - 115
		. Phosphorus (P)	2008/05/27	94	%	85 - 115
		. Potassium (K)	2008/05/27	103	%	85 - 115
		. Selenium (Se)	2008/05/27	99	%	85 - 115
		. Silicon (Si)	2008/05/27	104	%	85 - 115
		. Silver (Ag)	2008/05/27	98	%	85 - 115
		. Sodium (Na)	2008/05/27	106	%	85 - 115
		. Strontium (Sr)	2008/05/27	100	%	85 - 115
		. Thallium (TI)	2008/05/27	99	%	85 - 115
		. Titanium (Ti)	2008/05/27	105	%	85 - 115
		. Uranium (U)	2008/05/27	103	%	85 - 115
		. Vanadium (V)	2008/05/27	103	%	85 - 115
		. Zinc (Zn)	2008/05/27	100	%	85 - 115
	Method Blank	. Aluminum (Al)	2008/05/27	ND, RDL=5		65-115
	Method Dialik	. Antimony (Sb)	2008/05/27	ND, RDL=0.5	ug/L	
		. Arsenic (As)	2008/05/27	ND, $RDL=0.5$	ug/L	
		. Barium (Ba)	2008/05/27	ND, RDL=5	ug/L	
		. Beryllium (Be)	2008/05/27	ND, RDL=5	ug/L	
		. Boron (B)		CONTRACTOR OF CONTRACTOR CONTRACTOR	ug/L	
		. Cadmium (Cd)	2008/05/27	ND, RDL=10	ug/L	
			2008/05/27	ND, RDL=0.1	ug/L	
		. Calcium (Ca)	2008/05/27	ND, RDL=200	ug/L	
		. Chromium (Cr)	2008/05/27	ND, RDL=5	ug/L	
		. Cobalt (Co)	2008/05/27	ND, RDL=0.5	ug/L	
		. Copper (Cu)	2008/05/27	ND, RDL=1	ug/L	
		. Iron (Fe)	2008/05/27	ND, RDL=100	ug/L	
		Lead (Pb)	2008/05/27	ND, RDL=0.5	ug/L	
		. Magnesium (Mg)	2008/05/27	ND, RDL=50	ug/L	
		. Manganese (Mn)	2008/05/27	ND, RDL=2	ug/L	
		. Molybdenum (Mo)	2008/05/27	ND, RDL=1	ug/L	
		. Nickel (Ni)	2008/05/27	ND, RDL=1	ug/L	
		. Phosphorus (P)	2008/05/27	ND, RDL=100	ug/L	

Page 8 of 11

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENT P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA851546

QA/QC Batch			Date			
Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value Recovery	Linita	
1521904 HRE	Method Blank	. Potassium (K)	2008/05/27	Value Recovery ND, RDL=200	Units ug/L	QC Limit
	motriod Blaint	. Selenium (Se)	2008/05/27	ND, RDL=2		
		. Silicon (Si)	2008/05/27	ND, $RDL=50$	ug/L	
		. Silver (Ag)	2008/05/27	ND, RDL=50	ug/L	
		. Sodium (Na)	2008/05/27	and the second second in	ug/L	
		. Strontium (Sr)		ND, RDL=100	ug/L	
		. Thallium (TI)	2008/05/27	ND, RDL=1	ug/L	
		. Titanium (Ti)	2008/05/27	ND, RDL=0.05	ug/L	
			2008/05/27	ND, RDL=5	ug/L	
		. Uranium (U)	2008/05/27	ND, RDL=0.1	ug/L	
		. Vanadium (V)	2008/05/27	ND, RDL=1	ug/L	
		. Zinc (Zn)	2008/05/27	ND, RDL=5	ug/L	
	RPD [Y75258-03]	. Aluminum (Al)	2008/05/27	1.3	%	2
		. Antimony (Sb)	2008/05/27	NC	%	2
		. Arsenic (As)	2008/05/27	NC	%	2
		. Barium (Ba)	2008/05/27	NC	%	2
		. Beryllium (Be)	2008/05/27	NC	%	2
		. Boron (B)	2008/05/27	NC	%	2
		. Cadmium (Cd)	2008/05/27	NC	%	2
		. Calcium (Ca)	2008/05/27	2.6	%	2
		. Chromium (Cr)	2008/05/27	NC	%	2
		. Cobalt (Co)	2008/05/27	NC	%	2
		. Copper (Cu)	2008/05/27	0.6	%	2
		. Iron (Fe)	2008/05/27	NC	%	2
		. Lead (Pb)	2008/05/27	NC	%	2
		. Magnesium (Mg)	2008/05/27	0.02	%	2
		. Manganese (Mn)	2008/05/27	NC	%	2
		. Molybdenum (Mo)	2008/05/27	NC	%	2
		. Nickel (Ni)	2008/05/27	NC	%	2
		. Phosphorus (P)	2008/05/27	NC	%	2
		. Potassium (K)	2008/05/27	0.8	%	
		. Selenium (Se)				2
		. Silicon (Si)	2008/05/27	NC	%	2
			2008/05/27	0.7	%	2
		. Silver (Ag)	2008/05/27	NC	%	2
		Sodium (Na)	2008/05/27	0.1	%	2
		. Strontium (Sr)	2008/05/27	1.5	%	2
		. Thallium (TI)	2008/05/27	NC	%	2
		. Titanium (Ti)	2008/05/27	NC	%	2
		. Uranium (U)	2008/05/27	NC	%	2
		. Vanadium (V)	2008/05/27	NC	%	2
500404 0011		. Zinc (Zn)	2008/05/27	2.1	%	2
522464 SBU	MATRIX SPIKE	Total Kieldehl Nitregen (TKN)	0000/05/00			00 40
	[Y75259-02]	Total Kjeldahl Nitrogen (TKN)	2008/05/28	111	%	80 - 12
	QC STANDARD	Total Kjeldahl Nitrogen (TKN)	2008/05/28	96	%	85 - 11
	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2008/05/28	100	%	80 - 12
	Method Blank	Total Kjeldahl Nitrogen (TKN)	2008/05/28	0.1, RDL=0.1	mg/L	
	RPD [Y75259-02]	Total Kjeldahl Nitrogen (TKN)	2008/05/28	NC	%	2
522815 SAC	MATRIX SPIKE	Dissolved Organic Carbon	2008/05/27	99	%	75 - 12
	Spiked Blank	Dissolved Organic Carbon	2008/05/27	102	%	75 - 12
	Method Blank	Dissolved Organic Carbon	2008/05/27	0.1, RDL=0.1	mg/L	
	RPD	Dissolved Organic Carbon	2008/05/27	1.4	%	2
522950 C_N	MATRIX SPIKE	Dissolved Chloride (Cl)	2008/05/28	124	%	75 - 12
	Spiked Blank	Dissolved Chloride (Cl)	2008/05/28	102	%	80 - 12
	Method Blank	Dissolved Chloride (Cl)	2008/05/28	ND, RDL=1	mg/L	
	RPD	Dissolved Chloride (Cl)	2008/05/28	NC	%	2
	MATRIX SPIKE	Dissolved Sulphate (SO4)	2008/05/28	NC (1)	%	75 - 125
0110010_11	STATES OF INC.		2000/03/20		/0	10-12

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENT P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA851546

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1522954 C_N	Spiked Blank	Dissolved Sulphate (SO4)	2008/05/28		105	%	80 - 120
	Method Blank	Dissolved Sulphate (SO4)	2008/05/28	ND, RD	L=1	mg/L	
	RPD	Dissolved Sulphate (SO4)	2008/05/28	0.7		%	25
1522955 C_N	MATRIX SPIKE	Orthophosphate (P)	2008/05/28		111	%	75 - 125
	Spiked Blank	Orthophosphate (P)	2008/05/28		102	%	80 - 120
	Method Blank	Orthophosphate (P)	2008/05/28	ND, RD	L=0.01	mg/L	
	RPD	Orthophosphate (P)	2008/05/28	NC		%	25
1524744 JDE	QC STANDARD	Alkalinity (Total as CaCO3)	2008/05/29		97	%	85 - 115
	Method Blank	Alkalinity (Total as CaCO3)	2008/05/29	ND, RD	L=1	mg/L	
	RPD	Alkalinity (Total as CaCO3)	2008/05/29	0.9		%	25
1524754 JDE	QC STANDARD	Conductivity	2008/05/29		101	%	85 - 115
	Method Blank	Conductivity	2008/05/29	ND, RD	L=2	umho/cm	
	RPD	Conductivity	2008/05/29	0.1		%	25

ND = Not detected

N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

(1) The recovery in the matrix spike was not calculated (NC). Because of the high concentration of this analyte in the parent sample, the relative difference between the spiked and unspiked concentrations is not sufficiently significant to permit a reliable recovery calculation.

Validation Signature Page

Maxxam Job #: A851546

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

adar

ALIYA MALIK, ANALYST II

Nistina Neur

CHRISTINA NERVO, Scientific Services

Did Spo

DAVID SHEPHERD, Scientific Specialist

MARIA BONGOLAN, ANALYST II

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your Project #: HYATT DEVELOPMENTS Site: UXBRIDGE, ONTARIO Your C.O.C. #: OO565657

Attention: Norbert M. Woerns

NORBERT M WOERNS 96 Lund St Richmond Hill, ON L4C 5V9

Report Date: 2008/07/21

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A875011

Received: 2008/07/11, 14:11

Sample Matrix: Water # Samples Received: 4

		Date	Date	N and a second
Analyses	Quantity		Analyzed Laboratory Method	Method Reference
Alkalinity	1	N/A	2008/07/16 CAM SOP-00448	SM 2320B
Alkalinity	3	N/A	2008/07/17 CAM SOP-00448	SM 2320B
Carbonate, Bicarbonate and Hydroxide	1	N/A	2008/07/16	SIVI 2320B
Carbonate, Bicarbonate and Hydroxide	1	N/A	2008/07/17	
Carbonate, Bicarbonate and Hydroxide	2	N/A	2008/07/18	
Chloride by Automated Colourimetry	4	N/A	2008/07/18 CAM SOP-00463	
Colour	1	N/A	2008/07/15 CAM SOP-00463	SM 4500 CI E
Colour	3	N/A	2008/07/18 CAM SOP-00412	APHA 2120
Conductivity	1	N/A	2008/07/16 CAM SOP-00412 2008/07/16 CAM SOP-00448	APHA 2120
Conductivity	3	N/A	2008/07/17 CAM SOP-00448	SM 2510
Dissolved Organic Carbon (DOC)	3	N/A	2008/07/16 CAM SOP-00448	SM 2510
Hardness (calculated as CaCO3)	1	N/A		SM 5310 B
Hardness (calculated as CaCO3)	3	N/A	2008/07/18 CAM SOP 0102	SM 2340 B
Lab Filtered Metals Analysis by ICP	1	2008/07/17	2008/07/21 CAM SOP 0102	SM 2340 B
Metals Analysis by ICPMS (as received) (1		2008/07/18 CAM SOP-00408 2008/07/20 CAM SOP-00447	EPA 6010
Metals Analysis by ICPMS (as received)	2	2008/07/18	2008/07/20 CAM SOP-00447	EPA 6020
Total Metals Analysis by ICPMS	1	2008/07/17 N/A		EPA 6020
Ion Balance (% Difference)	3	N/A	2008/07/17 CAM SOP-00447	EPA 6020
Anion and Cation Sum	3	N/A	2008/07/21	
Ammonia-N	3	N/A N/A	2008/07/21	
Ammonia-N	1	N/A N/A	2008/07/17 CAM SOP-00441	US GS I-2522-90
Nitrate (NO3) and Nitrite (NO2) in Water g	1	N/A N/A	2008/07/18 CAM SOP-00441	US GS I-2522-90
Nitrate (NO3) and Nitrite (NO2) in Water g	3	N/A N/A	2008/07/17 CAM SOP-00440	SM 4500 NO3 I
pH	1	N/A N/A	2008/07/18 CAM SOP-00440	SM 4500 NO3 I
pH	3	N/A N/A	2008/07/16 CAM SOP-00448	SM 4500H
Orthophosphate			2008/07/17 CAM SOP-00448	SM 4500H
Sat. pH and Langelier Index (@ 20C)	4	N/A	2008/07/18 CAM SOP-00461	SM 4500 P-F
Sat. pH and Langelier Index (@ 200)	1	N/A	2008/07/18	
Sat. pH and Langelier Index (@ 4C)	3	N/A	2008/07/21	
Sat. pH and Langelier Index (@ 4C)	1	N/A	2008/07/18	
Sulphate by Automated Colourimetry	3	N/A	2008/07/21	
Total Dissolved Solids (TDS calc)	4	N/A	2008/07/18 CAM SOP-00464	EPA 375.4
Total Dissolved Solids (TDS calc)	1	N/A	2008/07/18	
Total Kjeldahl Nitrogen in Water	3	N/A	2008/07/21	
	4	N/A	2008/07/18 CAM SOP-00454	EPA 351.2 Rev 2
Total Organic Carbon (TOC)	1	N/A	2017/07/20 CAM SOP-00446	EPA 415.1 modified
Total Phosphorus (Colourimetric) Turbidity	1	2008/07/17	2008/07/18 CAM SOP-00407	APHA 4500 P,B,F
Turbidity		N/A	2008/07/14 CAM SOP-00417	APHA 2130
rurbluity	3	N/A	2008/07/15 CAM SOP-00417	APHA 2130

../2

Your Project #: HYATT DEVELOPMENTS Site: UXBRIDGE, ONTARIO Your C.O.C. #: 00565657

Attention: Norbert M. Woerns NORBERT M WOERNS 96 Lund St **Richmond Hill, ON** L4C 5V9

Report Date: 2008/07/21

CERTIFICATE OF ANALYSIS -2-

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

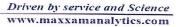
(1) Metals analysis was performed on the sample 'as received'.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ANTONELLA BRASIL, Project Manager Email: Abrasil@maxxamanalytics.com Phone# (905) 817-5817


Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 2

Page 2 of 17

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free:800-563-6266 Fax: 905-817-5777

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENTS Project name: UXBRIDGE, ONTARIO

RESULTS OF ANALYSES OF WATER

Maxxam ID		Z81982		Z81983		
Sampling Date COC Number		2008/07/10		2008/07/10		
	Units	00565657 BHID	QC Batch	00565657	001	00.0.4
	Onits	BniD	QC Batch	BHID-6	RDL	QC Bate
Calculated Parameters						
Anion Sum	me/L	5.25	1559333	5.23	N/A	1559333
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	175	1559376	175	1	1559370
Calculated TDS	mg/L	315	1559381	312	1	155938
Carb. Alkalinity (calc. as CaCO3)	mg/L	4	1559376	3	1	1559370
Cation Sum	me/L	5.73	1559333	5.60	N/A	155933
Hardness (CaCO3)	mg/L	120	1559330	120	1	1559330
Ion Balance (% Difference)	%	4.40	1559332	3.43	N/A	1559332
Langelier Index (@ 20C)	N/A	0.775	1559379	0.619	1	1559379
Langelier Index (@ 4C)	N/A	0.526	1559380	0.370		1559380
Saturation pH (@ 20C)	N/A	7.58	1559379	7.60		1559379
Saturation pH (@ 4C)	N/A	7.83	1559380	7.85		1559380
norganics						
Total Ammonia-N	mg/L	0.06	1563394	ND	0.05	1563394
Colour	TCU	5	1560451	5	2	1564680
Conductivity	umho/cm	505	1561887	508	2	1563138
Total Kjeldahl Nitrogen (TKN)	mg/L	0.5	1563760	0.5	0.1	1563760
Dissolved Organic Carbon	mg/L	2.8	1560768	3.2	0.1	1560768
Orthophosphate (P)	mg/L	ND	1563553	ND	0.01	1563553
Н	pН	8.4	1561886	8.2		1563139
Dissolved Sulphate (SO4)	mg/L	50	1563579	49	1	1563579
Furbidity	NTU	0.1	1561274	0.1	0.1	1561274
Alkalinity (Total as CaCO3)	mg/L	178	1561891	178	1	1563137
Dissolved Chloride (CI)	mg/L	23	1563576	23	1	1563576
Jitrite (N)	mg/L_	0.01	1563702	ND	0.01	1563702
		ND	1563702	ND	0.1	1563702

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENTS Project name: UXBRIDGE, ONTARIO

RESULTS OF ANALYSES OF WATER

Maxxam ID Sampling Date		Z81984 2008/07/10			Z81985 2008/07/10	_	
COC Number		00565657	-		OO565657		
	Units	BH3	RDL	QC Batch	SURFACE WATER	RDL	QC Batch
Calculated Parameters						1	
Anion Sum	me/L	9.56	N/A	1559333		N/A	1559333
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	173	1	1559376	252	1	1559376
Calculated TDS	mg/L	558	1	1559381	750	1	1559381
Carb. Alkalinity (calc. as CaCO3)	mg/L	2	1	1559376	3	1	1559376
Cation Sum	me/L	10.4	N/A	1559333		N/A	1559333
Hardness (CaCO3)	mg/L	380	1	1559330	300	1	1559330
Ion Balance (% Difference)	%	4.31	N/A	1559332		N/A	1559332
Langelier Index (@ 20C)	N/A	1.03		1559379	1.12		1559379
Langelier Index (@ 4C)	N/A	0.787		1559380	0.872		1559380
Saturation pH (@ 20C)	N/A	7.14		1559379	7.05		1559379
Saturation pH (@ 4C)	N/A	7.39		1559380	7.29		1559380
Inorganics							
Total Ammonia-N	mg/L	0.06	0.05	1563392	ND	0.05	1563394
Colour	TCU	4	2	1564680	55	2	1564680
Conductivity	umho/cm	998	2	1563120	1470	2	1563138
Total Kjeldahl Nitrogen (TKN)	mg/L	0.3	0.1	1563760	1.3	0.2	1563770
Dissolved Organic Carbon	mg/L	2.3	0.1	1560768			
Total Organic Carbon (TOC)	mg/L				14.6	0.1	1563387
Orthophosphate (P)	mg/L	ND	0.01	1563553	ND	0.01	1563553
н	рН	8.2		1563119	8.2		1563139
Total Phosphorus	mg/L				0.032	0.002	1563641
Dissolved Sulphate (SO4)	mg/L	63	1	1563579	15	1	1563579
Turbidity	NTU	0.8	0.1	1561274	1.7	0.1	1560279
Alkalinity (Total as CaCO3)	mg/L	176	1	1563121	255	1	1563137
Dissolved Chloride (Cl)	mg/L	170	1	1563576	280	5	1563576
Nitrite (N)	mg/L	ND	0.01	1562929	ND	0.01	1563425
Nitrate (N)	mg/L	ND	0.1	1562929	ND	0.1	1563425

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Ma

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENTS Project name: UXBRIDGE, ONTARIO

Maxxam ID		Z81982		Z81983	Z81984		
Sampling Date COC Number		2008/07/10 00565657		2008/07/10 00565657	2008/07/10		
	Units	BHID	QC Batch	BHID-6	OO565657 BH3	RDL	QC Batch
n a gardad naga mang dina naga dina ang dina dina dina dina dina dina dina dina					1		1
Metals							
. Aluminum (Al)	ug/L	7	1562358	7	ND	5	1563995
. Antimony (Sb)	ug/L	1.2	1562358	1.3	ND	0.5	1563995
. Arsenic (As)	ug/L	3	1562358	3	ND	1	1563995
. Barium (Ba)	ug/L	71	1562358	74	82	5	1563995
. Beryllium (Be)	ug/L	ND	1562358	ND	ND	0.5	1563995
. Boron (B)	ug/L	39	1562358	39	ND	10	1563995
. Cadmium (Cd)	ug/L	ND	1562358	ND	ND	0.1	1563995
. Calcium (Ca)	ug/L	39000	1562358	38000	120000	200	1563995
. Chromium (Cr)	ug/L	ND	1562358	ND	ND	5	1563995
. Cobalt (Co)	ug/L	ND	1562358	ND	ND	0.5	1563995
. Copper (Cu)	ug/L	ND	1562358	ND	ND	1	1563995
. Iron (Fe)	ug/L	ND	1562358	ND	330	100	1563995
. Lead (Pb)	ug/L	ND	1562358	ND	ND	0.5	1563995
. Magnesium (Mg)	ug/L	6200	1562358	6100	18000	50	1563995
. Manganese (Mn)	ug/L	10	1562358	10	38	2	1563995
. Molybdenum (Mo)	ug/L	14	1562358	14	3	1	1563995
. Nickel (Ni)	ug/L	ND	1562358	ND	ND	1	1563995
. Phosphorus (P)	ug/L	ND	1562358	ND	ND	100	1563995
. Potassium (K)	ug/L	1400	1562358	1400	1600	200	1563995
. Selenium (Se)	ug/L	ND	1562358	ND	ND	2	1563995
. Silicon (Si)	ug/L	6700	1562358	6700	7100	50	1563995
. Silver (Ag)	ug/L	ND	1562358	ND	ND	0.1	1563995
. Sodium (Na)	ug/L	74000	1562358	73000	63000	100	1563995
Strontium (Sr)	ug/L	100	1562358	98	250	1	1563995
. Thallium (TI)	ug/L	ND	1562358	ND	ND	0.05	1563995
. Titanium (Ti)	ug/L	ND	1562358	ND	ND	5	1563995
Uranium (U)	ug/L	5.3	1562358	5.5	1.5	0.1	1563995
Vanadium (V)	ug/L	2	1562358	2	ND	1	1563995
Zinc (Zn)	ug/L	ND	1562358	ND	ND	5	1563995

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

ND = Not detected RDL = Reportable Detection Limit QC Batch – Quality Control Batch

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENTS Project name: UXBRIDGE, ONTARIO

Maxxam ID Z81985 Sampling Date 2008/07/10 COC Number 00565657 Units SURFACE RDL QC Batch WATER Metals Dissolved Calcium (Ca) mg/L 115 0.05 1563380 Dissolved Magnesium (Mg) mg/L 3.92 0.05 1563380 Dissolved Potassium (K) mg/L ND 1 1563380 Dissolved Sodium (Na) mg/L 180 0.5 1563380 Total Aluminum (AI) ug/L 11 5 1564153 Total Antimony (Sb) ug/L ND 1564153 0.5 Total Arsenic (As) ND ug/L 1 1564153 Total Barium (Ba) ug/L 25 5 1564153 Total Beryllium (Be) ug/L ND 0.5 1564153 Total Boron (B) ug/L 27 10 1564153 Total Cadmium (Cd) ND ug/L 0.1 1564153 Total Calcium (Ca) ug/L 110000 200 1564153 Total Chromium (Cr) ND ug/L 5 1564153 Total Cobalt (Co) ug/L ND 0.5 1564153 Total Copper (Cu) ND ug/L 1 1564153 Total Iron (Fe) ug/L 330 100 1564153 Total Lead (Pb) ND ug/L 0.5 1564153 Total Magnesium (Mg) ug/L 4100 50 1564153 Total Manganese (Mn) 230 2 ug/L 1564153 Total Molybdenum (Mo) ND ug/L 1 1564153 Total Nickel (Ni) ug/L ND 1 1564153 Total Potassium (K) ND 200 ug/L 1564153 Total Selenium (Se) ND 2 ug/L 1564153 Total Silicon (Si) 2400 ug/L 50 1564153 Total Silver (Ag) ug/L ND 0.1 1564153 Total Sodium (Na) ug/L 180000 100 1564153 Total Thallium (TI) 0.05 ug/L ND 1564153 Total Tungsten (W) ug/L ND 1 1564153 Total Uranium (U) ug/L 0.3 0.1 1564153 Total Vanadium (V) ug/L ND 1 1564153 Total Zinc (Zn) ug/L ND 5 1564153 ND = Not detected RDL = Reportable Detection Limit

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

QC Batch = Quality Control Batch

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENTS Project name: UXBRIDGE, ONTARIO

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		Z81985		
Sampling Date		2008/07/10		
COC Number		00565657		
	Units	SURFACE WATER	RDL	QC Batch
Total Zirconium (Zr)	ug/L	ND	1	1564153
	1-0-			

Driven by service and Science www.maxxamanalytics.com

NORBERT M WOERNS Client Project #: HYATT DEVELOPMENTS Project name: UXBRIDGE, ONTARIO

GENERAL COMMENTS

Results relate only to the items tested.

Page 8 of 17

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENTS P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report Maxxam Job Number: MA875011

QA/QC Batch			Date		
Num Init	QC Type	Parameter	Analyzed	Volue Descuert List	0011
560279 KTH	QC STANDARD	Turbidity	yyyy/mm/dd	Value Recovery Units	QC Lim
3002/9 KIII	Method Blank	Turbidity	2008/07/14 2008/07/14	98 %	85 - 1
	RPD	Turbidity		ND, RDL=0.1 NTU	
560451 KTH	Spiked Blank	Colour	2008/07/14	NC %	75 4
300431 KIH	Method Blank	Colour	2008/07/15		75 - 12
	RPD	Colour	2008/07/15	ND, RDL=2 TCU	
560768 SAC	MATRIX SPIKE	Dissolved Organic Carbon	2008/07/15	NC %	
300708 SAC	Spiked Blank	Dissolved Organic Carbon	2008/07/16	NC %	75 - 12
	Method Blank	Dissolved Organic Carbon	2008/07/16	93 %	75 - 12
	RPD	Dissolved Organic Carbon	2008/07/16	ND, RDL=0.1 mg/L	
561274 KTH	QC STANDARD	Turbidity	2008/07/16	0.9 %	05 4
301274 MIII	Method Blank	Turbidity	2008/07/15		85 - 11
	RPD [Z81982-01]	Turbidity	2008/07/15	ND, RDL=0.1 NTU	
561887 YPA	QC STANDARD	Conductivity	2008/07/15	NC %	05 4
301007 IFA	Method Blank	Conductivity	2008/07/16		85 - 11
	RPD	Conductivity	2008/07/16	ND, RDL=2 umho/cm	
561891 YPA	QC STANDARD		2008/07/16	0.6 %	05 4
501091 TFA	Method Blank	Alkalinity (Total as CaCO3) Alkalinity (Total as CaCO3)	2008/07/16		85 - 1
	RPD	Alkalinity (Total as CaCO3)	2008/07/16 2008/07/16	ND, RDL=1 mg/L 1 %	
562358 JBW	MATRIX SPIKE	. Aluminum (Al)			00 4
202320 JEW	WAT NA SPIRE	. Antimony (Sb)	2008/07/20	128 (1) %	80 - 1
		. Arsenic (As)	2008/07/20	103 %	80 - 1
		. Barium (Ba)	2008/07/20	104 %	80 - 1
			2008/07/20	101 %	80 - 1
		. Beryllium (Be)	2008/07/20	104 %	80 - 1
		. Boron (B) . Cadmium (Cd)	2008/07/20	104 %	80 - 1
			2008/07/20	102 %	80 - 1
		. Calcium (Ca)	2008/07/20	NC (2) %	80 - 1
		. Chromium (Cr)	2008/07/20	100 %	80 - 1
		. Cobalt (Co)	2008/07/20	97 %	80 - 1
		. Copper (Cu)	2008/07/20	96 %	80 - 1
		. Iron (Fe)	2008/07/20	103 %	80 - 1
		. Lead (Pb)	2008/07/20	98 %	80 - 1
		. Magnesium (Mg)	2008/07/20	99 %	80 - 1
		. Manganese (Mn)	2008/07/20	98 %	80 - 1
		. Molybdenum (Mo)	2008/07/20	103 %	80 - 1
		. Nickel (Ni)	2008/07/20	96 %	80 - 1:
		. Phosphorus (P)	2008/07/20	97 %	80 - 1
		. Potassium (K)	2008/07/20	102 %	80 - 1
		. Selenium (Se)	2008/07/20	101 %	80 - 1
		. Silicon (Si)	2008/07/20	100 %	80 - 1
		. Silver (Ag)	2008/07/20	97 %	80 - 1
		. Sodium (Na)	2008/07/20	NC (2) %	80 - 1
		Strontium (Sr)	2008/07/20	98 %	80 - 1
		. Thallium (TI)	2008/07/20	100 %	80 - 1
		. Titanium (Ti)	2008/07/20	103 %	80 - 1
		. Uranium (U)	2008/07/20	102 %	80 - 1
		. Vanadium (V)	2008/07/20	101 %	80 - 1
		. Zinc (Zn)	2008/07/20	101 %	80 - 1
	Spiked Blank	. Aluminum (Al)	2008/07/20	100 %	85 - 1
		. Antimony (Sb)	2008/07/20	101 %	85 - 1
		. Arsenic (As)	2008/07/20	101 %	85 - 1
		. Barium (Ba)	2008/07/20	100 %	85 - 1
		. Beryllium (Be)	2008/07/20	102 %	85 - 11
		. Boron (B)	2008/07/20	104 %	85 - 11
		. Cadmium (Cd)	2008/07/20	102 %	85 - 11

Page 9 of 17

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENTS P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA875011

QA/QC Batch			Date			
Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value Recovery	Units	QC Limit
1562358 JBW	Spiked Blank	. Calcium (Ca)	2008/07/20		%	85 - 11
		. Chromium (Cr)	2008/07/20	99	%	85 - 11
		. Cobalt (Co)	2008/07/20	97	%	85 - 11
		. Copper (Cu)	2008/07/20	94	%	85 - 11
		. Iron (Fe)	2008/07/20	102	%	85 - 11
		. Lead (Pb)	2008/07/20	98	%	85 - 11
		. Magnesium (Mg)	2008/07/20	104	%	85 - 11
		. Manganese (Mn)	2008/07/20	97	%	85 - 11
		. Molybdenum (Mo)	2008/07/20	101	%	85 - 11
		. Nickel (Ni)	2008/07/20	96	%	85 - 11
		. Phosphorus (P)	2008/07/20	98	%	85 - 11
		. Potassium (K)	2008/07/20	101	%	85 - 11
		. Selenium (Se)	2008/07/20	98	%	85 - 11
		. Silicon (Si)	2008/07/20	101	%	85 - 11
		. Silver (Ag)	2008/07/20	97	%	85 - 11
		. Sodium (Na)	2008/07/20	102	%	85 - 11
		. Strontium (Sr)	2008/07/20	99	%	85 - 11
		. Thallium (TI)	2008/07/20	97	%	85 - 11
		. Titanium (Ti)	2008/07/20	100	%	85 - 11
		. Uranium (U)	2008/07/20	100	%	85 - 11
		. Vanadium (V)	2008/07/20	100	%	85 - 11
		. Zinc (Zn)	2008/07/20	98	%	85 - 11
	Method Blank	. Aluminum (Al)	2008/07/20	ND, RDL=5	ug/L	00 11
	Motriod Blarit	. Antimony (Sb)	2008/07/20	ND, RDL=0.5	ug/L	
		. Arsenic (As)	2008/07/20	ND, $RDL=1$	ug/L	
		. Barium (Ba)	2008/07/20	ND, RDL=5	ug/L	
		. Beryllium (Be)	2008/07/20	ND, RDL=0.5	ug/L	
		. Boron (B)	2008/07/20	ND, RDL=10		
		. Cadmium (Cd)	2008/07/20	ND, RDL=0.1	ug/L ug/L	
		. Calcium (Ca)	2008/07/20	ND, RDL=200	ug/L	
		. Chromium (Cr)	2008/07/20	ND, RDL=5		
		. Cobalt (Co)	2008/07/20	ND, $RDL=0.5$	ug/L	
				ND, $RDL=0.5$	ug/L	
		. Copper (Cu) . Iron (Fe)	2008/07/20 2008/07/20	ND, $RDL=100$	ug/L	
		. Lead (Pb)	2008/07/20	ND, RDL=0.5	ug/L	
		. Magnesium (Mg)	2008/07/20	ND, $RDL=0.5$ ND, $RDL=50$	ug/L	
		. Magnesium (Mg)	2008/07/20	ND, $RDL=30$	ug/L	
			2008/07/20		ug/L	
		. Molybdenum (Mo) . Nickel (Ni)		ND, RDL=1 ND, RDL=1	ug/L	
		. Phosphorus (P)	2008/07/20 2008/07/20	ND, RDL=1	ug/L	
		. Potassium (K)	2008/07/20		ug/L	
		. Selenium (Se)		ND, RDL=200 ND, RDL=2	ug/L	
			2008/07/20	and a company and a company of the company	ug/L	
		. Silicon (Si)	2008/07/20	ND, RDL=50 ND, RDL=0.1	ug/L	
		. Silver (Ag)	2008/07/20		ug/L	
		. Sodium (Na)	2008/07/20	ND, RDL=100	ug/L	
		. Strontium (Sr)	2008/07/20 2008/07/20	ND, RDL=1	ug/L	
		. Thallium (TI)		ND, RDL=0.05	ug/L	
		. Titanium (Ti)	2008/07/20	ND, RDL=5	ug/L	
		. Uranium (U)	2008/07/20	ND, RDL=0.1	ug/L	
		. Vanadium (V)	2008/07/20	ND, RDL=1	ug/L	
	000	. Zinc (Zn)	2008/07/20	ND, RDL=5	ug/L	-
62929 CCI	RPD MATRIX SPIKE	. Lead (Pb)	2008/07/20	NC	%	2
	[Z81984-01]	Nitrite (N)	2008/07/17	101	%	75 - 12
				97	%	75 - 12

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENTS P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam	Job	Number:	MA875011	
--------	-----	---------	----------	--

QA/QC			Date		
Batch	OC Turne	Devementer	Analyzed		
Num Init 1562929 CCI	QC Type	Parameter	yyyy/mm/dd	Value Recovery Units	QC Limit
1302929 001	Spiked Blank	Nitrite (N)	2008/07/17	102 %	80 - 12
	Method Blank	Nitrate (N) Nitrite (N)	2008/07/17	96 %	80 - 12
	Method Blank		2008/07/17	ND, RDL=0.01 mg/L	
	DDD 1701004 011	Nitrate (N)	2008/07/17	ND, RDL=0.1 mg/L	
	RPD [Z81984-01]	Nitrite (N)	2008/07/17	NC %	2
1563120 YPA	QC STANDARD	Nitrate (N)	2008/07/17	NC %	2
1303120 TFA	Method Blank	Conductivity	2008/07/17	102 %	85 - 11
	RPD	Conductivity	2008/07/17	ND, RDL=2 umho/cm	-
1563121 YPA	QC STANDARD	Conductivity	2008/07/17	0.5 %	2
1000121 11 A	Method Blank	Alkalinity (Total as CaCO3)	2008/07/17	101 %	85 - 11
	RPD	Alkalinity (Total as CaCO3) Alkalinity (Total as CaCO3)	2008/07/17	ND, RDL=1 mg/L	
1563137 YPA	QC STANDARD	Alkalinity (Total as CaCO3)	2008/07/17	0.3 %	25
1000107 11 A	Method Blank		2008/07/17	101 %	85 - 115
	RPD	Alkalinity (Total as CaCO3)	2008/07/17	ND, RDL=1 mg/L	
1563138 YPA	QC STANDARD	Alkalinity (Total as CaCO3) Conductivity	2008/07/18	NC %	25
1303130 H A	Method Blank	Conductivity	2008/07/17	99 %	85 - 115
	RPD		2008/07/17	ND, RDL=2 umho/cm	
1563380 JOH	MATRIX SPIKE	Conductivity	2008/07/18	NC %	25
1000000 0011	MATHIX SPIKE	Dissolved Calcium (Ca)	2008/07/18	NC (2) %	85 - 115
		Dissolved Magnesium (Mg) Dissolved Potassium (K)	2008/07/18	93 %	85 - 115
		• •	2008/07/18	95 %	85 - 115
	Spikod Blank	Dissolved Sodium (Na)	2008/07/18	NC (2) %	85 - 115
	Spiked Blank	Dissolved Calcium (Ca)	2008/07/18	98 %	85 - 115
		Dissolved Magnesium (Mg)	2008/07/18	96 %	85 - 115
		Dissolved Potassium (K)	2008/07/18	95 %	85 - 115
	Method Blank	Dissolved Sodium (Na)	2008/07/18	99 %	85 - 115
	Method Diank	Dissolved Calcium (Ca)	2008/07/18	ND, RDL=0.05 mg/L	
		Dissolved Magnesium (Mg)	2008/07/18	ND, RDL=0.05 mg/L	
		Dissolved Potassium (K)	2008/07/18	ND, RDL=1 mg/L	
	RPD	Dissolved Sodium (Na)	2008/07/18	ND, RDL=0.5 mg/L	
	nfu	Dissolved Calcium (Ca)	2008/07/18	0.2 %	25
		Dissolved Magnesium (Mg)	2008/07/18	0.3 %	25
		Dissolved Potassium (K)	2008/07/18	NC %	25
1563387 SAC	MATRIX SPIKE	Dissolved Sodium (Na)	2008/07/18	0.03 %	25
1503367 SAC	Spiked Blank	Total Organic Carbon (TOC)	2017/07/20	NC %	75 - 125
		Total Organic Carbon (TOC)	2017/07/20	112 %	75 - 125
	Method Blank RPD	Total Organic Carbon (TOC)	2017/07/20	ND, RDL=0.1 mg/L	10.0
1563392 LS	MATRIX SPIKE	Total Organic Carbon (TOC)	2017/07/20	0.4 %	20
1303352 L3	Spiked Blank	Total Ammonia-N	2008/07/18	99 %	80 - 120
	Method Blank	Total Ammonia-N Total Ammonia-N	2008/07/18	101 %	80 - 120
	RPD	Total Ammonia-N	2008/07/18	ND, RDL=0.05 mg/L	
1563394 LS	MATRIX SPIKE		2008/07/18	NC %	25
1003394 LO		Total Ammonia-N	2008/07/17	NC (2) %	80 - 120
	Spiked Blank Method Blank	Total Ammonia-N	2008/07/17	101 %	80 - 120
		Total Ammonia-N	2008/07/17	ND, RDL=0.05 mg/L	
	RPD	Total Ammonia-N	2008/07/17	0.4 %	25
563425 CCI	MATRIX SPIKE	Nitrite (N)	2008/07/18	100 %	75 - 125
	Onlined Directo	Nitrate (N)	2008/07/18	95 %	75 - 125
	Spiked Blank	Nitrite (N)	2008/07/18	100 %	80 - 120
	Mathed Directo	Nitrate (N)	2008/07/18	95 %	80 - 120
	Method Blank	Nitrite (N)	2008/07/18	ND, RDL=0.01 mg/L	
	000	Nitrate (N)	2008/07/18	ND, RDL=0.1 mg/L	
	RPD	Nitrate (N)	2008/07/18	NC %	25
563553 DRM	MATRIX SPIKE	Orthophosphate (P)	2008/07/18	100 %	75 - 125
	Spiked Blank	Orthophosphate (P)	2008/07/18	101 %	80 - 120

Page 11 of 17

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENTS P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA875011

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units G	C Limi
1563553 DRM		Orthophosphate (P)	2008/07/18	ND, RDL=0.01	mg/L	
	RPD	Orthophosphate (P)	2008/07/18	NC	%	2
1563576 SBU	MATRIX SPIKE	Dissolved Chloride (CI)	2008/07/18	98	%	75 - 12
	Spiked Blank	Dissolved Chloride (Cl)	2008/07/18	96	%	80 - 12
	Method Blank	Dissolved Chloride (Cl)	2008/07/18	ND, RDL=1	mg/L	00 12
	RPD	Dissolved Chloride (CI)	2008/07/18	NC	%	2
1563579 DRM	MATRIX SPIKE	Dissolved Sulphate (SO4)	2008/07/18	NC (2)		75 - 12
	Spiked Blank	Dissolved Sulphate (SO4)	2008/07/18	101		80 - 12
	Method Blank	Dissolved Sulphate (SO4)	2008/07/18	ND, RDL=1	mg/L	
	RPD	Dissolved Sulphate (SO4)	2008/07/18	1.0	%	2
1563641 C N	MATRIX SPIKE	Total Phosphorus	2008/07/18	101		75 - 12
	QC STANDARD	Total Phosphorus	2008/07/18	96		85 - 1
	Spiked Blank	Total Phosphorus	2008/07/18	105		75 - 12
	Method Blank	Total Phosphorus	2008/07/18	0.002, RDL=0.002	mg/L	
	RPD	Total Phosphorus	2008/07/18	NC	%	2
1563702 CCI	MATRIX SPIKE	Nitrite (N)	2008/07/18	98		75 - 12
		Nitrate (N)	2008/07/18	88		75 - 12
	Spiked Blank	Nitrite (N)	2008/07/18	99	%	80 - 12
		Nitrate (N)	2008/07/18	97		80 - 12
	Method Blank	Nitrite (N)	2008/07/18	ND, RDL=0.01	mg/L	
		Nitrate (N)	2008/07/18	ND, RDL=0.1	mg/L	
	RPD	Nitrite (N)	2008/07/18	NC	%	2
		Nitrate (N)	2008/07/18	0.7	%	2
563760 SBU	MATRIX SPIKE	Total Kjeldahl Nitrogen (TKN)	2008/07/18	NC (2)		80 - 12
	QC STANDARD	Total Kjeldahl Nitrogen (TKN)	2008/07/18	93		85 - 1-
	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2008/07/18	94		80 - 12
	Method Blank	Total Kjeldahl Nitrogen (TKN)	2008/07/18	0.1, RDL=0.1	mg/L	
	RPD	Total Kjeldahl Nitrogen (TKN)	2008/07/18	2.0	%	2
1563770 SBU	MATRIX SPIKE	Total Kjeldahl Nitrogen (TKN)	2008/07/18	87		80 - 12
	QC STANDARD	Total Kjeldahl Nitrogen (TKN)	2008/07/18	90		85 - 11
	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2008/07/18	94		80 - 12
	Method Blank	Total Kjeldahl Nitrogen (TKN)	2008/07/18	ND, RDL=0.1	mg/L	
	RPD	Total Kjeldahl Nitrogen (TKN)	2008/07/18	NC	%	2
563995 JBW	MATRIX SPIKE	. Aluminum (Al)	2008/07/21	106		80 - 12
		. Antimony (Sb)	2008/07/21	108		80 - 12
		. Arsenic (As)	2008/07/21	106	%	80 - 12
		. Barium (Ba)	2008/07/21	105		80 - 12
		. Beryllium (Be)	2008/07/21	111	%	80 - 12
		. Boron (B)	2008/07/21	109		80 - 12
		. Cadmium (Cd)	2008/07/21	108		80 - 12
		. Calcium (Ca)	2008/07/21	NC (2)		80 - 12
		. Chromium (Cr)	2008/07/21	105	%	80 - 12
		. Cobalt (Co)	2008/07/21	104		80 - 12
		. Copper (Cu)	2008/07/21	103		80 - 12
		. Iron (Fe)	2008/07/21	109		80 - 12
		. Lead (Pb)	2008/07/21	105		80 - 12
		. Magnesium (Mg)	2008/07/21	108		80 - 12
		. Manganese (Mn)	2008/07/21	104		80 - 12
		. Molybdenum (Mo)	2008/07/21	111		80 - 12
		. Nickel (Ni)	2008/07/21	104		30 - 12
		. Phosphorus (P)	2008/07/21	115		30 - 12
		. Potassium (K)	2008/07/21	110		30 - 12
		. Selenium (Se)	2008/07/21	104		30 - 12
		. Silicon (Si)	2008/07/21	110		30 - 12
		. Silver (Ag)	2008/07/21	104	% 8	30 - 12

Page 12 of 17

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENTS P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA875011

			Date				
			Analyzed				
	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
	ATRIX SPIKE	. Sodium (Na)	2008/07/21		NC (2)	%	80 - 120
		. Strontium (Sr)	2008/07/21		NC (2)	%	80 - 120
		. Thallium (TI)	2008/07/21		104	%	80 - 120
		. Titanium (Ti)	2008/07/21		110	%	80 - 120
		. Uranium (U)	2008/07/21		108	%	80 - 120
		. Vanadium (V)	2008/07/21		110	%	80 - 120
		. Zinc (Zn)	2008/07/21		105	%	80 - 120
S	Spiked Blank	Aluminum (Al)	2008/07/21		103	%	85 - 115
	8	. Antimony (Sb)	2008/07/21		103	%	85 - 115
		. Arsenic (As)	2008/07/21		99	%	85 - 115
		. Barium (Ba)	2008/07/21		101	%	85 - 115
		. Beryllium (Be)	2008/07/21		104	%	85 - 115
		. Boron (B)	2008/07/21		104	%	85 - 115
		. Cadmium (Cd)	2008/07/21		105	%	85 - 115
		. Calcium (Ca)	2008/07/21		103	%	85 - 115
		. Chromium (Cr)	2008/07/21		100	%	85 - 115
		. Cobalt (Co)	2008/07/21		100	%	85 - 115
		. Copper (Cu)	2008/07/21		97	%	85 - 115
		. Iron (Fe)	2008/07/21		104	%	85 - 115
		. Lead (Pb)	2008/07/21		102	%	85 - 115
		. Magnesium (Mg)	2008/07/21		106	%	85 - 115
		. Manganese (Mn)	2008/07/21		101	%	85 - 115
		. Molybdenum (Mo)	2008/07/21		103	%	85 115
		. Nickel (Ni)	2008/07/21		100	%	85 - 115
		. Phosphorus (P)	2008/07/21		101	%	85 - 115
		. Potassium (K)	2008/07/21		107	%	85 - 115
		. Selenium (Se)	2008/07/21		99	%	85 - 115
		. Silicon (Si)	2008/07/21		106	%	85 - 115
		. Silver (Ag)	2008/07/21		101	%	85 - 115
		. Sodium (Na)	2008/07/21		105	%	85 - 115
		. Strontium (Sr)	2008/07/21		100	%	85 - 115
		. Thallium (TI)	2008/07/21		101	%	85 - 115
		. Titanium (Ti)	2008/07/21		105	%	85 - 115
		. Uranium (U)	2008/07/21		102	%	85 - 115
		. Vanadium (V)	2008/07/21		103	%	85 - 115
		. Zinc (Zn)	2008/07/21		100	%	85 - 115
M	lethod Blank	. Aluminum (Al)	2008/07/21	ND, R	DL=5	ug/L	
		. Antimony (Sb)	2008/07/21	ND, R	DL=0.5	ug/L	
		. Arsenic (As)	2008/07/21	ND, R	DL=1	ug/L	
		. Barium (Ba)	2008/07/21	ND, R	DL=5	ug/L	
		. Beryllium (Be)	2008/07/21	ND, R	DL=0.5	ug/L	
		. Boron (B)	2008/07/21	ND, R		ug/L	
		. Cadmium (Cd)	2008/07/21	ND, R	DL=0.1	ug/L	
		. Calcium (Ca)	2008/07/21	ND, R	DL=200	ug/L	
		. Chromium (Cr)	2008/07/21	ND, R		ug/L	
		. Cobalt (Co)	2008/07/21		DL=0.5	ug/L	
		. Copper (Cu)	2008/07/21	ND, R	DL=1	ug/L	
		. Iron (Fe)	2008/07/21	10 10 m 10 m	DL=100	ug/L	
		. Lead (Pb)	2008/07/21	IN PROPERTY AND INCOME.	DL=0.5	ug/L	
		. Magnesium (Mg)	2008/07/21	ND, R	DL=50	ug/L	
		. Manganese (Mn)	2008/07/21	ND, R	DL=2	ug/L	
		. Molybdenum (Mo)	2008/07/21	ND, R	DL=1	ug/L	
		. Nickel (Ni)	2008/07/21	ND, R		ug/L	
		. Phosphorus (P)	2008/07/21		DL=100	ug/L	
		. Potassium (K)	2008/07/21		DL=200	ug/L	

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENTS P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA875011

QA/QC Batch			Date			
Num Init	QC Type	Parameter	Analyzed	Value Deserv		
1563995 JBW	Method Blank	. Selenium (Se)	yyyy/mm/dd	Value Recov		nits QC I
300333 0044	Method Diank	. Silicon (Si)	2008/07/21	ND, RDL=2		g/L
		. Silver (Ag)	2008/07/21	ND, RDL=50		g/L
			2008/07/21	ND, RDL=0.1		g/L
		. Sodium (Na)	2008/07/21	ND, RDL=100		g/L
		. Strontium (Sr)	2008/07/21	ND, RDL=1		g/L
		. Thallium (TI)	2008/07/21	ND, RDL=0.05		g/L
		. Titanium (Ti)	2008/07/21	ND, RDL=5		g/L
		. Uranium (U)	2008/07/21	ND, RDL=0.1		g/L
		. Vanadium (V)	2008/07/21	ND, RDL=1		g/L
	000	. Zinc (Zn)	2008/07/21	ND, RDL=5		g/L
	RPD	. Aluminum (Al)	2008/07/21	NC		%
		. Antimony (Sb)	2008/07/21	NC		%
		Arsenic (As)	2008/07/21	NC		6
		. Barium (Ba)	2008/07/21	0.1		%
		. Beryllium (Be)	2008/07/21	NC		10
		. Boron (B)	2008/07/21	0.05		10
		. Cadmium (Cd)	2008/07/21	NC	9	6
		. Calcium (Ca)	2008/07/21	1.4		10
		. Chromium (Cr)	2008/07/21	NC	9	6
		. Cobalt (Co)	2008/07/21	NC	9	6
		. Copper (Cu)	2008/07/21	7.3	9	6
		. Iron (Fe)	2008/07/21	0.6		6
		. Lead (Pb)	2008/07/21	0.5		6
		. Magnesium (Mg)	2008/07/21	0.8		6
		. Manganese (Mn)	2008/07/21	0.2	9	
		. Molybdenum (Mo)	2008/07/21	NC		6
		. Nickel (Ni)	2008/07/21	NC	9	
		. Phosphorus (P)	2008/07/21	NC	9	
		. Potassium (K)	2008/07/21	2.7	9	
		. Selenium (Se)	2008/07/21	NC	9	
		. Silicon (Si)	2008/07/21	1.1	9	
		. Silver (Ag)	2008/07/21	NC	9	
		. Sodium (Na)	2008/07/21	0.1	9	
		. Strontium (Sr)	2008/07/21	0.3	9	
		. Thallium (TI)	2008/07/21	NC	9	
		. Titanium (Ti)	2008/07/21	NC	9	
		. Uranium (U)	2008/07/21	NC	9	
		. Vanadium (V)	2008/07/21	NC	9	
		Zinc (Zn)	2008/07/21	0.07	~ %	
64153 MIL	MATRIX SPIKE	Total Aluminum (Al)	2008/07/17			
04100 IVIL		Total Antimony (Sb)				
		Total Arsenic (As)	2008/07/17		09 %	
		Total Barium (Ba)	2008/07/17		98 %	
			2008/07/17	10		
		Total Beryllium (Be)	2008/07/17	10		
		Total Boron (B)	2008/07/17)4 %	
		Total Cadmium (Cd)	2008/07/17	10		
		Total Calcium (Ca)	2008/07/17		C (2) %	
		Total Chromium (Cr)	2008/07/17	1(
		Total Cobalt (Co)	2008/07/17	10		
		Total Copper (Cu)	2008/07/17		C (2) %	
		Total Iron (Fe)	2008/07/17		98 %	
		Total Lead (Pb)	2008/07/17	10		
		Total Magnesium (Mg)	2008/07/17	N	C (2) %	80 -
		Total Manganese (Mn)	2008/07/17	10		
		Total Molybdenum (Mo)			8 %	

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENTS P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA875011

QA/QC Batch			Date			
Batch Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value Recovery	Units	QC Limi
1564153 MIL	MATRIX SPIKE	Total Nickel (Ni)	2008/07/17		%	80 - 12
004100 MIL	WATTER OF INC	Total Potassium (K)	2008/07/17	98	%	75 - 12
		Total Selenium (Se)	2008/07/17	103	%	75 - 12
		Total Silicon (Si)	2008/07/17	103	%	75 - 12
		Total Silver (Ag)	2008/07/17	102	%	80 - 12
		Total Sodium (Na)	2008/07/17	96	%	75 - 12
		Total Thallium (TI)	2008/07/17	103	%	80 - 12
		Total Tungsten (W)	2008/07/17	107	%	75 - 12
		Total Uranium (U)	2008/07/17	102	%	80 - 12
		Total Vanadium (V)	2008/07/17	104	%	80 - 12
		Total Zinc (Zn)	2008/07/17	102	%	80 - 1
		Total Zirconium (Zr)	2008/07/17	114	%	75 - 12
	Spiked Blank	Total Aluminum (Al)	2008/07/17	104	%	80 - 12
	opinioo Biann	Total Antimony (Sb)	2008/07/17	108	%	82 - 12
		Total Arsenic (As)	2008/07/17	99	%	86 - 11
		Total Barium (Ba)	2008/07/17	103	%	83 - 11
		Total Beryllium (Be)	2008/07/17	102	%	85 - 13
		Total Boron (B)	2008/07/17	102	%	78 - 10
		Total Cadmium (Cd)	2008/07/17	104	%	85 - 1
		Total Calcium (Ca)	2008/07/17	100	%	75 - 12
		Total Chromium (Cr)	2008/07/17	100	%	80 - 12
		Total Cobalt (Co)	2008/07/17	104	%	80 - 12
		Total Copper (Cu)	2008/07/17	103	%	80 - 1
		Total Iron (Fe)	2008/07/17	104	%	80 - 12
		Total Lead (Pb)	2008/07/17	102	%	80 - 12
		Total Magnesium (Mg)	2008/07/17	101	%	80 - 12
		Total Magnese (Mn)	2008/07/17	104	%	80 - 12
		Total Molybdenum (Mo)		104	%	
		Total Nickel (Ni)	2008/07/17 2008/07/17	105	%	82 - 11 81 - 11
		Total Potassium (K)	2008/07/17	99	%	75 - 12
		Total Selenium (Se)	2008/07/17	106	%	82 - 11
				108	%	67 - 14
		Total Silicon (Si)	2008/07/17	102	%	80 - 12
		Total Silver (Ag)	2008/07/17	99	%	75 - 12
		Total Sodium (Na)	2008/07/17	99 103	%	75 - 12 80 - 12
		Total Thallium (TI) Total Tungsten (W)	2008/07/17 2008/07/17	103	%	81 - 12
						82 - 12
		Total Uranium (U)	2008/07/17	100	%	
		Total Vanadium (V)	2008/07/17	106	%	82 - 11
		Total Zinc (Zn)	2008/07/17	105	%	80 - 12 84 - 11
		Total Zirconium (Zr)	2008/07/17	113	%	84 - 1
	Method Blank	Total Aluminum (Al)	2008/07/17	ND, RDL=5	ug/L	
		Total Antimony (Sb)	2008/07/17	ND, RDL=0.5	ug/L	
		Total Arsenic (As)	2008/07/17	ND, RDL=1	ug/L	
		Total Barium (Ba)	2008/07/17	ND, RDL=5	ug/L	
		Total Beryllium (Be)	2008/07/17	ND, RDL=0.5	ug/L	
		Total Boron (B)	2008/07/17	ND, RDL=10	ug/L	
		Total Cadmium (Cd)	2008/07/17	ND, RDL=0.1	ug/L	
		Total Calcium (Ca)	2008/07/17	ND, RDL=200	ug/L	
		Total Chromium (Cr)	2008/07/17	ND, RDL=5	ug/L	
		Total Cobalt (Co)	2008/07/17	ND, RDL=0.5	ug/L	
		Total Copper (Cu)	2008/07/17	ND, RDL=1	ug/L	
		Total Iron (Fe)	2008/07/17	ND, RDL=100	ug/L	
		Total Lead (Pb)	2008/07/17	ND, RDL=0.5	ug/L	
		Total Magnesium (Mg)	2008/07/17	ND, RDL=50	ug/L	
		Total Manganese (Mn)	2008/07/17	ND, RDL=2	ug/L	

NORBERT M WOERNS Attention: Norbert M. Woerns Client Project #: HYATT DEVELOPMENTS P.O. #: Project name: UXBRIDGE, ONTARIO

Quality Assurance Report (Continued)

Maxxam Job Number: MA875011

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1564153 MIL	Method Blank	Total Molybdenum (Mo)	2008/07/17	ND, RDL=1	ug/L	
		Total Nickel (Ni)	2008/07/17	ND, RDL=1	ug/L	
		Total Potassium (K)	2008/07/17	ND, RDL=200	ug/L	
		Total Selenium (Se)	2008/07/17	ND, RDL=2	ug/L	
		Total Silicon (Si)	2008/07/17	ND, RDL=50	ug/L	
		Total Silver (Ag)	2008/07/17	ND, RDL=0.1	ug/L	
		Total Sodium (Na)	2008/07/17	ND, RDL=100	ug/L	
		Total Thallium (TI)	2008/07/17	ND, RDL=0.05	ug/L	
		Total Tungsten (W)	2008/07/17	ND, RDL=1	ug/L	
		Total Uranium (U)	2008/07/17	ND, RDL=0.1	ug/L	
		Total Vanadium (V)	2008/07/17	ND, RDL=1	ug/L	
		Total Zinc (Zn)	2008/07/17	ND, RDL=5	ug/L	
		Total Zirconium (Zr)	2008/07/17	ND, RDL=1	ug/L	
	RPD	Total Aluminum (Al)	2008/07/17	NC	%	2
		Total Iron (Fe)	2008/07/17	NC	%	2
		Total Lead (Pb)	2008/07/17	NC	%	2
		Total Magnesium (Mg)	2008/07/17	0.2	%	2
		Total Manganese (Mn)	2008/07/17	NC	%	2
		Total Sodium (Na)	2008/07/17	0.08	%	2
1564680 KTH	Spiked Blank	Colour	2008/07/18	101	%	75 - 12
	Method Blank	Colour	2008/07/18	ND, RDL=2	TCU	
	RPD	Colour	2008/07/18	NC	%	2

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

(1) The recovery was above the upper control limit. This may represent a high bias in some results for flagged analytes. For results that were not detected (ND), this potential bias has no impact.

(2) The recovery in the matrix spike was not calculated (NC). Because of the high concentration of this analyte in the parent sample, the relative difference between the spiked and unspiked concentrations is not sufficiently significant to permit a reliable recovery calculation.

Validation Signature Page

Maxxam Job #: A875011

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

listina Neur

CHRISTINA NERVO, Scientific Services

_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatorics", as per section 5.10.2 of ISO/IFC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Page 17 of 17

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

APPENDIX 5

CLIMATIC WATER BALANCE

Hyatt, Cemetery Road, Uxbridge, Hydrogeological Investigation, January, 2009

Climatic Water Balance -Uxbridge Ontario (1954 to 1975) Soil Moisture 100mm/yr

Date	Temperature ≌C	Precipitation (mm)	Potential Evapotranspiration (mm)	Actual Evapotranspiration (mm)	Deficit (mm)	Surplus (mm)
January	-8.3	48	1	1	0	90
February	-7.6	54		_		24
March	-2.5	49	י ת	л -		10
April		2	2	U	c	17
	0.0	<u>ç</u> 0	31	31	0	70
May	12	71	74	74	0	12
June	17.5	71	111	109	<u>'</u> '	זה
July	19.8	77	128	101	200	<u>م</u>
August	10	90	444		5	-
Contonica	19	00	114	88	-26	
Septemper	14.9	60	76	57	-20	
Uctober	9.2	65	42	36	ტ	6
November	2.4	71	13	13	0	16
December	-5.3	66	2	2	0	27.0
Total	6.4*	783	598	518	-82	265
Note: Soil Moi	atives timinal tar		Note: Sail Mainture tuning for and a state of the state o			

Note: Soli Molsture typical for sandy silt to silty sand loam with shallow rooted plants Data from Meterological Service of Canada, 2008 Numbers rounded off

* Average Annual Temperature

Climatic Water Balance - Uxbridge (1954 to 1975) Soil Moisture 200 mm/yr

Date	Temperature (^º C)	Precipitation (mm)	Potential Evapotranspiration (mm)	Actual Evapotranspiration (mm)	Deficit (mm)	Surplus (mm)
January	- 8.3	48	-		0	18
February	-7.6	54	1	_	0	22
March	-2.5	49	ъ	ы	0	62
April	5.5	65	31	31	0	66
May	12	71	74	74	0	12
June	17.5	71	111	111	0	ъ
July	19.8	77	128	125	ሪ	
August	19	98	114	102	-12	
September	14.9	60	76	66	-11	-
October	9.2	65	42	39	ሪ	თ
November	2.4	71	13	13	0	6
December	-5.3	66	2	2	0	14
Total	6.4*	783	598	570	-29	213

Data from Meterological Service of Canada, 2008 Numbers rounded off

* Average Annual temperature

Climatic Water Balance - Uxbridge, Ontario (1954-1975) Soil Moisture 350 mm/yr

Date		Precipitation	Potential Evapotranspiration	Actual Evapotranspiration	Deficit	Surplus
	(º C)	(mm)	(mm)	(mm)	(mm)	(mm)
January	-8.3	48		1	0	11
February	-7.6	54			0	19
March	-2.5	49	5	5	0	54
April	5.5	65	31	31	0	64
May	12	71	74	74	0	12
June	17.5	71.	111	111	0	თ
July	19.8	77	128	128	0	-
August	19	98	114	112	ż	-
September	14.9	60	76	73	ሪ	
October	9.2	65	42	41	4	თ
November	2.4	71	13	13	0	6
December	-5.3	66	2	2	0	12
Total	6.4*	783	598	592	ტ	191
Note: Soil Mc	pisture typical for sa	andy silt to silty san	Note: Soil Moisture typical for sandy silt to silty sand loam with deep rooted plants - trees	l plants - trees		

Data from Meterological Service of Canada, 2008 Numbers rounded off * Average Annual temperature

APPENDIX 6

ONTARIO BUILDING CODE SUPPLEMENTARY GUIDE SG-6

Hyatt, Cemetery Road, Uxbridge, Hydrogeological Investigation, January, 2009

SG-6 Percolation Time and Soil Descriptions

ESTIMATION OF PERCOLATION TIME (Referenced in Article 8.2.1.2.)

- (a) The purpose of this Section and the associated Tables and Charts is to provide assistance to those who must decide on the percolation time(s) to be used in design. Suggested relationships between percolation time, coefficient of permeability and soils of various types are given. IT MUST BE EMPHASIZED THAT, PARTICULARLY FOR FINE GRAINED SOILS, THERE IS NO CONSISTENT RELATIONSHIP DUE TO THE MANY FACTORS INVOLVED. The following guidance is presented for the soil types outlined in the Unified Soil Classification System (Table 1). In order to assess a particular soil.
 - (i) Table 2 and Table 3 Approximate relationship of soil types to permeability and percolation time.
 - (ii) Charts 1 to 14 Typical grain size distribution curves for soil types in the Unified Soil Classification System.
- (b) In Table 2 and Table 3, a range of values of "K" and of "T" are given for various soil descriptions. The principal modifiers which will influence selection of a "T" value within the range given are:
 - (i) The structure "massive" fine-grained soils have high values of "T".
 - (ii) The density For a given soil higher density produces a higher value of "T".
 - (iii) The percentage of clay the higher the percentage the higher the value of "T".
 - (iv) The mineralogy of the clay portion The more it "swells" the higher the value of "T".
 - (v) The plasticity of the soil The higher the plasticity index the higher the value of "T".
 - (vi) Liquid Limit the higher the liquid limit the higher the value of "T".
 - (vii) Organic content The presence of fine organic particles, detectable by colouration and odour, can significantly reduce the permeability and raise the value of "T".

	Coarse - Grained Soils		Fine - Grained Soils
Group Symbols	Typical Names	Group Symbols	Typical Names
GW	Well-graded gravels, gravel-sand mixtures, little or no fines	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity
GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines	CL	Inorganic clays of fow to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
GM	Silty gravels, gravel-sand-silt mixtures	OL	Organic silts and organic silty clays of low plasticity
GC	Clayey gravels, gravel-sand-clay mixtures	мн	Inorganic silts, micoceous or diatomaceous fine sandy or silty soils, elastic silts
SW	Well-graded sands, gravelly sands, little or no fines	СН	Inorganic clays of high plasticity, fat clays
SP	Poorly-graded sands, gravelly sands, little or no fines	он	Organic clays of medium to high plasticity, organic silts
SM	Silty sands, sand-silt mixtures		
SC	Clayey sands, sand-clay mixtures	PT (highly organic soils)	Peat and other highly organic soils

TABLE 1 Unified Soll Classification

TABLE 2 APPROXIMATE RELATIONSHIP OF SOIL TYPES TO PERMEABILITY AND PERCOLATION TIME

SOIL TYPE (unified soil classification)	Coefficient of Permeability K - cm/sec.	Percolation Time- T mins/cm.	Comment
COARSE GRAINED - MORE THAN 50% LARGER THAN #200			
G.W Well graded gravels, gravel-sand mixtures, little or fines.	10-1	<1	very permeable unacceptable
G.P Poorly graded gravels, gravel-sand mixtures, little or no fines.	10-1	<1	very permeable unacceptable
G.M Silty gravels, gravel sand-silt mixtures.	10 ⁻² - 10 ⁻⁴	4 - 12	Permeable to medium permeable depending on amount of silt.
G.C Clayey gravels, gravel- sand-clay mixtures.	10 ^{.4} - 10 ^{.6}	12 - 50	Important to estimate amount of silt and clay
S.W Well graded sands, gravelly sands little or no fines.	10-1 - 10-4	2 - 12	medium permeability
S.P Poorly graded sands gravelly sand, little or no	10 ⁻¹ - 10 ⁻³	2 - 8	medium permeability
fines. S.M Silty sands, sand-	10-3 - 10-5	8 - 20	medium to low permeability
silt mixtures. S.C Clayey sands, sand- clay mixtures.	10 ⁻⁴ - 10 ⁻⁶	12 - 50	medium to low permeability (depends on amount of clay

TABLE 3
APPROXIMATE RELATIONSHIP OF SOIL TYPES
TO PERMEABILITY AND PERCOLATION TIME

SOIL TYPE (unified soil classification)	Coefficient of Permeability K - cm/sec.	Percolation Time- T mins/cm.	Comment
FINE GRAINED - MORE THAN 50% PASSING #200			
M.L Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, clayey silts with slight plasticity	10 ⁻⁵ - 10 ⁻⁶	20 - 50	medium to low permeability
C.L Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	10 ⁻⁶ and less	over 50	unacceptable
O.L Organic silts, organic silty clays of low plasticity; liquid limit less than 50	10^{-5} and less	20 - over 50	acceptable depends on clay content.
M.H Inorganic silts, mi- careaous or diatomageous fine sandy or silty soils, elastic silts	10^{-6} and less	over 50	unacceptable
C.H Inorganic clays of medium to high plasticity, organic silts	10^{-7} and less	over 50	unacceptable
O.H Organic clays of medium to high plasticity- organic silt; liquid limit over 50	10^{-6} and less	over 50	unacceptable

SELECTION OF "T" TIME FROM THE ABOVE TABULATION

A range of "T" times for each soil type is shown above. Select from within this range by determining if the soil is within the low, middle or high part of the range considering the soil identifiers and soil characteristics. Consider structure, density, colour, prevalence or organics, the clay content and minerology, the plasticity index and liquid limit and the functioning of existing systems in similar soils in the area.

Note: The following Ministry of the Environment Reports provide further information on the relationship between grain size, coefficient or permeability and percolative time.

- "Study on the Feasibility of Correlating Percolation Time with Laboratory Permeability" 1975 Research Report No. S56 by H. T. Chan, PhD., P.Eng.
- "Study of Conventional Tile Fields in Fine-Grained Soils" 1979 Research Report 74 by H. T. Chan, PhD., P.Eng.

APPENDIX 7

WATER BALANCE ANALYSIS

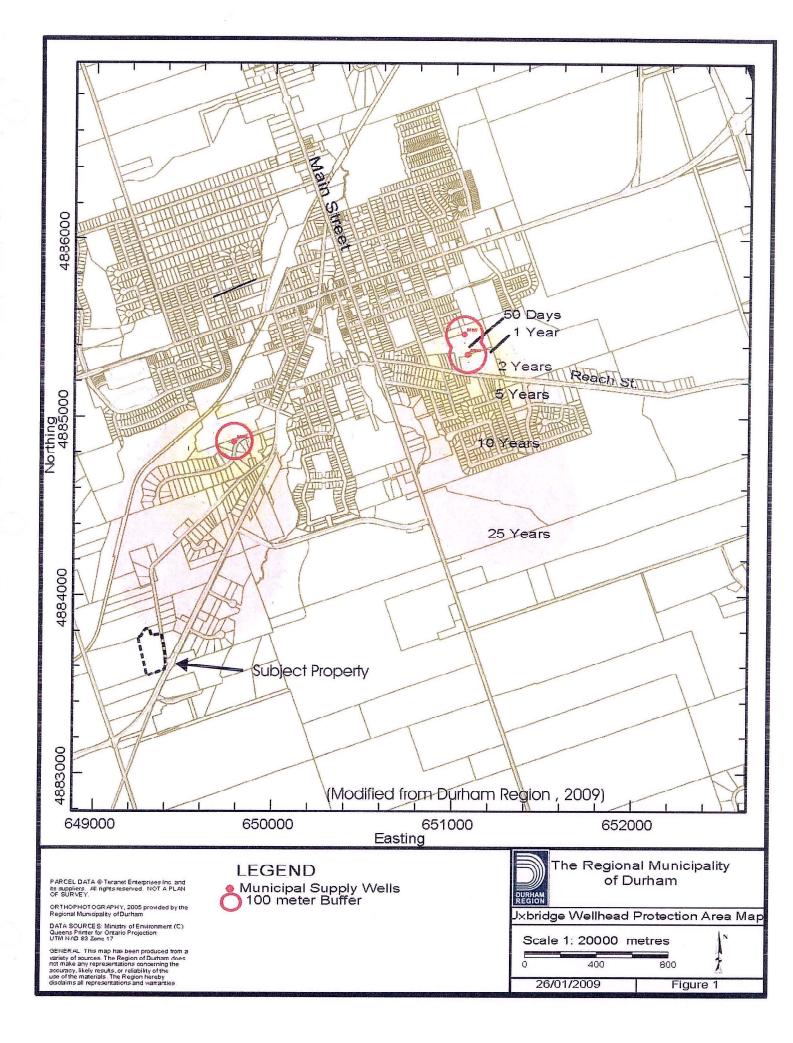
Hyatt, Cemetery Road, Uxbridge, Hydrogeological Investigation, January, 2009

	39.09	4 40											
		70.01		7 840 47	776 97		2.819.95						
	States of the states of the	1011	-0.0-	-6.127.65	44.57		13,749.36						optransporation
	12		0.00	1 000 00	57 19	1 244 50						1.685	nfiltration
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	% of total precip												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													hange Pre to Post-dev
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													me Difference (m3/vr)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19,49	UK./ TU,T	3,101,10	0.00	0,000.00								me Check (area X precip.)
Opportunitie Section (marked marked mar		4 04400	0 424 40		6 AN3 80	1 469 32		15,700.0		9,200.00		24,900	Total
	19,49												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													Imn Check
Undridigie Image: constraint of	90				0.00		0.00						
Name Name <th< td=""><td>707</td><td>595 08</td><td>5.355.72</td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td>100.0</td><td></td><td></td><td>7,600</td><td></td></th<>	707	595 08	5.355.72	0.00	0.00				100.0			7,600	
Numerical constraints	4,2	422.82	86.408'6	0.00	00.0								
Image: constraint of the									100.0			5,400	uilding roof area
Important Important <t< td=""><td>2,1</td><td></td><td></td><td></td><td>1,614.60</td><td></td><td></td><td></td><td>100.0</td><td></td><td></td><td></td><td></td></t<>	2,1				1,614.60				100.0				
Important (vorter) Importa	3,3		0.00		2,451.00			57				2.700	Wetland
Visiture volue parts Medianic coded parts Deep nooled parts + reas Fond Imperiods Area Read Read 1 Soll Moisture 100 Soll Moisture 200 Soll Moisture 200 Read Read <td></td> <td></td> <td>0.00</td> <td></td> <td>51.80</td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>4.300</td> <td>Open Space (buffers/meadow)</td>			0.00		51.80					4		4.300	Open Space (buffers/meadow)
Vinitum (volum) Math (not population) Deep noded plants-frees Ford Imper Notes Ford Read & First Fords Soli Moisure 100 Soli Moisure 200 Soli Moisure 200 (mm) (3,7		0.00		2,400.40							100) Landscaped south+patio
Important Incl. policity Mail Incl. policity Deep noded plants-frees Fond Important Area Read & First Foods Soli Molsure 100 Soli Molsure 201 201 Soli Molsure			222		0 100 10							4,800	Landscaped north+eas:
Self Molistare Total Total Predict Self Molistare Self Molistare <td></td> <td>Open Space</td>													Open Space
Same Control Control													nario 1- Runoff to Storm Sewers
Delta (num, noncolum, mailingel Control (noncolum, mailingel) Control (noncolum, mailingel) <thc< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>t-development Water Balance</td></thc<>													t-development Water Balance
Data from Uxbridgal Final without county prime Final													
Data from Uxbridgal Control primitive Gend multiplicative Deep nooled plants. Deep nooled plants. Pond Imporvious Area Reads A Fait Acid Imporvious Acid Reads A Fait Acid	79,4												Cent Error
Delta from Uxbridgel Ommon (uniter parts) Medium rocked parts Dep rocked plants-trees Pond Impervious Area Impervious Area b_1979) ration Uxbridgel rmm rm	19,4		1,243.00		00.760'31								Volume check area X precip)
Buta from Uxbridgel Important from Import					10 050 00		2 927 39			21,144.00		24,900	Total
e Data from Uxbridgel (mn) (malup noted plants) (mapplicable) (mm) (mn) (mn) (mn) (mn) (mn) (mn) (mn) (/44,16										
Bala from Uxbridgel Circuity Line Ci			499.50	0.00					100.0			1,056	sitng Buildings
Patta from Uxbridgel Oraci volume for our pure pure (mm) (not applicable) Dep rooled plants Dep rooled plants-trees Pond Impervious Area For atta from Uxbridgel Impervious Soil Moisture (mm) (mm) (mm) (mm) (mm) For		0.00	0.00	0.00				57				2,700	an Space (wetland)
e Data from Uxbridgel Orient volue Initial politicable Initial politicable Open volued plants-trees Pond Impervious Area Monor fractors to: 1975) Soil Moisture (mm) (mm) (mm) (mm) (mm) (mm) fractors	(m3)				(m3)	(m3)	(ma)	Mraa (IZI)		1000			an Space (meadow)
e Data from Uxbridgel Snilluvir volled plants Gene proteid plants Deep noted plants-trees Pond Impervious Area e Data from Uxbridgel (mm) (mm) (mm) (mm) (mm) Rino ib 1975) Total Precip. 783	Total		Imper FI/O		, ET			and	Choia indian	Area (m2)	%	(m ²)	
Soll Molstare Soll Molstare (not applicable) (not a								Impositorio	Importante	Perulnus	Pervious	Total	Areas
Image: Solution of collect plants Deep rooted plants Deep rooted plants-trees Pond Impervious Area Image: Solution of collect plants (mm) (mm) (mm) Solution Fill Solution of collect plants (mm) (mm) (mm) (mm) Fill Solution of collect plants 783 Total Precip. 783 Total Precip. 783 NA Supplus 250 Solutions 570 Evapotrans. 570 Evapotrans. 592 746 78.3 Suplus 261 Port Evapotr 598 Port Evapotr 598 Surplus 592 74.6 78.3 Port Evapotr 258 Port Evapotr 598 Port Evapotr 598 Surplus 191 37 78.3											T		-development Water Balance
Image: spininew routed plants Construction Image: spininew routed plants Deep rooted plants-trees Pond Impervious Area Image: spininew routed plants (nm) (nm) (nm) (nm) Root Soll Molsture (nm) Soll Molsture 100 Soll Molsture 783 Total Precip. 783 Total Precip. 783 Total Precip. 783 Total Precip. 783						(forest)		(shrub meado		(Iawns)			
Sininov roued plants Medium rooted plants Deep rooted plants-trees Pond Impervious Area Impervious Area (mm) (nol applicable) (mm) (mm) Roof Soll Molsture 100 Soll Molsture (mm) (mm) (mm) (mm) India Precip. 783 Total Precip. 783 Total Precip. 783 NA Evapotrans. 518 Evapotrans. 570 Evapotrans. 592 746 783 Surplus 265 Post-teveloptr 598 Surplus 191 37 783 Post-Evapotr 586 Post-teveloptr 598 Surplus 598 37 37 Infilm Factor 0.5 Infilm Factor 0.65 Infilm factor 0.7 0.0 0			0.85	0.9	1.0	0.7	Runoff factor	0.35	Runott actor	C.U			
Sininov roued plants Ordep lants Deep rooted plants-trees Pond Impervious Area Impervious plants (not applicable) (no			0	0	0.0		Infiltm factor	0.65	Intilim Factor	0.0	Inilium racior		
Solumov route plants Complexity Dep rooted plants-trees Pond Impervious Area Impervious plants (nm) (nm) (nm) Root Root Soli Molsture 100 Soli Molsture 200 Soli Molsture 783 Total Precip. 783 Total Precip. 783 Total Precip. 783 Total Precip. 783							Pre/post-develo	opment	Pre Post-deve		Post-develop		
Situniow roled plants Impervious plants Deep rooted plants-trees Pond Impervious Area Impervious Plants (not applicable) (not applicable) (not applicable) Roof Roof Soll Moisture (not applicable) (nnn) (nmn) (nmn) Roof Total Precip. 783 Total Precip. 783 Total Precip. 783 783 Evapotrans. 518 Evapotrans. 570 Evapotrans. 592 743 783 Surplus 265 Surplus 213 Surplus 191 37							Pot Evapoir	598	Pot Evapotr		Pot Evapour		
Sininov roued plants Other plants Deep rooted plants Pond Impervious Area Indiapplicable (nm) (not applicable) (nmn) (nmn) (non) Soli Molsture (nm) Soli Molsture 200 Soli Molsture 783 746 783 783 783 746 783 783 746 783 746 783 746 783 746					37	191	Surplus	213	Surplus	265	Sulplus		
Snamow rooted plants Medium rooted plants Deep rooted plants-trees Pond Impervious Area Impervious Area (mm) (not applicable) (mm) Roof Roof Soll Moisture 100 Soll Meisture 200 Soll Moisture 350 N/A Nm) (mm) Total Precip. 783 Total Precip. 783 Total Precip. 783 783 783			117.45	78.3	746	592	Evapotrans.	570	Evapotrans.	518	Evapotrans.		
Sitianow rooted plants Intervious plants Deep rooted plants-trees Pond Impervious Area Soll Moisture (nm) (not applicable) (mm) (mm) Root Soll Moisture 100 Soll Moisture 200 Soll Moisture 350 N/A NA							Total Precip.	783	Total Precip.	783	I otal Precip.		
Simirovi rooted plants (incl applicable) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m			1		1		Soil Moisture	200	Soil Moisture	100	Soll Moisture		anoration Data from Bournawills
Sitativer rocied plants Meetium rocited plants Deep rocited plants-trees Pond Impervious Area Roof Roof		010	(mm)	(mm)	(mm)	(mm)							FA to 1075)
Medium rooted plants Deep rooted plants-trees Pond		fo	Roads & Flat Roo	Roof					(not applicable)				nate Data from Livbridgel
	all market and			moervious Area	PORO								

-

Hyatt Cemetery Road Water Balance Analysis

Hyatt Cemetery Road Water Balance Analysis


Total	Runott	Evaporarisporation	Evanotranenoration	Industry	% Change Pre to Post-dev	Volume Difference (m3/yr)	Percent Error	Volume Chack (area X precip.)	Total		Column Chack	c) pauo	b) south area	a) norm area		D) South area	c) north root to north putter	p)north roof area to east landscaped area	a) north roof area to paved surface	2) Building roof area		c) Wetland		e) South buffer	d) Landscaped south	c) North Butter	b) Landscaped east	a) Landscaped north	1) Open Space	Scenario 1- Funoff to Storm Sewers	Post-development Water Balance			Percent Error	Volume about and V month	Taka	Exisitng Buildings	Open Space (wetland)	Open Space (meadow)		Areas	Pre-development Water Balance								Evaporation Data from Bowmanville	(1954 to 1975)	Climate Data from Uxbridgel		
			200						94 QND	T		1,600	6	5,400		8				4,800		2,700		1,600	-	2,700	8	4,000							24,900		1,056	2,700	21,144	(m ²)	Total													-
									5							600 0		0	0							100.00	800 100								8		56		1	%	Pervious			KUNOT Tactor	Innum racto	Post-development	Pot Evapotr	Surplus	Evapotrans.	Total Precip.	Soil Moistu			Shallow ro
								3,200.00	0 000				0.00 0.00	.00 0.00	and a second	0.00 0.0	0.00 0.00	1	0.00 0.00			0.00 0.00		-		N		100.00 4.000.00							21,144.00				100 21.144.00	Area (m2)	Parvinie		(Iawns)		T	pment	-	265				(mm)	citizen estes plains	ntod planta
								JO	5			100.00		100.00		in tear	100.00		100.00			00 0.00					00 0.00				T				8		100.00	100.00	00	%	Impositorio			Runoff factor	Infiltm Factor	Pre/Post-deve	Pot Evapotr	Surplus 21	Evapotrans.	Total Precip.	Soil Moisture		(not amilicable)	alandi
								15,700.00				_		5,400.00			2		1,920,00			2.700.00			0 00		0 00										1.056.00		1000 (ZIII) 2010	Impervious	Innert		(shrub meadow)	0.35	0.65	lopment	598	213	570	783	200		a plants	A STATE OF A
19 496 70	2 810 05	13,749.36	2,927.39	(m3/yr)	Pre-dev			3,428.34			1		0.00			0.00			0.00			0.00			13 25			530 00							2,927.39			C.12C,2	(ma)	Perv. Intil.			-	Runoff factor	Infiltm factor	Pre/post-devel	Pot Evapctr	Surplus	Evapoirans.	Total Precip.	Soll Moisture		Deep rooted plants-trees	CHO CHINES
	8 10001		3,428.34		Post-dev			2,756.00					0.00									1 409 50	200.01			1 000 00									9 1.576.29			87.0/C'I	(m3)	Perv. R/O			(forest)	0.7	0.7	- 1	- 1	- 1		783	(1111)	1	ants-trees	STHIIINAUVI
		4 40 06	A State State State State	ofinition	%Channa			6,650.6								0.00			000		1,014,1			20 01.00										1				.29 12,052	(m3)	Perv. ET				1.0	0.0			37	746	783	(mm)		Pond	niante Medice sented aleste o vivoes curraces - inititi all'off Factors U.S. 10 (
5,282.38		South and the second second	「ない」であった	(invite)	Imaha			õ					0.00		0.00			0,00	3			B		8			00	8						.00	RU			.08		Imperv Infil				0.9	-			10.0	70 5	NA	(mm)	Roaf	Impervi	(60'r
2.38	13.32	F 782 22		(Dasc)	in local			0.00 5,346.32			0.00	0.00	0.00 3,393,97		0.00			Z0.666'L	1 000								0.00							1,243.00	4 040	14.	0.00 499		(m3)	Imper R/O				0.85	0			111.40	58/	NA	(mm)	Roads & Flat Roofs	8	A STATE OF A
		The state of the second s		% or total precip	~																						0.00									4.16	498.50 1,6		(m3)	Imperv ET												t Roofs	And a second secon	AND CONTRACTOR
14.46	70.52	TUCT	2	% of total precip				1,315.44			26.781	10.47	634.23		46,98	169,13	56,38	150.34									0.00							1,697.28		82.68	1,614.60	0.00	(m3)	Total													and and a subscription of the subscription of	の時間的にはありました
41.56	40.86	17.58	pment	recip	0.00	0.00	19,496.70	19,496.70	10,000.10	19 308 78	187.92	469.80	4,228.20		45.98	169.13	55.38	1,503.36			2,114.10		1,675.62	78.30	4,701.14	1,133.78	3,132.00					0.00	19,496.70	19,496.70		826.85	2,114.10	16,555.75															and the second states and the	

N

APPENDIX 8

UXBRIDGE WELLHEAD PROTECTION AREA MAP

Hyatt, Cemetery Road, Uxbridge, Hydrogeological Investigation, January, 2009

