EVENDALE DEVELOPMENTS LTD.

HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY BLOCK 8 - PART OF LOT 31, CONCESSION 7, UXBRIDGE

DECEMBER 09, 2020

vsp

HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY BLOCK 8 - PART OF LOT 31, CONCESSION 7, UXBRIDGE

EVENDALE DEVELOPMENTS LTD.

PROJECT NO.: 181-00471-02 DATE: DECEMBER 09, 2020

WSP UNIT 2 126 DON HILLOCK DRIVE AURORA, ON, CANADA L4G 0G9

T: +1 905 750-3080 F: +1 905 727-0463 WSP.COM

vsp

December 09, 2020

EVENDALE DEVELOPMENTS LTD. 2 Farr Avenue Sharon, Ontario L0G 1V0

Attention: Mr. David Sud

Dear David:

Subject: Hydrogeological Assessment and Water Balance Study Block 8, Part of Lot 31, Concession 7, Uxbridge

WSP Canada Inc. (WSP) is pleased to submit the attached report to document the Hydrogeological Assessment and Water Balance Study prepared for a proposed residential development on Block 8 within Part of Lot 31, Concession 7, Uxbridge, Ontario (Site).

The report provides an assessment of the existing hydrogeological conditions beneath the Site as well as water budgets for existing and future conditions to illustrate the likely changes in water balance that would be expected due to the proposed development. The report includes a preliminary assessment of anticipated dewatering requirements for the proposed residential condominium based on observed conditions.

We trust that this information is sufficient for your current needs. If you have any questions or require further information, please contact us.

Yours truly,

Lloyd Lemon, P.Geo., M.Sc. Senior Project Geoscientist

VLB/LALdlw

WSP ref.: 181-00471-02 H\Proj\18\181-00471-00\100 Hydrogeological\Wp\Block 8 Report\181-00471-02 Hydrogeological Assessment and Water Balance Study (Block 8) - FINAL.docx

UNIT 2 126 DON HILLOCK DRIVE AURORA, ON, CANADA L4G 0G9

T: +1 905 750-3080 F: +1 905 727-0463 wsp.com

EXECUTIVE SUMMARY

WSP Canada Inc. (WSP) was retained by Evendale Developments Ltd. to prepare a Hydrogeological Assessment and Water Balance Study for the proposed residential development on Block 8 of Part of Lot 31, Concession 7, in the Township of Uxbridge (Site). The development plans for Block 8 include the streets, six (6) detached residential homes, and a six (6)-storey residential condominium building including one (1) level underground parking garage.

The proposed development area lies within the Peterborough Drumlin Field physiographic region as defined by Chapman and Putnam (1984). The Peterborough Drumlin Field is typically characterized by deposits of highly calcareous till, but the local area surrounding the Site is mapped as clay plains.

The on-site runoff generally drains to the northwest via overland flow, towards the proposed Lowe Blvd extension and is captured in the drainage ditch along Donland Lane.

Based on previous geotechnical investigations conducted at the Site the proposed development area is underlain by a shallow layer of topsoil which is followed by a heterogenous mixture layer of fill or probable fill ranging in texture from gravel, sand, silt and clay to a thickness of 2.3 to 3.1 m. The Fill overlies a layer of clayey silt to silty clay on the east side of the property and overlies layers of silty sand on the west side of the Site. This pattern is consistent with the surficial geology mapping presented on a regional scale and with stratigraphy information presented in water well records obtained through the MECP. The information presented in the Sola borehole logs from review of physical samples does not confirm that the clayey silt to silty clay formation will typically overlie the silty sand formation but this is implied from regional stratigraphic understanding.

Seasonal high groundwater levels were observed in April 2020 in BH2 (268.61 masl) and BH5 (267.81 masl), and in January 2018 in MW1 (268.10 masl) and in MW2 (268.05 masl). The measured seasonally high groundwater levels correspond to depths of 1.59 mbgs at BH2, 1.49 mbgs at BH5, 0.13 mbgs at MW1 and 1.12 mbgs at MW2. The lowest groundwater levels were observed in October 2020 at BH2 (267.71 masl), in August 2020 at BH5 (267.76 masl), in July 2018 at MW1 (267.09 masl) and at MW2 (267.41 masl). Typically, groundwater levels are observed to be the highest between February and May and also in the late fall, while groundwater levels tend to be lowest between July and October. The observed groundwater levels generally follow the typical groundwater level trends.

The hydraulic conductivity estimates obtained from the on-site monitoring wells for the single well hydraulic response tests were 9.84×10^{-8} m/sec, 6.20×10^{-6} m/sec and 4.01×10^{-7} m/sec for BH2, BH5 and MW1, respectively. These results are consistent with the observed soil descriptions of the clayey silty at BH2, fill (sand) at BH5 and silty sand at MW1 in which the monitoring wells are screened. The hydraulic conductivity estimate obtained from the off-site monitoring wells for the single well hydraulic response tests was 4.90×10^{-7} for MW2. This result is consistent with the observed soil descriptions of the silty sand at MW2 in which the monitoring wells are screened.

Two (2) groundwater samples were collected from the existing monitoring wells on February 14th, 2017. The concentrations of the parameters tested were less than the values of the MECP Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for All Types of Property Use (Coarse Textured Soil).

The Climate-Based Water Budget indicates that average annual precipitation over the past 30 years is 886.2 mm/year. The available moisture surplus at the Site ranges between 321.8 mm/yr to 336.8 mm/year depending on the type of soil and vegetation cover. The moisture surplus will reflect the infiltration and runoff based on the soil properties, slopes, and vegetation within individual catchments.

Under existing conditions, there is one (1) on-site catchment. Runoff generated on-site drains to the northwest via overland flow and is captured in the drainage ditch along Donland Lane. Runoff subsequently flows south along Donland Lane and exits the Site through the southern property boundary.

The Pre-Development Water Budget reflects infiltration for the Site of approximately 2,216 m³/yr and runoff from the Site of approximately 3,256 m³/yr.

The Post-Development Water Budget reflects changes in land use to include increased areas of impervious surfaces (i.e. roads, buildings etc.) and re-grading. The proposed development area has been subdivided into four (4) on-site catchments. The majority of the runoff generated under post development conditions will be directed off-site to the Barton SWM Pond located approximately 500 m to the north of the Site via storm sewers.

The Post-Development Water Budget predicts a total on-site infiltration of 818 m^3/yr . Overall, this is a decrease of 63% relative to the Pre-Development case, and represents an infiltration deficit of 1,399 m^3/yr .

The Post-Development Water Budget predicts a net runoff of 7,837 m³/yr over the Site area. This is an increase of 141% or 4,581 m³/yr relative to the Pre-Development case. The runoff generated from the impervious surfaces in the post-development scenario has entirely been captured by the onsite catch basin and is redirected from the south property boundary to the Barton SWM Pond.

The estimated pumping rate that may be experienced to maintain dry conditions during construction is up to 176,600 L/day. WSP recommends that the dewatering activity be registered on the EASR prior to construction. Additional groundwater quality testing is recommended to confirm suitability for discharge to nearby Region of Durham storm sewers.

The majority of the proposed footing elevations are below the seasonally high water table. Estimates of the dewatering rates to maintain dry foundations are up to 85,500 L/day, including a 2X factor of safety. Water proofing of the basement/underground parking is recommended to reduce the potential that water is being removed and to thereby comply with Policy DEMD-1.

The Site lies within WHPA-Q1 and WHPA-Q2 for the Uxbridge Water Supply system with assigned stress levels of moderate. Source Protection Plan (SPP) policies for WHPA-Q1 apply to areas where activities that take water without returning it to the same source may be a threat. SPP policies for WHPA-Q2 apply to areas where activities that reduce recharge might be a threat. Based on the estimated volumes of water that may require removal during construction and long-term drainage of the residential condominium, the Site will need to comply further with policies for WHPA-Q1. As per the South Georgian Bay Lake Simcoe Protection Region, Approved Source Protection Plan, policy number DEMD-1 will apply to the water taking activities during dewatering for construction and long-term drainage. Policies associated with WHPA – Q2 may apply to offset identified infiltration deficit relative to pre-development conditions.

The proposed development area is mapped within a Highly Vulnerable Aquifer (HVA) area with a vulnerability score of 6. The Site will be municipally serviced for sewage which will eliminate potential contamination of groundwater by nitrates and phosphorous. De-icing agents applied on impervious surfaces such as driveways and roadways will be collected by the on-site storm sewer system and released to the Barton SWM Pond. This will help to minimize the amount of de-icing agents that infiltrate into the groundwater. Best management practices will likely require that the use of salt for winter road de-icing be minimized.

The proposed development is located within a Significant Groundwater Recharge Area with a vulnerability score of 6.

The Site lies within Intake Protection Zone 3 (IPZ-3) for Lake Simcoe. The majority of the runoff directed to Lake Simcoe leaves the Site to north after detention in the Barton stormwater management pond and is not likely to contain contaminants of concern. The potential for release of contaminants to surface water that will reach Lake Simcoe from the Site is minimal given the proposed residential land use. Winter road de-icing agents could potentially cause runoff contamination as the residence will include driveway and roadway areas. Mixing with clean runoff will reduce the concentration of these chemicals to an acceptable level prior to reaching Lake Simcoe and therefore the proposed activity does not present a water quality threat to the municipal surface water sources protected by the Source Protection Plan.

SIGNATURES

PREPARED BY

Valypend.

Valyn Bernard, P.Eng. Project Engineer

REVIEWED BY

Lloyd Lemon, P.Geo., M.Sc. Senior Project Geoscientist

WSP CANADA INC ("WSP") prepared this report solely for the use of the intended recipient. EVENDALE DEVELOPMENTS LTD., in accordance with the professional services agreement between the parties. In the event a contract has not been executed, the parties agree that the WSP General Terms for Consultant shall govern their business relationship which was provided to you prior to the preparation of this report.

The report is intended to be used in its entirety. No excerpts may be taken to be representative of the findings in the assessment.

The conclusions presented in this report are based on work performed by trained, professional and technical staff, in accordance with their reasonable interpretation of current and accepted engineering and scientific practices at the time the work was performed.

The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation, using investigation techniques and engineering analysis methods consistent with those ordinarily exercised by WSP and other engineering/scientific practitioners working under similar conditions, and subject to the same time, financial and physical constraints applicable to this project.

WSP disclaims any obligation to update this report if, after the date of this report, any conditions appear to differ significantly from those presented in this report; however, WSP reserves the right to amend or supplement this report based on additional information, documentation or evidence.

WSP makes no other representations whatsoever concerning the legal significance of its findings.

The intended recipient is solely responsible for the disclosure of any information contained in this report. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report.

WSP has provided services to the intended recipient in accordance with the professional services agreement between the parties and in a manner consistent with that degree of care, skill and diligence normally provided by members of the same profession performing the same or comparable services in respect of projects of a similar nature in similar

circumstances. It is understood and agreed by WSP and the recipient of this report that WSP provides no warranty, express or implied, of any kind. Without limiting the generality of the foregoing, it is agreed and understood by WSP and the recipient of this report that WSP makes no representation or warranty whatsoever as to the sufficiency of its scope of work for the purpose sought by the recipient of this report.

In preparing this report, WSP has relied in good faith on information provided by others, as noted in the report. WSP has reasonably assumed that the information provided is correct and WSP is not responsible for the accuracy or completeness of such information.

Benchmark and elevations used in this report are primarily to establish relative elevation differences between the specific testing and/or sampling locations and should not be used for other purposes, such as grading, excavating, construction, planning, development, etc.

Design recommendations given in this report are applicable only to the project and areas as described in the text and then only if constructed in accordance with the details stated in this report. The comments made in this report on potential construction issues and possible methods are intended only for the guidance of the designer. The number of testing and/or sampling locations may not be sufficient to determine all the factors that may affect construction methods and costs. We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.

Overall conditions can only be extrapolated to an undefined limited area around these testing and sampling locations. The conditions that WSP interprets to exist between testing and sampling points may differ from those that actually exist. The accuracy of any extrapolation and interpretation beyond the sampling locations will depend on natural conditions, the history of Site development and changes through construction and other activities. In addition, analysis has been carried out for the identified chemical and physical parameters only, and it should not be inferred that other chemical species or physical conditions are not present. WSP cannot warrant against undiscovered environmental liabilities or adverse impacts off-Site.

The original of this digital file will be kept by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

This limitations statement is considered an integral part of this report.

TABLE OF CONTENTS

1	INTRODUCTION1
1.1	Objectives and Scope1
1.2	Analysis and Documentation2
2	REGIONAL SETTING2
2.1	Physiography2
2.2	Drainage2
2.3	Regional Geology2
2.4 2.4.1	Regional Hydrogeology
3	WORK PERFORMED5
3.1	Background Review of Geological Conditions5
3.2	Previous Geotechnical Investigations5
3.3	Site Reconaissance and Groundwater Elevation Measurements5
3.4	Single-Well Hydraulic Response Test6
3.5	Water Quality6
3.6 3.6.1 3.6.2	Water Budget Analysis 7 Analysis of Climate Data 7 Pre-Development Water Budget 8 Data Development Water Development With Militation 8
3.6.3	Post-Development Water Budget With Mitigation9
4	OBSERVATIONS9
4.1	Soil Profile9
4.2	Groundwater Elevations9
4.3 4.3.1	Water Use 10 MECP Water Well Search 10
4.4	Single-Well Hydraulic Response Tests10
4.5	Water Quality Testing11

5	WATER BUDGET ANALYSIS	11
5.1	Climate-Based Water Budget	11
5.2	Pre-Development Water Budget	12
5.2.1	Pre-Development Catchments	12
5.2.2	Pre-Development Analysis	12
5.2.3	Pre-Development Infiltration	
5.2.4	Pre-Development Runoff	13
5.3	Water Budget– Post-Development Conditions	13
5.3.1	Post-Development Catchments	13
5.3.2	Post-Development Analysis	13
5.3.3	Post-Development Infiltration	14
5.3.4	Post-Development Runoff	14
5.3.5	Comparison with Pre-Development	14
5.4	Water Quality	14
5.4.1	Existing Conditions	14
5.4.2	Future Conditions	15
6	DEWATERING ASSESSMENT	15
6.1	Dewatering Equations and Assumptions	15
6.2	Assumptions	16
6.3	Construction Dewatering Calculations	17
6.4	Long-Term Drainage	18
6.5	Dewatering Summary	18
7	POLICY AREAS	19
7.1	Wellhead Protection Areas	19
7.2	Highly Vulnerable Aquifers	19
7.3	Significant Groundwater Recharge Areas	20
7.4	Intake Protection Zones	20

8	CONCLUSIONS	20
9	REFERENCES	23

TABLES

TABLE 1	OBSERVED GROUNDWATER ELEVATIONS
TABLE 2	SINGLE WELL RESPONSE TEST RESULTS
TABLE 3	WATER QUALITY RESULTS
TABLE 4	CLIMATE BASED WATER BUDGET SUMMARY
TABLE 5	WATER BALANCE SUMMARY
TABLE 6	DEWATERING ESTIMATES
	SUMMARY

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	EXISTING CONDITIONS
FIGURE 3	REGIONAL PHYSIOGRAPHY
FIGURE 4	REGIONAL TOPOGRAPHY AND DRAINAGE
FIGURE 5	REGIONAL SURFICIAL GEOLOGY
FIGURE 6	REGIONAL BEDROCK GEOLOGY
FIGURE 7	OVERBURDEN THICKNESS
FIGURE 8	MECP WATER WELLS
FIGURE 9	GROUNDWATER ELEVATIONS –
	APRIL 2020
FIGURE 10	PRE-DEVELOPMENT SITE
	CATCHMENT AREAS
FIGURE 11	POST-DEVELOPMENT SITE
	CATCHMENT AREAS
FIGURE 12	PROPOSED BASEMENT LEVEL
	FOOTING ELEVATIONS
FIGURE 13	CROSS SECTION A-A'
FIGURE 14	WELLHEAD PROTECTION AREAS
FIGURE 15	HIGH VULNERABLE AQUIFERS
FIGURE 16	SIGNIFICANT GROUNDWATER
	RECHARGE AREAS
FIGURE 17	INTAKE PROTECTION ZONES

vsp

APPENDICES

А	PROPOSED SITE PLANS
В	MECP WATER WELL RECORDS AND GEOTECHNICAL BOREHOLE LOGS
С	IN-SITU HYDRAULIC CONDUCTIVITY TESTING
D	WATER QUALITY TESTING
E	CLIMATE BASED WATER BUDGET
F	WATER BUDGET CALCULATIONS – PRE- DEVELOPMENT
G	WATER BUDGET CALCULATIONS – POST DEVELOPMENT
Н	DEWATERING CALCULATIONS

1 INTRODUCTION

WSP Canada Inc. (WSP) was retained by Evendale Developments Ltd. to prepare a Hydrogeological Assessment and Water Balance Study for a proposed residential development on Block 8 of Part of Lot 31, Concession 7 in the Town of Uxbridge, herein referred to as the Site. The location of the Site is shown on **Figure 1**.

The Site (development Block 8) is approximately 0.5 ha in size and is located northeast of the intersection of Brock Street East and Donland Lane in the Town of Uxbridge, Ontario. The existing conditions at the Site are shown in **Figure 2**. The Site is currently occupied by agricultural fields in the northern half of the Site and a gravel parking lot in the southern half of the Site. The development plans provided by Masongsong Associates Engineering Limited are included in **Appendix A** and encompasses six detached residential homes and a six (6)-storey residential condominium building including one (1) level underground parking garage.

Previous reports made available for review for preparing the Hydrogeological Assessment and Water Balance Study included:

- Geotechnical Investigation Report, Sola Engineering Inc (Sola), April 2020.
- Hydrogeological Assessment and Water Balance Study, Block 6 Part of Lot 31, Concession 7, Uxbridge, July 30, 2020.
- Hydrogeological Assessment and Water Balance Study, Part of Lot 31, Concession 7, Uxbridge, March 28, 2018.

The geotechnical characterization of the Site provided by Sola has been used to assist in identifying appropriate infiltration factors for soil types. The monitoring wells installed by Sola have been used to characterize local groundwater conditions.

This report documents the work performed to provide an understanding of the hydrogeological conditions at the Site, to prepare a water balance, to identify dewatering requirements (if applicable), and provide preliminary estimates of dewatering based on the proposed building conditions.

1.1 OBJECTIVES AND SCOPE

The need for a water balance assessment and infiltration study was identified to help support the development application process and quantify changes to site infiltration between the pre- and post-development conditions for the development plan.

The Hydrogeological Assessment and Water Balance Study has been designed to:

- Review historical information and integrate findings.
- Identify the inventory of groundwater users within 500 m of the property.
- Confirm groundwater flow directions and patterns.
- Confirm and identify potential watershed divides, if any, which control groundwater flow.
- Characterize the water quality of the shallow groundwater.
- Characterize the relationships between on-site groundwater flow systems and adjacent surface water bodies.
- Create an annual water budget for the existing conditions at the property for use as a baseline.
- Determine a future annual water budget for the proposed development scenario.
- Identify significant changes to the water balance or to the form and function of the groundwater or surface water systems that might result from future plans and provide recommendations for mitigative measures to address these changes.
- Identify potential impacts of dewatering for construction and long-term drainage of foundation drains.
- Prepare a project report.

1.2 ANALYSIS AND DOCUMENTATION

The following published information and mapping was reviewed and considered in our analysis of the Site:

- Hydrogeological Assessments Conservation Authority Guidelines to Support Development Applications, April 2013.
- Assessment Report, South Georgian Bay Lake Simcoe Source Protection Region, Part 1 (Lake Simcoe, May 2015 update). Approved Lakes Simcoe and Couchiching Source Protection Plan.
- Lake Simcoe Protection Plan, Water Budget Offsetting Policy for LSPP 4.8-DP and 6.40 DP.
- Ministry of Environment, Conservation and Parks Water Well Information System (MECP WWIS);
- Other sources of information as listed in **Section 8.0**.

2 REGIONAL SETTING

2.1 PHYSIOGRAPHY

The regional physiography for the Site area is shown on **Figure 3**. The proposed development area lies within the Peterborough Drumlin Field physiographic region as defined by Chapman and Putnam (1984). The Peterborough Drumlin Field consists of highly calcareous till but there are local differences. The area in and surrounding the Site consists of clay plains.

Regional topography is illustrated on **Figure 4**. The topography is variable and hummocky and controls local drainage. Topography at the Site ranges from elevation 268.6 m at the north-west property boundary to 271.17 at the south-east property boundary. Topography to the east and south of the site increases gently toward the watershed divides between the Lake Simcoe watershed and the Kawartha-Haliburton Watershed and the Humber-Don River Watershed, respectively.

2.2 DRAINAGE

The Site is located approximately 3 km east of the divide between the Lake Simcoe Watershed and the Kawartha-Haliburton Watershed, and approximately 9.5 km north of the drainage divide between the Lake Simcoe Watershed and the Don-Humber River Watershed. The watershed boundaries are illustrated on **Figure 4**.

The on-site runoff generally drains to the northwest via overland flow, towards the proposed Lowe Blvd extension and is captured in the drainage ditch along Donland Lane.

2.3 REGIONAL GEOLOGY

The near surface soils are the top unit in a layered sequence of glacial and interglacial sediments that comprise the stratigraphic profile overlying bedrock beneath the Lake Simcoe region. The distribution of surficial soil types near the site are shown on **Figure 5**. The deposits and stratigraphy are described in a series of papers and posters for the regional area prepared by the Geological Survey of Canada under the direction of Dr. David Sharpe.

The stratigraphic profile beneath Oak Ridges Moraine area typically includes the following layers, from youngest to oldest:

- 1 Recent deposits.
- 2 Oak Ridges Moraine (ORM) Sediments
- 3 Newmarket Till.

- 4 Thorncliffe Formation.
- 5 Sunnybrook Drift.
- 6 Scarborough Formation.
- 7 Don Formation.
- 8 York Till.
- 9 Bedrock.

The ORM sediments are a complex package of granular sediments deposited in the meltwater at the later stages of the last glacial period. These deposits generally become finer, and typically become thinner and eventually pinch out away from the original outlets of meltwater. These sediments may be present as a thin layer based on the proximity of the Site to the Oak Ridges Moraine as per regional geological mapping. Certain areas with the ORM sediments may be overlain by a thin layer of Halton Till.

The Newmarket Till represents a regionally extensive stratum that is associated with the most recent period of glaciation. This till is typically dense to very hard and sandy to silty in texture with relatively low gravel content.

The stratigraphic layers between the Newmarket Till and the underlying bedrock are commonly grouped as the Lower Sediments. The Lower Sediments are considered to have been formed by similar cycles of earlier glacial advances and retreats and associated meltwater events that resulted in the deposition of the Newmarket Till and Oak Ridges Moraine sediments. Five (5) stratigraphic layers that constitute the Lower Sediments are described below, although not all are interpreted to occur below the study area.

- The Thorncliffe Formation is a complex of stratified glaciofluvial and glaciolacustrine deposits. The texture of the Thorncliffe Formation is highly variable and is best described as fine-grained, with interbedded coarsegrained material capable of yielding notable amounts of water.
- The Sunnybrook Drift is a fine-grained material deposited in glacial and proglacial lacustrine depositional environments (diamicton). The advance of the ice sheet blocked the main drainage from the regional basin, which caused water levels to rise and form a deep lacustrine environment with deposits including varved clays.
- The Scarborough Formation is a coarsening upward sequence of sediment that ranges from clay/silt rythmites (fine-grained) to channelized cross-bedded sands (coarse-grained). The coarser fractions of this delta are a potential source of groundwater.
- The Don Formation is only rarely preserved within southern Ontario and consists of alternating beds of fossiliferous sand and mud.
- The York Till was deposited immediately overlying the bedrock by the preceding Illinoian glaciation. This till occurs only sporadically within the study area and is believed to be preserved in lows upon the bedrock surface. The till is dark grey with a sandy silt matrix and includes clusters of the underlying shale.

The bedrock in the study area is mapped as shale/limestone/dolostone/siltstone of the Blue Mountain Formation (Armstrong and Dodge, 2007) as illustrated on **Figure 6**. The depth to bedrock is estimated to be between 80 to 85 metres below ground surface, based on bedrock topography mapping and topographic mapping of the ground surface (Gao et al., 2006). A map of overburden thickness is provided on **Figure 7**. The thickness of overburden is typically greatest along the crest of the Oak Ridges Moraine or in areas where there are topographic lows in the underlying bedrock surface.

2.4 REGIONAL HYDROGEOLOGY

The movement of groundwater through the subsurface is controlled by the hydraulic gradients and the relative distribution of coarse and fine-grained sediments. In general, water will move laterally through coarse-grained sediments (sands and gravels) and vertically through fine-grained sediments (silts and clays). As such, the geologic units are typically grouped into hydrostratigraphic units that reflect the capacity of the geologic units to transmit water. Hydrostratigraphic units are considered to be either aquifers (with good capacity to transmit water) or aquitards (which typically impede transmission of water). Ultimately the distribution and interconnection of aquifers and aquitards are responsible for observed groundwater movement.

Earthfx Inc. (2006) grouped the regional stratigraphic profile into a seven layer hydrostratigraphic profile as follows:

- 1 Recent Deposits
- 2 Oak Ridges Aquifer Complex (ORAC).
- 3 Newmarket Aquitard.
- 4 Thorncliffe Aquifer Complex.
- 5 Sunnybrook Aquitard.
- 6 Scarborough Aquifer Complex.
- 7 Bedrock.

The <u>Oak Ridges Aquifer Complex</u> is a regional aquifer system in Ontario that corresponds to the area where the Oak Ridges Sediments are deposited. The aquifer is a significant source of groundwater for domestic, commercial, industrial, institutional, agricultural, and municipal water supplies. The ORAC provides baseflow to the headwaters of creeks and rivers where the Halton Aquitard is absent. The shallow water table will typically be observed within this layer. The ORAC is present at the Site.

The <u>Newmarket Aquitard</u> consists of the Newmarket Till and low permeability deposits that are known to infill the erosional channels. The Newmarket Aquitard is considered to be a leaky confining layer that provides protection from contamination to aquifers within the underlying hydrostratigraphic units. The Newmarket Aquitard may be present at ground surface beneath the southern part of the Site.

The <u>Thorncliffe Aquifer Complex</u> consists of fine to coarse-grained sediments of the Thorncliffe Formation. Local sand and gravel deposits within the Thorncliffe Aquifer Complex provide high yield wells. Groundwater in this layer is typically under pressure and in areas to the south of Aurora, the groundwater is under artesian pressure which can result in flowing wells.

The <u>Sunnybrook Aquitard</u> separates the Thorncliffe and Scarborough Aquifer Complexes. This aquitard demonstrates low permeability, provides some resistance to vertical groundwater movement, and protects the underlying aquifer from potential contaminant movement.

The <u>Scarborough Aquifer Complex</u> consists of fine to coarse-grained sediments associated with the Scarborough Formation. In general, these sediments tend to be coarse-grained and thicker where they fill topographic lows and valleys in the underlying bedrock surface. Groundwater within the Scarborough Aquifer Complex is typically under pressure, but only local artesian conditions occur. Locally, the Scarborough Aquifer Complex produces high well yields suitable for municipal or commercial wells. Due to its depth and presence of shallower aquifers, the Scarborough Aquifer Complex is not exploited extensively for private water supplies.

2.4.1 REGIONAL GROUNDWATER MOVEMENT

In general terms, precipitation infiltrates vertically into the surficial clay and sand/gravel soil units. Groundwater will primarily move downward to the water table within the upper aquifer or aquitard unit. Groundwater will then tend to flow up or down through the aquitard units and laterally within the aquifers. Groundwater flow patterns can be influenced by established watercourses where there is potential for groundwater discharge to supply baseflow into the watercourses. The rate of groundwater discharge is controlled by the relative permeability of the recent deposits at the base of the streams. Discharge as baseflow is typically low through fine-grained base soils and higher where the streams have eroded down into coarser aquifers.

The horizontal groundwater movement through the subsurface aquifers tends to reflect the ground surface topography and the presence of stream channels.

3 WORK PERFORMED

The work program for the Hydrogeological Assessment and Water Balance Study included the following activities:

- **1** Coordinating field work.
- 2 Undertaking field reconnaissance to inventory site conditions. Site features were located using a calibrated, hand held Global Positioning System (GPS) device with sub-metre accuracy;
- 3 Measuring groundwater elevations at the monitoring wells;
- 4 Conducting in-situ hydraulic response tests on the two (2) on-site monitoring wells to characterize the hydraulic conductivity in the fill and native soil layers.
- 5 Conducting six (6) monthly site visits (October, November, January, March, April, May) to collect groundwater levels from the on-site monitoring wells. The first monitoring event was conducted in conjunction with the insitu hydraulic response testing. Pressure transducers were installed in both monitoring wells to supplement the manual water level measurements.
- 6 Analyzing field data from the field investigation, Sola Geotechnical Investigation and the Hydrogeological Assessment and Water Balance Study prepared by WSP for the entire development:
- 7 Preparing an annual climatic water budget and Site-specific water balance for Pre- and Post-Development conditions;
- 8 Documenting applicable policy areas and provide opinions on the effect of these policies on the proposed Development; and
- 9 Identifying dewatering requirements (if applicable), and providing preliminary estimates of dewatering volumes based on the proposed building conditions;
- **10** Providing conclusions and recommendations.

3.1 BACKGROUND REVIEW OF GEOLOGICAL CONDITIONS

The geologic conditions beneath the proposed development were reviewed using published map sources, records from work on adjacent properties, and the WWIS database as maintained by the MECP.

Water well records within a 500-metre radius of the Site were reviewed to obtain information on existing wells and to provide information on the geology of the area. A summary of the well record search is provided in Table B-1, **Appendix B** and water well record locations are plotted on **Figure 8**.

3.2 PREVIOUS GEOTECHNICAL INVESTIGATIONS

Sola was retained by Evendale Developments Limited to carry out geotechnical investigations for the proposed residential condominium building located in the southern half of the Block 8 development. The investigations consisted of drilling six (6) boreholes to a maximum depth of 10.67 m, with monitoring wells installed in two (2) of the boreholes. The locations of the borehole and monitoring well locations are shown on **Figure 2** and a copy of the borehole logs are included in **Appendix B**.

3.3 SITE RECONAISSANCE AND GROUNDWATER ELEVATION MEASUREMENTS

WSP staff visited the Site on August 19 and October 21, 2020 and five monthly site visits (November, January, March, April and May, 2021) are planned to measure static groundwater elevations at the two (2) existing monitoring well onsite (BH2 and BH5). The purpose of the groundwater level monitoring program is to characterize seasonal changes to groundwater elevations and determine the high seasonal water level.

A pressure transducer/datalogger and a corresponding Barologger was installed at BH2 and BH5 on October 21, 2020 to automatically record groundwater levels on a regular basis. The groundwater monitoring program will continue after this submission, with regular manual measurements and continued recording of groundwater elevation change using a datalogger for up until May 2021. WSP shall prepare a technical memorandum to summarize the groundwater elevation data obtained at the end of this monitoring period.

3.4 SINGLE-WELL HYDRAULIC RESPONSE TEST

Single well hydraulic response tests were performed to estimate the hydraulic conductivity of the aquifer materials adjacent to the well screens in BH2 and BH5.

For this program, the single well hydraulic response test consisted of monitoring the recovery of the water level after a short pumping/bailing interval. The recovery data obtained from these response tests was adequate to estimate the *in situ* hydraulic conductivity of the saturated intervals adjacent to the monitoring well screen.

The hydraulic conductivity was estimated from the data using the methods of Hvorslev (1957).

The hydraulic response tests for the on-site wells were performed on October 21, 2020. The results of the Single Well Response Test Analysis are summarized in **Table 2**. Detailed results are provided in **Appendix C**.

Additional single well response tests were completed by WSP on January 25, 2018 at MW1 and MW2, located at the neighbouring development block 6 east of the Site. The hydraulic conductivities estimated from the data obtained in January 2018 were analyzed as part of the hydrogeological assessment, and are discussed in detail in **Section 4.5**.

3.5 WATER QUALITY

Representative samples of groundwater were collected on February 14, 2017 from MW1 and MW2, located at the neighbouring development block 6 east of the Site. A duplicate sample was taken at MW2 for QA/QC purposes. Samples were collected via the dedicated Waterra[™] inertial pump placed in the monitoring well. Field measurements of temperature, electrical conductivity, and pH were recorded at the time of sample collection. The water samples were collected in sample bottles prepared by and provided by ALS Environmental Laboratories (ALS) located in Waterloo, Ontario.

The water quality samples were submitted to determine concentrations of:

- General water quality parameters (major cations, major anions, pH)
- Dissolved Metals
- Dissolved Organic Carbon
- Nutrients.

The Certificates of Analysis provided by ALS are provided in Appendix D.

The water quality results were reviewed with respect to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for All Types of Property Use (Coarse Textured Soil), hereinto referred to as the "MECP Table 2 SCS", as outlined in the Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011). This table was selected as it provides a conservative assessment of potential water quality concerns in groundwater as the area surrounding the Site is serviced by municipal water supplies.

3.6 WATER BUDGET ANALYSIS

A Water Budget provides an accounting of the water inputs and water outputs within a defined area. In this case, the area of the proposed development is used to estimate the water budgets in the existing condition (Pre-Development) and in the future condition (Post-Development).

The basic assumption of a water budget analysis is that there is a balance between water inputs and outputs, unless there is a clear understanding that water is being removed from storage within the system. The water budget is typically represented in a simple form as:

Water In = Water Out P + EI = ET + IR + RO + EO

Where:

Р	=	Precipitation
EI	=	External Inputs (including run-on, irrigation, and vertical/lateral transfers)
ET	=	Evapotranspiration
IR	=	Infiltration Recharge
RO	=	Runoff
EO	=	External Outputs (including water taking, and vertical/lateral transfers)

In more complex scenarios, lateral inputs through groundwater and surface water, movement between subsurface aquifer layers, and removal from storage can also be considered.

The objectives of the Water Budget Analysis are to:

- a) quantify the water budget equation for the existing conditions;
- b) quantify the water budget equation for proposed future conditions; and
- c) illustrate that there is either no significant change (i.e. a water balance) between the existing or future conditions, or that mitigation methods can be employed to minimize the estimated change.

The Water Budget Analysis was completed in three main steps:

- Step 1) Analysis of Climatic Data;
- Step 2) Pre-Development Water Budget; and
- Step 3) Post-Development Water Budget (including mitigation).

The water budget analysis has been completed using methods outlined in "Hydrogeological Technical Information Requirements for Land Development Applications" (MOEE, 1995).

3.6.1 ANALYSIS OF CLIMATE DATA

Climate data available from on-line resources maintained by the Meteorological Service of Canada (Environmental Canada) were obtained and analyzed to determine the appropriate values for annual average precipitation and evapotranspiration. The surplus left over after subtraction of the evapotranspiration from the average precipitation is considered to represent the quantity of water available for infiltration and runoff under existing conditions.

Climate data was obtained for the Udora Climate Station for the period from 1981 until 2010. These data are provided in Table E-1 (**Appendix E**). Mean monthly temperatures were calculated by averaging mean monthly minimum and maximum temperatures. Temperature data were derived from the 30 year (1981-2010) climate data summaries.

The Thornthwaite-Mather method was used to estimate potential and actual evapotranspiration on a monthly basis. The Thornthwaite-Mather method is based on an empirical relationship between potential evapotranspiration and

mean air temperature. The method also takes into account the water holding capacity for the soil to compute the actual evapotranspiration and the resulting moisture surplus that is available for infiltration and runoff.

The water holding capacity of the soil depends on two different factors – the soil type and structure, and the type of vegetation growing on the surface. Different types of soil hold different amounts of moisture storage capacity, while different species of vegetation will send roots into the soil to different depths and therefore retain varying amounts of moisture. The water holding capacity for each soil type/vegetation type combination found on the Site was determined from the Environmental Design Criteria of the Storm Water Management Planning and Design Manual published by the MECP in 2003.

The monthly estimates were used to calculate an annual average for precipitation, potential evapotranspiration, actual evapotranspiration, and available moisture surplus for each combination of soil and vegetation type found onsite. The moisture surplus represents the quantity of water available for infiltration and runoff on an annual average basis. Tables that document the details of the Thornthwaite-Mather analysis for the combinations of soil type and land use are provided in **Appendix E**.

3.6.2 PRE-DEVELOPMENT WATER BUDGET

The Pre-Development Water Budget was estimated using the approach recommended in Table 2 of the "Hydrogeological Technical Information Requirements for Land Development Applications" (MOEE, 1995). The steps taken to estimate the Pre-Development Water Budget included:

- 1 Identify sensitive features and to observe existing topography, soil types, and other controls on infiltration and runoff.
- 2 Delineating drainage catchments and sub-catchments based on observed drainage outlets and physical characteristics as described below.
- 3 Estimating the quantities of infiltration and runoff for each of the sub-catchment areas and preparing summary estimates for catchments related to identified drainage outlets and for the proposed development area.

The drainage catchments and sub-catchments were defined by considering the following factors:

- Existing elevations;
- Existing property boundaries;
- Post-development features and property boundaries;
- Natural topographical features;
- Slope ratio; and
- Land cover, and
- Land use.

The sub-catchments defined for the Pre-Development Water Budget also considered the proposed development areas and future drainage considerations for the proposed development. This was incorporated into the analysis to be able to demonstrate changes in drainage to the identified outlets and infiltration beneath the development area. The defined sub-catchments for the Pre-Development Water Budget are shown on **Figure 9** and in Table F-1 (**Appendix F**).

The Infiltration Factor for each Pre-Development sub-catchment was estimated by adding the sub-factors for topography, soil type, and land cover as recommended in the MECP methodology. A geographic information system (GIS) was used to evaluate the topography, soil type and land use for each of the Pre-Development, Current Condition, and Post-Development scenarios and to generate a set of sub-catchments that can be used in analysis of each scenario. Section 5 provides a characterization of the Site in terms of the topography, soil type, and land use as input into the water budget analysis. The calculated infiltration factor for each catchment was reviewed and updated manually, as a confirmation that they reflect actual conditions. Assumptions applied to the Pre-Development water budget scenario are described in Section 5.2.

The volume of Pre-Development Infiltration was estimated as the product of [sub-catchment area] x [moisture surplus] x [Infiltration factor]. The Pre-Development Runoff was estimated by subtracting the volume of infiltration

from the total volume of moisture surplus for each sub-catchment. A detailed table to document the calculations of the Pre-development Water Budget is provided in **Appendix F**.

3.6.3 POST-DEVELOPMENT WATER BUDGET

The Post-Development Water Budget was estimated using a similar approach as outlined for the Pre-Development case. The proposed development plan and future drainage plan were used to establish new drainage sub-catchments that relate to the outlets identified in the Pre-Development case. Within each drainage sub-catchment, the area of pervious soils and impervious development (roads, driveways, amenities, and roofs) were estimated based on the Site and grading plans as provided by Cole Engineering.

For the pervious areas, the quantity of infiltration was calculated using the [pervious area] x [precipitation surplus] x [Infiltration Factor]. The Infiltration Factors were reviewed to correspond to the Post-Development conditions. The runoff for the pervious areas was estimated by subtracting the volume of infiltration from the total volume of precipitation surplus for the pervious area in each sub-catchment.

The volume of runoff from the impervious surfaces was estimated using the area of impervious surfaces and the volume of precipitation. A factor of 10% was considered to represent some evaporation in the course of runoff. This value is consistent with assumptions made on adjacent lands.

The proposed residential development is to be serviced by municipal water and sewage system. The Post-Development Water Budget reflects this.

Details of the Post-Development Water Budget calculations are provided in Appendix G.

4 OBSERVATIONS

The information obtained during previous site studies was reviewed and analyzed to characterize the soil profile and the groundwater system at the Site.

4.1 SOIL PROFILE

According to previous geotechnical investigations conducted at the Site by Sola (April, 2020), the proposed development area is underlain by a shallow layer of topsoil which is followed by a layer heterogenous mixture of fill or probable fill ranging in texture from gravel, sand, silt and clay to a thickness of 2.3 to 3.1 m. The Fill overlies a layer of clayey silt to silty clay on the east side of the property and overlies layers of silty sand on the west side of the Site. This pattern is consistent with the surficial geology mapping presented on a regional scale in **Figure 5** and with stratigraphy information presented in water well records obtained through the MECP. The information presented in the Sola borehole logs from review of physical samples does not confirm that the clayey silt to silty clay formation will typically overlie the silty sand formation but this is implied from regional stratigraphic understanding.

4.2 GROUNDWATER ELEVATIONS

As noted in the Sola geotechnical report (2020), the groundwater elevations at the two (2) on-site monitoring well (BH2 and BH5) were measured in April 2020. Additional groundwater elevations were measured by WSP at the onsite monitoring wells installed by Sola in August and October 2020. As part of the groundwater elevation monitoring program for the entire property, the groundwater elevations at one on-site monitoring well (MW1) and one off-site monitoring well (MW2) were measured in January, February and April 2018 and were measured again on a monthly basis for a period of one (1) year. Additional groundwater elevations were measured from monitoring well MW1 in May 2020, and from monitoring well MW2 in May, August and October 2020. MW1 was not available after May 2020. The groundwater elevation measurements are summarized in **Table 1**. The measured groundwater depths and elevations at the on-site monitoring wells indicate that groundwater levels were observed to vary between 1.59 and 2.49 mbgs at BH2 and 1.49 and 1.55 mbgs at BH5 between April and October 2020. The observed groundwater level ranges correspond to groundwater elevation ranges of 267.71 to 268.61 m above sea level (masl) for monitoring well BH2 and 267.76 masl to 267.81 masl for monitoring well BH5.

The groundwater elevations in the monitoring well at BH5 reflect the water levels within the fill formation on the west side of the Site. The groundwater elevations at BH2 reflect the water levels within the clayey silt to silty clay on the central and east side of the proposed site of the condo structure.

The measured groundwater depths and elevations at MW1 and MW2 indicate that groundwater levels were observed to vary between 0.34 and 1.14 mbgs at MW1 and 1.12 and 1.76 mbgs at MW2 throughout 2018 and the beginning of 2019. The observed groundwater level ranges correspond to groundwater elevation ranges of 267.09 to 267.89 m above sea level (masl) for monitoring well MW1 and 267.41 masl to 268.05 masl for monitoring well MW2.

Seasonal high groundwater levels were observed in April 2020 in BH2 (268.61 masl) and BH5 (267.81 masl), and in January 2018 in MW1 (268.10 masl) and in MW2 (268.05 masl). The measured seasonally high groundwater levels correspond to depths of 1.59 mbgs at BH2, 1.49 mbgs at BH5, 0.13 mbgs at MW1 and 1.12 mbgs at MW2. The lowest groundwater levels were observed in October 2020 at BH2 (267.71 masl), in August 2020 at BH5 (267.76 masl), in July 2018 at MW1 (267.09 masl) and at MW2 (267.41 masl). Typically, groundwater levels are observed to be the highest between February and May and also in the late fall, while groundwater levels tend to be lowest between July and October. The observed groundwater levels generally follow the typical groundwater level trends.

The seasonally high groundwater elevations measured to date from available monitors and the interpreted groundwater flow direction are presented on **Figure 9**. The apparent groundwater flow direction is inferred to be in the northerly direction. This inferred groundwater direction is generally consistent with topography at the Site and regional groundwater flow patterns, which indicates a gradual slope from south to north.

4.3 WATER USE

The Site is not currently serviced as it is a vacant lot. The proposed development will be municipally serviced for water and sewage.

4.3.1 MECP WATER WELL SEARCH

A list of MECP water well records is provided in **Appendix B**. **Figure 8** illustrates the locations of wells located within 500 m of the Site as per the MECP WWIS. The well record database includes seventy-seven (77) water well records within a 500-metre radius of the Site. Of the well records, ten (10) are water supply wells for domestic, irrigation and livestock purposes, twenty-two (22) are test holes, seventeen (17) are abandoned for other purposes, twelve (12) are monitoring wells, fourteen (14) are unknown, one (1) is a dewatering well, one (1) is for other purposes.

Of the ten (10) water supply wells, four (4) draw water from sand lenses at a depth less than 20 m and six (6) draw water from sand lenses at depths ranging between 20 and 40 m. It is our understanding that this area is municipally serviced for water and that most of the domestic water supply wells have been removed from active use as this area has been developed.

It is possible that the MECP WWIS database includes other wells that are incorrectly located and there may be some wells for which well records are not on file at the MECP.

4.4 SINGLE-WELL HYDRAULIC RESPONSE TESTS

A single well hydraulic response test was performed to estimate the hydraulic conductivity of the aquifer materials adjacent to the well screens in BH2, BH5, MW1 and MW2.

For this program, the single well hydraulic response test consisted of monitoring the recovery of the water level after a short pumping/bailing interval. The recovery data obtained from these response tests was adequate to estimate the *in situ* hydraulic conductivity of the saturated intervals adjacent to the monitoring well screen.

The hydraulic conductivity was estimated from the data using the methods of Hvorslev (1957).

The hydraulic response tests for MW1 and MW2 were performed on February 1, 2018, and tests for BH2 and BH5 were performed on October 21 and 22, 2020. The results of the Single Well Response Test Analysis are summarized in **Table 2**. Detailed results are provided in **Appendix C**.

The hydraulic conductivity estimates obtained from the on-site monitoring wells for the single well hydraulic response tests were 9.84×10^{-8} m/sec, 6.20×10^{-6} m/sec and 4.01×10^{-7} m/sec for BH2, BH5 and MW1, respectively. These results are consistent with the observed soil descriptions of the clayey silty at BH2, fill (sand) at BH5 and silty sand at MW1 in which the monitoring wells are screened.

The hydraulic conductivity estimate obtained from the off-site monitoring wells for the single well hydraulic response tests was 4.90×10^{-7} m/sec for MW2. This result is consistent with the observed soil descriptions of the silty sand at MW2 in which the monitoring wells are screened.

4.5 WATER QUALITY TESTING

The results of water quality testing at the one on-site (MW1) and one off-site (MW2) monitoring wells are summarized in **Table 3**. The water quality analysis reports as provided by ALS are presented in **Appendix D**.

The concentrations of the parameters tested are less than the MECP Table 2 SCS values. Additional groundwater quality testing will be required to determine potential discharge options during construction dewatering activities.

5 WATER BUDGET ANALYSIS

The Water Budget Analysis is presented in the following sections. Section 5.1 describes the analysis of historical climate data to estimate annual average precipitation and potential evapotranspiration. Section 5.2 describes the Pre-Development Water Budget. Section 5.3 Describes the Post-Development Water Budget including evaluation of the benefits of identified mitigation opportunities.

5.1 CLIMATE-BASED WATER BUDGET

The climate-based water budget calculations are included in Tables E-1 to E-3 (**Appendix E**) and are summarized in **Table 4**. The average annual precipitation for the thirty year normal data between 1981 and 2010 is about 886.2 mm/m²/year (mm/year). The annual potential evapotranspiration is calculated in Table E-1 at 575.9 mm/year. This equates to a potential water surplus of 394.8 mm/year and a soil moisture deficit of 84.5 mm/year. Thus the net annual water surplus based on potential evapotranspiration is 310.3 mm/year.

The calculations were expanded to include the water holding capacity of the soil as presented in Tables E-2 to E-3. This will produce a total moisture surplus based on the calculated actual evapotranspiration. Two (2) combinations of soil type and vegetation type were identified on the Site property for the Pre-Development and Post-Development scenarios. The majority of the surficial soil at the site is considered to be clay loam. The land use classifications and the corresponding water holding capacities are:

- Clay Loam, Residential Lawn (100 mm/year); and
- Clay Loam, Uncultivated (250 mm/year).

Consideration of these factors produces a range of net annual moisture surplus between 321.8 and 336.8 mm/year as summarized in **Table 4**. The soils with higher water holding capacity effectively increase the water removed as evapotranspiration.

The calculated moisture surplus occurs during the winter, spring and fall months, and a water deficit occurs during the summer months. Much of the water surplus in the winter accumulates as snow. Snowmelt during the spring results in the runoff or infiltration of precipitation that is effectively equivalent to the winter and spring water surplus.

5.2 PRE-DEVELOPMENT WATER BUDGET

The Pre-Development Water Budget was developed based on topographic information provided by Ontario Base Mapping and the Pre-Development Drainage Plan provided by Cole Engineering (Overall Development Plan).

5.2.1 PRE-DEVELOPMENT CATCHMENTS

A water balance for the larger development block was prepared by WSP in 2018. The calculations for this study considered the original study area. This analysis focusses on development Block 8, which is within the larger development block.

Figure 9 illustrates the delineation of drainage catchments and sub-catchments for the pre-development condition at the Site. The Site is comprised of one internal (on-site) catchment. The catchment area has been further subdivided. The drainage sub-catchments are based on similar slopes, soils, and vegetation/land use. The drainage sub-catchments also include consideration of post-development drainage boundaries so that changes to drainage areas can be evaluated for the post-development conditions. The outlets for drainage of the identified Pre-Development catchment is as follows:

On-Site Catchments:

— Pre-Development On-Site Catchment A: Drains to the northwest via overland flow and is captured in the drainage ditches along both sides of Donland Lane. Runoff subsequently flows south along Donland Lane and exits the Site through the southern property boundary.

Table F-1 (**Appendix F**) provides a summary of the data attributes used to estimate the infiltration factor for each pre-development catchment and sub-catchment. The infiltration factor determined the proportion of the annual water surplus that would infiltrate or runoff within each sub-catchment.

5.2.2 PRE-DEVELOPMENT ANALYSIS

Properties associated with area, slope, soil type, and land cover were analyzed and assigned to each Pre-Development sub-catchment. The values assigned to each Pre-Development sub-catchment are provided in Table F-1 (**Appendix F**). These values were used to estimate an Infiltration Factor. The Infiltration Factors were reviewed to confirm that they are appropriate and adjusted if necessary. Existing paved areas were assumed to be impervious and to generate runoff equivalent to the precipitation volume minus a 10% evaporative loss.

Table F-1 includes the overall analysis of infiltration and runoff for the Site. Table F-1 also documents the calculation of volumes associated with input and output parameters for the Pre-Development conditions. These volumes are also expressed in terms of the number of mm of water within each sub-catchment area.

A summary of the Pre-Development water budget calculations is provided in **Table 5**. These values will be used to assess the changes that proposed development will create relative to the pre-development conditions.

5.2.3 PRE-DEVELOPMENT INFILTRATION

The estimated total infiltration for the Site is $2,216 \text{ m}^3/\text{yr}$ or an equivalent of $162 \text{ mm/year} (\text{mm/m}^2/\text{yr})$. The calculated infiltration represents approximately 18.2% of the annual precipitation (886.2 mm/yr) and 40.5% of the calculated annual water surplus (399.2 mm/yr).

5.2.4 PRE-DEVELOPMENT RUNOFF

The total runoff for the Site is $3,256 \text{ m}^3/\text{yr}$ or an equivalent of 238 mm/year. The calculated runoff represents approximately 26.8% of the annual precipitation (886.2 mm/yr) and 59.5% of the estimated annual water surplus (399.2 mm/yr).

5.3 WATER BUDGET- POST-DEVELOPMENT CONDITIONS

The Post-Development Water Budget was based on the proposed site plan for development Block 8 as shown on **Figure 10**. The Post-Development scenario introduces six detached residential homes and a six (6)-storey residential condominium building including one (1) level underground parking garage and new roadways.

5.3.1 POST-DEVELOPMENT CATCHMENTS

Under post-development conditions, the Site has been subdivided into four (4) on-site catchments. Catchment and sub-catchment delineations in Pre-Development conditions were maintained for the Post-Development analysis.

Under Post-Development conditions, runoff from within the Site drains off-site via the on-site storm sewer system and overland flow. The outlets for each sub-catchment are summarized below:

On-Site Catchments:

- Post-Development On-Site Catchment PA: Drains off-site to the Barton SWM Pond (north of Site) via rear lot catch basins (RLCBs) and the on-site storm sewer system.
- Post-Development On-Site Catchment PB: Drains off-site to the Barton SWM Pond via the on-site storm sewer system.
- Post-Development On-Site Catchment PC: Drains off-site to the Barton SWM Pond via the on-site storm sewer system.
- Post-Development On-Site Catchment PD: Drains off-site to the Barton SWM Pond via the on-site storm sewer system.

Runoff from the developed areas in on-site catchment areas will be affected by the creation of buildings and driveway areas.

For the purpose of this analysis, Catchment PA is shown to generate runoff from rooftops and driveways that is inferred to be directed to the rear lot catchbasins. It is possible that some of this runoff from impervious surfaces may reach the ultimate outlet after being transferred via Catchment PB. This detail is not considered to change the finding of this analysis in terms of amount of runoff generated.

5.3.2 POST-DEVELOPMENT ANALYSIS

Properties associated with area, slope, soil type, and land cover were analyzed and assigned to each Post-Development sub-catchment. The values assigned to each Post-Development sub-catchment are provided in Table G-1 (**Appendix G**). These values were used to estimate an Infiltration Factor. The Infiltration Factors were reviewed to confirm that they are appropriate and adjusted if necessary.

Table G-1 includes the overall analysis of the total Study Area's infiltration and runoff. Table G-1 also documents the calculation of volumes associated with input and output parameters for the Post-Development condition. These volumes are also expressed in terms of the number of mm of water within each sub-catchment area. The volumes are summed by catchment and for the total property area.

Assumptions incorporated into the water budget for the Post-Development scenario included:

1) Impervious surfaces (roads, driveways and buildings) are assumed to have a 10% evaporative loss.

2) Runoff is assumed to be conveyed directly to the outlets and not infiltrated.

A summary of the Post-Development water budget calculations is provided in Table 5.

5.3.3 POST-DEVELOPMENT INFILTRATION

In the post-development condition, the Site will contain approximately 8,801 m² (64%) of impervious surfaces (44% roads, driveways and amenities and 20% building roofs). This would result in a net infiltration of 818 m³/year or 60 mm/yr. The net infiltration would reflect approximately 7% of the precipitation (886.2 mm/yr).

5.3.4 POST-DEVELOPMENT RUNOFF

The introduction of impervious surfaces will increase the total runoff from the developed area. The total runoff generated by the proposed development area is 7,837 m³/yr or 572 mm/year. The total calculated Post-Development runoff represents approximately 65% of the annual precipitation (886.2 mm/yr).

5.3.5 COMPARISON WITH PRE-DEVELOPMENT

Table 5 provides a comparison of the water budget estimates for the Pre-Development and Post-Development cases. The total on-site infiltration is decreased by approximately 63% or 1,399 m³/yr. The introduction of additional impervious surfaces increases total runoff by 141% or 4,581 m³/yr. Review of Table G-1 (**Appendix G**) shows that approximately 40% of the post-development runoff comes from the road network (Catchment PB) and 41.5% comes from the area of the proposed condo building and associated parking area (Catchment PC). The runoff generated from the impervious surfaces in the post-development scenario has entirely been captured by the network of onsite catch basins and is redirected from the south property boundary to the Barton SWM Pond.

Part B of **Table 5** shows that approximately 2,239 m³/yr of runoff could be available from building rooftops for redirection to enhance infiltration within Block 8. Only 62% of this runoff would be required to off-set the infiltration deficit. Previous work on other parts of the development have identified challenges in demonstrating that enhanced infiltration can be achieved to fully off-set the deficit. This opportunity could potentially be investigated further, but experience with the low permeability of the native soils, high water table, and conditions associated with the proposed construction of underground parking suggest that there may only be potential to achieve a minor benefit associated with disconnection of roof leaders in the rear lots of the residential block. This benefit can be calculated on request.

LSRCA provides a program for developers to pay a fee to support initiatives to off-set infiltration within the LSRCA area in lieu of the effort and costs to design and implement measures to enhance infiltration.

5.4 WATER QUALITY

The water budget analysis must also consider potential changes to water quality that could be experienced in relation to the proposed development. The following sections describe the typical contaminants associated with the current and future land uses.

5.4.1 EXISTING CONDITIONS

The Site is currently vacant. As such, there are no activities present that could potentially impact groundwater quality at this time.

5.4.2 FUTURE CONDITIONS

The proposed Post-Development condition includes new driveway, parking lot, and roadway areas. These areas may be a future source of contamination to groundwater infiltration or surface water runoff by winter road de-icing agents. The most effective method of reducing potential impacts from salt or other winter road de-icing agents is to minimize the mass/volume of material applied through the use of Best Management Practices (BMPs). Any pervious areas used for winter snow storage may also become potential sources of contamination from winter road de-icing agents. BMPs recommend storing snow on impervious surfaces.

The driveway, parking lot, and roadway areas may also be a potential sources of petroleum hydrocarbons. These are typically contained in vehicles. The release of these substances will typically be the result of accidents. These potential releases could result in impairment of water quality by infiltrating into the groundwater. The risk of an accident occurring at the Site is low considering the only traffic will be the residents who occupy the building.

In pervious areas, soil-enrichment agents (i.e. fertilizers) and/or herbicides may also be a source of contamination. Application of these products should be minimized in order to reduce potential contamination.

6 DEWATERING ASSESSMENT

The potential requirements for dewatering in association with construction of the proposed residences and for longterm drainage from foundation drains is assessed below. The potential requirements for permitting associated with dewatering activities are as follows:

- Takings of less than 50,000 L/day at any one time do not require a permit;
- Takings of greater than 50,000 L/day but less than 400,000 L/day at any one time requires registration with the Environmental Activity and Sector Registry (EASR); or
- Takings of greater than 400,000 L/day at any one time for the project will require a Category 3 Permit to Take Water (PTTW).

WSP has prepared a preliminary assessment of the dewatering requirements and the associated impacts associated with construction and long-term drainage.

6.1 DEWATERING EQUATIONS AND ASSUMPTIONS

Given the subsurface conditions encountered in the study area, equations are used to account for excavations under unconfined groundwater conditions. For the purposes of these calculations, long narrow trench equations are assumed to be more appropriate to estimate flows for the foundation excavation, since the length to width ratio of the excavation is greater than 1.5.

LONG NARROW TRENCH EQUATION - UNCONFINED CONDITIONS

Dewatering volumes were estimated using the following equation from Powers (1992) for drainage trench of finite length with a length to width ratio of greater than 1.5 for an unconfined system:

$$Q = \frac{xK(H^2 - h^2)}{In\frac{R_o}{r_s}} + 2\left[\frac{xK(H^2 - h^2)}{2L}\right]$$

where Q is discharge (m^3/s) , x is the trench sidewall length (m), K is hydraulic conductivity (m/s), H is initial water level (m), h is the required drawdown (m), R₀ is the equivalent radius of influence (m), and r_s is the equivalent well radius (m). For more details, please refer to Powers (1992). Using the equation for a long, narrow system provides a more conservative estimate for dewatering rates when compared with using the equation for a drainage trench from a line source.

DARCY'S LAW

Dewatering volumes for the calculation of seepage across the base of the excavation was estimated using the empirical Darcy's Law equation as described in Powers (1992):

$$Q = K_V A i$$

where Q is discharge (m³/s), K_V is vertical hydraulic conductivity (m/s), A is cross-sectional area (m²), and i is the hydraulic gradient.

EQUIVALENT RADIUS OF INFLUENCE (Ro)

The equivalent radius of influence R_0 is assumed to be equivalent to the zone of influence (ZOI). R_0 was estimated using the empirical Sichart equation as described in Powers (1992):

$$R_0 = 3000(H-h)\sqrt{K}$$

where R_0 is the equivalent radius of influence or ZOI (meters), H is the initial water level (meters), h is the required drawdown (meters), and K is hydraulic conductivity (meters/second).

6.2 ASSUMPTIONS

A number of assumptions were incorporated based on the site-specific data collected in site investigations and information about the proposed development. The assumptions related to construction dewatering are as follows:

- No measures are to be put in place to restrict flows into the excavations (e.g., sheet piling, caissons) to provide more conservative (overestimate) dewatering rates;
- The aquifer is uniform, continuous and of infinite extent;
- The proposed elevations of the building footing (October 2020) was provided to WSP by Keith Loffler Design Inc and McAlpine Architect Inc and are interpreted to range between 266.55 and 268.05 masl as presented in Appendix D. The condominium building basement footprint has been subdivided to represent three areas of footing elevations as presented in Figure 12. The footings for the main building are to be at 268.05 and the lower footings will be associated with the western part of the underground parking.
- The dimensions of each area used to estimate potential dewatering requirements are outlined below:
 - Area A Proposed footing elevation of 266.55 masl 53 x 18 m
 - Area B Proposed footing elevation 267.05 masl 9 x 18 m
 - Area C1 Proposed footing elevation 268.05 masl 62 x 22 m
 - Area C2 Proposed footing elevation 268.05 masl 22 x 19 m (for dewatering estimates, this section of the building basement is assumed to be rectangular in shape)
 - Area C3 Proposed footing elevation 268.05 masl 19 x 18 m
- Based on a review of the shallow soils observed during the Sola drilling, the majority of excavations for the building foundations are anticipated to be completed within the shallow layer soils described as fill.
 Conservative dewatering rates for excavation and long-term drainage were estimated using the estimated hydraulic conductivity for the shallow fill material, consisting of sand and some silt (6.20 x 10⁻⁶ m/sec);
- For the purposes of estimating flux across the base of the excavation, vertical hydraulic conductivity was used in the calculation using the Darcy equation. The vertical hydraulic conductivity is assumed to be an order of magnitude lower than the horizontal hydraulic conductivity (6.20 x 10⁻⁷ m/sec for the conservative dewatering rate);
- The vertical hydraulic gradient was assumed to be 0.1 m/m;
- Dewatering during construction is assumed to lower the water table by 1 m below the base of the footing;

- Assumed seasonal high groundwater elevations for the Site is based on elevations measured in April 2020.
 Based on the groundwater contours presented in Figure 12, the following average groundwater elevations within the subdivided building foundation areas were used in the dewatering estimates:
- Area A 268.25 masl
- Area B 269 masl
- Area C1 268.25 masl
- Area C2 269.25 masl
- Area C3 269.25 masl

Groundwater levels are typically at their highest level during the spring months (March -May) as the spring melt causes higher elevations than those experienced throughout the rest of the year. As such, WSP has used the measured groundwater levels on April 1, 2020 for the dewatering assessment.

— The required dewatering for the condominium was determined by comparing the average assumed seasonal high groundwater elevation to the proposed footing elevations for the building, and presented in **Figure 12**.

Figure 13 has been prepared to illustrate the relative elevations of the proposed base of footings and the seasonal high water table in cross-section. The groundwater elevations observed during August 2020 are also shown on **Figure 13** to illustrate that groundwater elevations may not always be above the proposed footing elevations.

The primary factors that will control the rate of seepage into the excavation or foundations are the hydraulic conductivity and the depth that the water table will be lowered.

WSP notes that the available information on the groundwater elevations may reflect the presence of groundwater within the fill layer that is infiltrating down to the underlying strata. The hydraulic conductivity of this stratum is observed to be higher than the native soils beneath the proposed condominium. Information is not available to confirm that the groundwater will replenish the fill layer upon initiation of pumping. The calculations provided reflect a worst-case scenario where there is unlimited water available to enter the excavation. These estimates are likely to overestimate the actual rate of dewatering that will be experienced.

This assessment does not represent an engineering design of a dewatering operation, but a preliminary hydrogeological analysis for assessment of dewatering volumes. The actual design of the dewatering operation will be the responsibility of the contractor.

6.3 CONSTRUCTION DEWATERING CALCULATIONS

The calculations of the estimated volumes of water that could enter the excavations for the condominium is shown in **Table 6**. These calculations show the conservative dewatering rate that may be observed. Dewatering calculations are provided in **Appendix I**.

The total volume that would potentially need to be dewatered to maintain the entire area open to construct foundations at the same time is estimated to be up to 176,600 L/day, with an applied safety factor of 2. The zone of hydraulic influence from the excavation would be up to 38 m. Given the nature of the site, it is likely that hydraulic influence would extend off-site. Review of the conservatism in the estimates, and the effects of seasonality on potential impacts, it is prudent to register the proposed dewatering activity for the construction of foundations on the EASR and to manage activities such that daily dewatering volumes are maintained below 400,000 L/day.

The dewatering estimates provided herein address dewatering associated with construction of the building foundations and is intended to be conservative to reflect the maximum volume that could be experienced. These calculations only reflect potential dewatering requirements for construction of the building foundations. Additional dewatering may also be required to construct underground utilities. Ideally, work can be coordinated on the Site so that the combined daily flows from all dewatering can be managed to be less than 400,000 L/day such that a PTTW is not required.

WSP notes that the water table is observed in the soil unit described as fill or probable fill. The hydraulic conductivity of this layer is typically greater than the underlying native soils. As the fill layer is likely of limited lateral extent, there is potential that there may not be continuous influx of water into the excavation after it is opened and water is removed from storage.

6.4 LONG-TERM DRAINAGE

Much of the proposed foundation for the underground parking garage is anticipated to be continually below the seasonally high water table. A portion of the northeast corner of the proposed condominium building may not be continually submerged. As such, the construction design will either need to incorporate waterproofing measures or will require drainage systems to maintain dry foundations. It is possible that there may be reduced or no flow in dry seasons, particularly beneath the main building, but less likely beneath the northwestern portion of the parking garage.

The calculations of the estimated volume of water that could enter the foundation drains for the building block are shown in **Table 6**. These calculations show a conservative (maximum) seepage rate. Dewatering calculations for the long-term drainage scenario are provided in **Appendix I**.

The total volume that would potentially need to be drained to maintain dry conditions for the foundations would be up to 85,500 L/day with an applied safety factor of 2. The zone of hydraulic influence under this circumstance would be up to 30 m. It is likely that hydraulic influence would extend off-site.

Based on the volumes that are estimated for long-term drainage to maintain dry foundations, WSP recommends that the design of the condominium consider the use of a water proof basement that will not require continuous dewatering. As discussed below, continuous dewatering may not comply with Policy DEMD-1.

6.5 DEWATERING SUMMARY

The calculations of potential volumes of water that may require removal during construction or during long term use of the proposed structure are summarized in **Table 6**. The estimated pumping rate that may be experienced to maintain dry conditions during construction is up to 176,600 L/day. WSP recommends that the dewatering activity be registered on the EASR prior to construction. Additional groundwater quality testing is recommended to confirm suitability for discharge to nearby Region of Durham storm sewers.

Review of the water level data suggests that the majority of the foundation will be below the seasonally high water table. Water proofing of the basement/underground parking is recommended to reduce the potential that water is being removed and to thereby comply with Policy DEMD-1 (see below). The results of the ongoing groundwater monitoring program are recommended to be reviewed to confirm the relative positions of proposed foundation drains and the water table throughout the year.

The potential capacity of the Region of Durham storm sewers to receive these flows has not been evaluated as part of this preliminary evaluation. The estimated rate of pumping to maintain dry foundations will likely exceed 50,000 L/day, and therefore the construction activity will need to be registered on the EASR. An agreement with the Region of Durham will be required for discharge to be directed to the storm or sanitary sewers.

7 POLICY AREAS

The following sections discuss specific policy areas that pertain to groundwater resources and measures taken within the proposed development plan to conform to these policies.

7.1 WELLHEAD PROTECTION AREAS

The Durham Region Official Plan (DROP) delineates Wellhead Protection Areas (WHPA) for protection of the groundwater supplies that are used to provide the primary source of potable drinking water. The wellhead protection policies of the DROP conform to the requirements of the Oak Ridges Moraine Conservation Plan and are included in the Official Plan for the Township of Uxbridge. Section 1.9.6 of the Official Plan for the Township of Uxbridge states:

Wellhead Protection Areas are designated on Schedule "L" to this Plan. They include lands that contribute water to municipal wells (capture zone). Land use restrictions shall be applied within Wellhead Protection Areas based on "time-of-travel" for groundwater to reach the municipal well and the relative threat posed by certain land use/activities in proximity to such wellheads. Land uses which pose a risk to the quality and quantity of groundwater in the wellhead protection areas are prohibited or restricted in accordance with Schedule 'E' – Tables 'E5' and 'E6' in the Durham Regional Official Plan and the policies of Section 2.3.25 to 2.3.28 inclusive of the Durham Regional Official Plan.

In addition to the DROP, a Provincial initiative on Drinking Water Source Protection under *The Clean Water Act*, 2006 has been underway since 2006 to develop Drinking Water Source Protection Plans. *The Clean Water Act* provides regulations that define requirements for a "Risk Management Plan" that is not necessarily consistent with the DROP policies. A Risk Management Plan will only be required in areas where the Provincial Regulations under *The Clean Water Act*, 2006 apply. The WHPA and vulnerability scores from the Assessment Report for the Lakes Simcoe and Couchiching Source Protection Area are provided as **Figure 12**.

The Site does not lie within WHPA-A to D for the Town of Uxbridge wells as mapped under The Clean Water Act.

The Site does lie within the WHPA-Q1 and WHPA-Q2 areas that are mapped to identify the overall recharge areas for municipal wells and have assigned stress levels of moderate. Source Protection Plan (SPP) policies for WHPA-Q1 apply to areas where activities that take water without returning it to the same source may be a threat. SPP policies for WHPA-Q2 apply to areas where activities that reduce recharge might be a threat. As per the South Georgian Bay Lake Simcoe Protection Region, Approved Source Protection Plan, policy number DEMD-1 will apply to the water taking activities during dewatering for construction and long-term drainage.

Based on the estimated volumes of water that may require removal during construction and long-term drainage of the residential condominium, these activities will need to comply with policies for WHPA-Q1.

The proposed land use is residential and is not anticipated to present a threat to groundwater resources as per DROP Section 2.3.26.

7.2 HIGHLY VULNERABLE AQUIFERS

The Source Protection Plan for the Lakes Simcoe and Couchiching Source Protection Area, as developed to comply with *The Clean Water Act, 2006*, contains policies that apply to Highly Vulnerable Aquifers. **Figure 13** presents the mapping of Highly Vulnerable Aquifers (HVA) from the Assessment Report for the Lakes Simcoe and Couchiching Source Protection Area. HVA are considered to be susceptible to contamination of groundwater from activities on the surface or shallow subsurface. The proposed development area is mapped within an HVA area with a vulnerability score of 6.

The proposed development will be municipally serviced for sewage which will eliminate potential contamination of groundwater by nitrates and phosphorous. De-icing agents applied on impervious surfaces such as driveways and roadways will be collected by the on-site storm sewer system and released to the Barton SWM Pond. This will help

to minimize the amount of de-icing agents that infiltrate into the groundwater. Best management practices will likely require that the use of salt for winter road de-icing be minimized.

7.3 SIGNIFICANT GROUNDWATER RECHARGE AREAS

Policies 6.36 DP through 6.40 DP of the Lake Simcoe Protection Plan address significant Groundwater Recharge Areas (SGRA) and ecologically significant Groundwater Recharge Areas (ESGRA).

The Assessment Report for the Lakes Simcoe and Couchiching Source Protection Area contains mapping of Significant Groundwater Recharge Areas (SGRA). SGRA are regional areas that receive more than the average estimated recharge for a watershed area.

A very small portion of the Site is located within a SGRA with high vulnerability, as shown in Figure 14.

7.4 INTAKE PROTECTION ZONES

Intake Protection Zones (IPZ) refer to areas on the water and land surrounding a municipal surface water intake. The Site lies within an IPZ-3 with a score of 4.5 as shown on **Figure 15**. IPZ-3 includes areas that can be delineated if modelling demonstrates that spills from a specific activity that is located outside IPZ-1 and IPZ-2 may be transported to an intake and result in a deterioration of the water quality at an intake. In this case, there is potential for contaminants at the Site to be transported northward to Lake Simcoe and eventually to the water supply intakes around the Lake.

The majority of the runoff directed to Lake Simcoe leaves the Site to north after detention in the Barton stormwater management pond and is not likely to contain contaminants of concern. The potential for release of contaminants to surface water that will reach Lake Simcoe from the Site is minimal given the proposed residential land use. Winter road de-icing agents could potentially cause runoff contamination as the residence will include driveway and roadway areas. Mixing with clean runoff will reduce the concentration of these chemicals to an acceptable level prior to reaching Lake Simcoe and therefore the proposed activity does not present a water quality threat to the municipal surface water sources protected by the Source Protection Plan.

In addition, a vulnerability score between 8 and 10 is required to be considered a significant threat. The IPZ-3 has a vulnerability score of 4.5 and therefore activities associated with the development are not considered to be a significant threat.

8 CONCLUSIONS

- 1 WSP Canada Inc. (WSP) was retained by Evendale Developments Ltd. to prepare a Hydrogeological Assessment and Water Balance Study for the proposed residential development on Block 8 of Part of Lot 31, Concession 7, in the Township of Uxbridge (Site). The development plans for Block 8 include the streets, six (6) detached residential homes, and a six (6)-storey residential condominium building including one (1) level underground parking garage.
- 2 The proposed development area lies within the Peterborough Drumlin Field physiographic region as defined by Chapman and Putnam (1984). The Peterborough Drumlin Field is typically characterized by deposits of highly calcareous till, but the local area surrounding the Site is mapped as clay plains.
- 3 The on-site runoff generally drains to the northwest via overland flow, towards the proposed Lowe Blvd extension and is captured in the drainage ditch along Donland Lane.
- 4 Based on previous geotechnical investigations conducted at the Site the proposed development area is underlain by a shallow layer of topsoil which is followed by a layer heterogenous mixture of fill or probable fill ranging in texture from gravel, sand, silt and clay to a thickness of 2.3 to 3.1 m. The Fill overlies a layer of clayey silt to silty clay on the east side of the property and overlies layers of silty sand on the west side of the Site. This pattern is consistent with the surficial geology mapping presented on a regional scale and with stratigraphy information presented in water well records obtained through the MECP. The information presented in the Sola

borehole logs from review of physical samples does not confirm that the clayey silt to silty clay formation will typically overlie the silty sand formation but this is implied from regional stratigraphic understanding.

- 5 Seasonal high groundwater levels were observed in April 2020 in BH2 (268.61 masl) and BH5 (267.81 masl), and in January 2018 in MW1 (268.10 masl) and in MW2 (268.05 masl). The measured seasonally high groundwater levels correspond to depths of 1.59 mbgs at BH2, 1.49 mbgs at BH5, 0.13 mbgs at MW1 and 1.12 mbgs at MW2. Typically, groundwater levels are observed to be the highest between February and May and also in the late fall, while groundwater levels tend to be lowest between July and October. The observed groundwater levels generally follow the typical groundwater level trends.
- 6 The hydraulic conductivity estimates obtained from the on-site monitoring wells for the single well hydraulic response tests were 9.84 x 10⁻⁸ m/sec, 6.20 x 10⁻⁶ m/sec and 4.01 x10⁻⁷ m/sec for BH2, BH5 and MW1, respectively. These results are consistent with the observed soil descriptions of the clayey silty at BH2, fill (sand) at BH5 and silty sand at MW1 in which the monitoring wells are screened. The hydraulic conductivity estimate obtained from the off-site monitoring well for the single well hydraulic response tests was 4.90 x 10⁻⁷ for MW2. This result is consistent with the observed soil descriptions of the silty sand at MW2 in which the monitoring wells are screened.
- 7 Two (2) groundwater samples were collected from the existing monitoring wells on February 14th, 2017. The concentrations of the parameters tested were less than the values of the MECP Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for All Types of Property Use (Coarse Textured Soil).
- 8 The Climate-Based Water Budget indicates that average annual precipitation over the past 30 years is 886.2 mm/year. The available moisture surplus at the Site ranges between 321.8 mm/yr to 336.8 mm/year depending on the type of soil and vegetation cover. The moisture surplus will reflect the infiltration and runoff based on the soil properties, slopes, and vegetation within individual catchments.
- 9 Under existing conditions, there is one (1) on-site catchment. Runoff generated on-site outlets to the northwest via overland flow and is captured in the drainage ditch along Donland Lane. Runoff subsequently flows south along Donland Lane and exits the Site through the southern property boundary.
- 10 The Pre-Development Water Budget reflects infiltration for the Site of approximately 2,216 m³/yr and runoff from the Site of approximately 3,256 m³/yr.
- 11 The Post-Development Water Budget reflects changes in land use to include increased areas of impervious surfaces (i.e. roads, buildings etc.) and re-grading. The proposed development area has been subdivided into four (4) on-site catchments. The majority of the runoff generated under post development conditions will be directed off-site to the Barton SWM Pond located approximately 500 m to the north of the Site via storm sewers.
- 12 The Post-Development Water Budget predicts a total on-site infiltration of 818 m³/yr. Overall, this is a decrease of 63% relative to the Pre-Development case, and represents an infiltration deficit of 1,399 m³/yr.
- 13 The Post-Development Water Budget predicts a net runoff of 7,837 m³/yr over the Site area. This is an increase of 141% or 4,581 m³/yr relative to the Pre-Development case. The runoff generated from the impervious surfaces in the post-development scenario has entirely been captured by the onsite catch basin and is redirected from the south property boundary to the Barton SWM Pond.
- 14 The estimated pumping rate that may be experienced to maintain dry conditions during construction is up to 176,600 L/day. WSP recommends that the dewatering activity be registered on the EASR prior to construction. Additional groundwater quality testing is recommended to confirm suitability for discharge to nearby Region of Durham storm sewers.
- 15 The majority of the proposed footing elevations are below the seasonally high water table. Estimates of the dewatering rates to maintain dry foundations are up to 85,500 L/day, including a 2X factor of safety. Water proofing of the basement/underground parking is recommended to reduce the potential that water is being removed and to thereby comply with Policy DEMD-1.
- 16 The Site lies within WHPA-Q1 and WHPA-Q2 for the Uxbridge Water Supply system with assigned stress levels of moderate. Source Protection Plan (SPP) policies for WHPA-Q1 apply to areas where activities that take water without returning it to the same source may be a threat. SPP policies for WHPA-Q2 apply to areas where activities that reduce recharge might be a threat. Based on the estimated volumes of water that may require removal during construction and long-term drainage of the residential condominium, the Site will need to comply further with policies for WHPA-Q1. As per the South Georgian Bay Lake Simcoe Protection Region, Approved Source Protection Plan, policy number DEMD-1 will apply to the water taking activities during

dewatering for construction and long-term drainage. Policies associated with WHPA – Q2 may apply to offset identified infiltration deficit relative to pre-development conditions.

- 17 The proposed development area is mapped within a Highly Vulnerable Aquifer (HVA) area with a vulnerability score of 6. The Site will be municipally serviced for sewage which will eliminate potential contamination of groundwater by nitrates and phosphorous. De-icing agents applied on impervious surfaces such as driveways and roadways will be collected by the on-site storm sewer system and released to the Barton SWM Pond. This will help to minimize the amount of de-icing agents that infiltrate into the groundwater. Best management practices will likely require that the use of salt for winter road de-icing be minimized.
- **18** The proposed development is located within a Significant Groundwater Recharge Area with a vulnerability score of 6.
- 19 The Site lies within Intake Protection Zone 3 (IPZ-3) for Lake Simcoe. The majority of the runoff directed to Lake Simcoe leaves the Site to north after detention in the Barton stormwater management pond and is not likely to contain contaminants of concern. The potential for release of contaminants to surface water that will reach Lake Simcoe from the Site is minimal given the proposed residential land use. Winter road de-icing agents could potentially cause runoff contamination as the residence will include driveway and roadway areas. Mixing with clean runoff will reduce the concentration of these chemicals to an acceptable level prior to reaching Lake Simcoe and therefore the proposed activity does not present a water quality threat to the municipal surface water sources protected by the Source Protection Plan.

This concludes the Hydrogeological Assessment and Water Balance Study. We trust that this report satisfies your requirements. If you have any questions or concerns regarding this report, do not hesitate to contact our office.

9 REFERENCES

- Armstrong, D.K., and Dodge, J.E.P., 2007. Paleozoic Geology of Southern Ontario Project Summary and Technical Document, Ontario Geological Survey, Miscellaneous Release – Data 219.
- Chapman, L.J. and D.F. Putnam, 1984. The Physiography of Southern Ontario. Ontario Geological Survey, Third Edition. 270 pp. Accompanied by Map P.2715, Scale 1:600,000.
- Cole Engineering Group Ltd, 2017. Functional Servicing and Stormwater Management Report, Brock Street East Development, Township of Uxbridge.
- Gao, C., Shirota, J., Kelly, R.I., Brunton, F.R., and van Haaften, S., 2006. Bedrock Topography and overburden thickness mapping, southern Ontario, Ontario Geological Survey, Miscellaneous Release – Data 207.
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations. Bulletin No. 36.
 Waterways Experiment Station, U.S. Army Corps of Engineers, Vicksburg, Mississippi.
- Kassenaar, J.D.C. and Wexler, E.J., 2006. Groundwater Modelling of the Oak Ridges Moraine Area. CAMC-YPDT Technical Report #01-06.
- LSRCA. May 2019. Lake Simcoe Protection Plan Water Budget Offsetting Policy for LSPP 4.8-DP and 6.40-DP.
- Ontario Geological Survey, 2011. 1:250,000 Scale Bedrock Geology of Ontario, Ontario Geological Survey Miscellaneous Release – Data 126- Revision 1.
- Ontario Ministry of the Environment, 2008. Design Guidelines for Sewage Works.
- Ontario Ministry of the Environment and Energy. 1995. Hydrological Technical Information Requirements for Land Development Applications.
- Russell, H.A.J., Sharpe, D.R., and Logan, C. 2005: Structural Model of the Greater Toronto and Oak Ridges Moraine Areas, Southern Ontario: Halton Till; Geological Survey of Canada, Open File 5064, scale 1:250,000.
- Russell, H.A.J., Sharpe, D.R., and Logan, C. 2005: Structural Model of the Greater Toronto and Oak Ridges Moraine Areas, Southern Ontario: ORM Sediment; Geological Survey of Canada, Open File 5065, scale 1:250,000.
- Sharpe, D.R., Russell, H.A.J., and Logan, C. 2005: Structural Model of the Greater Toronto and Oak Ridges Moraine Areas, Southern Ontario: Lower Sediment, Geological Survey of Canada, Open File 5067, scale 1:250,000.
- Sharpe, D.R., Russell, H.A.J., and Logan, C. 2005. Structural Model of the Greater Toronto and Oak Ridges Moraine Areas, Southern Ontario: Newmarket Till, Geological Survey of Canada, Open File 5066, scale 1:250,000.
- Sola Engineering Inc, 2020. Geotechnical Investigation, Proposed Apartment Development, Brock Street East and Herrema Boulevard, Uxbridge, Ontario.
- WSP Canada Inc, 2020. Hydrogeological Assessment and Water Balance Study, Block 6 Part of Lot 31, Concession 7, Uxbridge.
- WSP Canada Inc, 2018. Hydrogeological Assessment and Water Balance Study, Part of Lot 31, Concession 7, Uxbridge.

TABLES

TABLE 1 **OBSERVED GROUNDWATER LEVELS** PART OF LOT 31, CONCESSION 7, BLOCK 8 UXBRIDGE, ON

On-Site Monitoring Wells

Monitor Designation	Top of Pipe Elevation	Ground Elevation	PVC Casing Stick-up m	Measurement Date	Depth m bmp	to Water m bgl	Water Elevation m asl
BH2	271.04	270.20	0.84	1-Apr-20 19-Aug-20 21-Oct-20	2.43 3.29 3.33	1.59 2.45 2.49	268.61 267.76 267.71
BH5	270.46	269.3	1.16	1-Apr-20 19-Aug-20 21-Oct-20	2.65 2.71 2.66	1.49 1.55 1.50	267.81 267.76 267.80
MW1	268.80	268.23	0.57	25-Jan-18 1-Feb-18 14-Feb-18 12-Apr-18 21-Jun-18 23-Jul-18 9-Aug-18 12-Sep-18 24-Oct-18 21-Nov-18 18-Dec-18 29-Jan-19 15-Feb-19 12-May-20	0.7* 1.65 1.09 0.97 1.01 1.16 1.71 0.91 1.09 1.08 0.95 0.96 1.07 1.05* 1.28	0.13 1.08 0.52 0.40 0.44 0.59 1.14 0.34 0.52 0.51 0.38 0.39 0.50 0.48 0.71	268.10 267.15 267.71 267.83 267.79 267.64 267.09 267.89 267.72 267.72 267.72 267.85 267.84 267.73 267.75 267.52
Off-Site Monitoring We	ells						
MW2	269.85	269.17	0.68	25-Jan-18 1-Feb-18 14-Feb-18 12-Apr-18 17-May-18 21-Jun-18 23-Jul-18 23-Jul-18 24-Oct-18 24-Oct-18 24-Oct-18 24-Oct-18 18-Dec-18 29-Jan-19 15-Feb-19 15-Feb-19 12-May-20 19-Aug-20 21-Oct-20	1.80 2.01 2.14 2.02 1.98 2.29 2.44 1.96 2.14 2.24 2.13 1.96 2.08 2.24 2.39	1.12 1.33 1.46 1.34 1.30 1.61 1.76 1.28 1.46 1.56 1.49 1.45 1.28 1.45 1.28 1.45	268.05 267.84 267.71 267.83 267.87 267.56 267.41 267.89 267.71 267.62 267.68 267.72 267.89 267.77 267.62 267.89 267.77

Notes:

"m" indicates metres.
 "m bmp" indicates metres below measurement point, which is the top of pipe (referred to as T.O.P.)
 "m bgl" indicates metres below ground level.
 "*" Water levels in MW1 on January 25, 2018 and February 5,2019 were frozen. Water level is expected to be lower.

Table 2 Summary of Hydraulic Conductivity Test Values

Monitoring Well	Test Date	Test Type	Static Water Depth (BTOP)	Estimated	Estimated Hydraulic Conductivity			
Ŭ		71	m	m/sec	cm/sec	m/day		
		On-Site	Monitors					
BH2	21-Oct-20	Rising Head	3.33	9.84E-08	9.8E-06	8.50E-03		
BH5	22-Oct-20	Rising Head	2.67	6.20E-06	6.2E-04	5.36E-01		
MW1	1-Feb-18	Rising Head	1.02	4.01E-07	4.0E-05	3.46E-02		
Average/Geometri	c Mean		2.34	6.25E-07	6.3E-05	5.40E-02		
Maximum			3.33	6.20E-06	6.2E-04	5.36E-01		
Minimum			1.02	9.84E-08	9.8E-06	8.50E-03		
		Off-Site	Monitors					
MW2	1-Feb-18	Rising Head	1.94	4.90E-07	4.9E-05	4.23E-02		
Average/Geometri	c Mean		1.94	4.90E-07	4.9E-05	4.23E-02		
Maximum			1.94	4.90E-07	4.9E-05	4.23E-02		
Minimum			1.94	4.90E-07	4.9E-05	4.23E-02		
		All Mo	onitors					
Average/Geometri	c Mean	2.24	5.88E-07	5.9E-05	0.1			
Maximum			3.33	6.20E-06	6.2E-04	0.5		
Minimum			1.02	9.84E-08	9.8E-06	0.0		

TABLE 3 **GROUNDWATER CHEMISTRY** HYDROGEOLOGICAL STUDY AND WATER BALANCE ASSESSMENT PART OF LOT 31, CONCESSION 7 UXBRIDGE, ON

Parameters	UNIT	Table 2 SCS ⁽¹⁾	MW1	MW2	DUP	
Sample Date	U.I.I		14-Feb-18	14-Feb-18	14-Feb-18	
Calculated Parameters						
Anion Sum	me/L	-	28.40	4.0	4.22	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	275	192	197	
Calculated TDS	mg/L	-	1640	238	244	
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	<10	<10	<10	
Cation Sum	me/L	-	27.80	4.6	4.61	
Hardness (CaCO3)	mg/L	-	566	209	209	
Ion Balance (% Difference)	%	-	97.80	114.00	109.00	
Langelier Index	N/A	-	0.80	0.600	0.600	
Saturation pH	N/A	-	6.87	7.29	7.28	
Inorganics	11// \		0.01	1.25	1.20	
Total Ammonia-N	mg/L	-	0.20	0.276	0.32	
Conductivity	umho/cm		2680	457	452	
,		-	3.4		4.2	
Dissolved Organic Carbon	mg/L	-	0.004	2.2		
Orthophosphate (P)	mg/L		7.64	<0.0030 7.94	< 0.0030	
pH Dissolved Sulphate (SO4)	pH ma/l	-	<u> </u>	7.94 18	<u>7.87</u> 15	
	mg/L	-				
Alkalinity (Total as CaCO3)	mg/L	-	275	192	197	
Dissolved Chloride (Cl)	mg/L	790	770	17	23	
Nitrite (N)	mg/L	-	0.224	<0.010	<0.010	
Nitrate (N)	mg/L	-	2.08	<0.020	<0.020	
Nitrate + Nitrite (N)	mg/L	-				
Metals						
Dissolved Aluminum (AI)	mg/L	-	<0.050	<0.0050	<0.0050	
Dissolved Antimony (Sb)	mg/L	0.006	<0.0010	0.00016	0.00015	
Dissolved Arsenic (As)	mg/L	0.025	<0.0010	0.00127	0.0013	
Dissolved Barium (Ba)	mg/L	1	0.34	0.118	0.116	
Dissolved Beryllium (Be)	mg/L	0.004	<0.0010	<0.00010	<0.00010	
Dissolved Boron (B)	mg/L	5	<0.10	<0.010	<0.010	
Dissolved Cadmium (Cd)	mg/L	0.0027	<0.000050	<0.000010	<0.000010	
Dissolved Calcium (Ca)	mg/L	-	193	69	68	
Dissolved Chromium (Cr)	mg/L	0.05	<0.0050	<0.00050	<0.00050	
Dissolved Cobalt (Co)	mg/L	0.0038	<0.0010	0.00012	0.00013	
Dissolved Copper (Cu)	mg/L	0.087	<0.0020	<0.00020	<0.00020	
Dissolved Iron (Fe)	mg/L	-	<0.10	0.062	0.07	
Dissolved Lead (Pb)	mg/L	0.01	<0.00050	<0.000050	<0.000050	
Dissolved Magnesium (Mg)	mg/L	-	21	9	9	
Dissolved Manganese (Mn)	mg/L	-	0.11	0.1000	0.104	
Dissolved Molybdenum (Mo)	mg/L	0.07	<0.00050	0.000392	0.000389	
Dissolved Nickel (Ni)	mg/L	0.1	<0.0050	<0.00050	<0.00050	
Dissolved Phosphorus (P)	mg/L	-	<0.50	<0.050	<0.050	
Dissolved Potassium (K)	mg/L	-	5.1	1.3	1.3	
Dissolved Selenium (Se)	mg/L	0.01	<0.00050	<0.000050	0.000054	
Dissolved Silicon (Si)	mg/L	-	6.2	11.6	11.2	
Dissolved Silver (Ag)	mg/L	0.0015	<0.00050	<0.000050	<0.000050	
Dissolved Sodium (Na)	mg/L	-	376	8	8.6	
Dissolved Strontium (Sr)	mg/L	- 1	0.76	0.18	0.19	
Dissolved Thallium (TI)	mg/L	0.002	<0.00010	< 0.000010	<0.000010	
Dissolved Titanium (Ti)	mg/L	-	< 0.0030	< 0.00030	< 0.00030	
Dissolved Uranium (U)	mg/L	0.02	0.0017	0.00009	0.0001	
Dissolved Vanadium (V)	mg/L	0.0062	<0.0050	0.00070	0.0007	
Dissolved Zinc (Zn)	mg/L	1.1	<0.000	<0.0010	<0.0010	
NOTES	ing/L		-0.010	-0.0010	-0.0010	

NOTES

1) Table 2 SCS = Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 2011).

Sewer Use By-Law No. 55-2013 2) Yellow shading indicates parameter reportable detection limit exceeds Table 2 SCS.

TABLE 4CLIMATIC WATER BUDGET SUMMARY TABLEHYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY - BLOCK 8PART OF LOT 31, CONCESSION 7UXBRIDGE, ONTARIO

Year of Climate Data Used	Total Adjusted Potential Evapotranspiration	Total Water Surplus	Total Precipitation	Soil Type	Land Use	Water Holding Capacity	Total Actual Evapotranspiration	Total Moisture Surplus used for Water Balance
	mm/yr	mm/yr	mm/yr			mm/yr	mm/yr	mm/yr
CLIMATE NORMAL	575.9	310.3	886.2 Clay Loam		Residential Lawn	100	549.4	336.8
1981-2010	575.5	510.5	000.2	Ciay Loan	Uncultivated	250	564.4	321.8

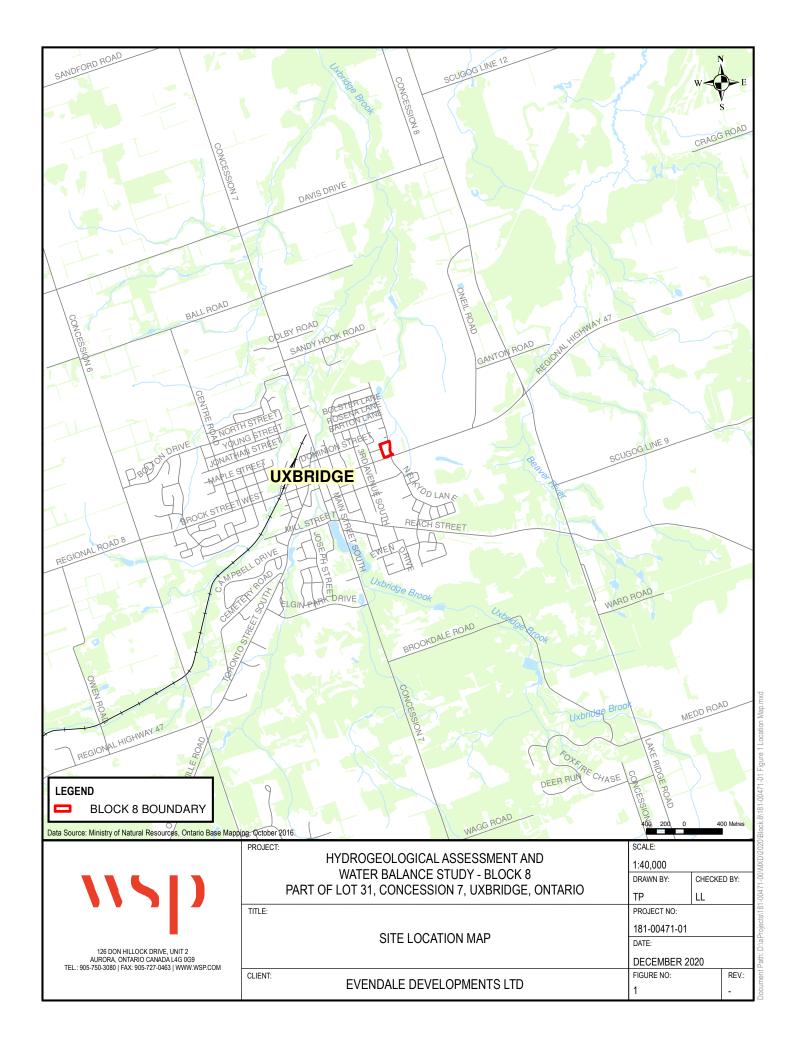
NOTES:

1) Water Holding Capacity obtained from Environmental Design Criteria of the SWM Planning and Design Manual published by the MOE in 2003.

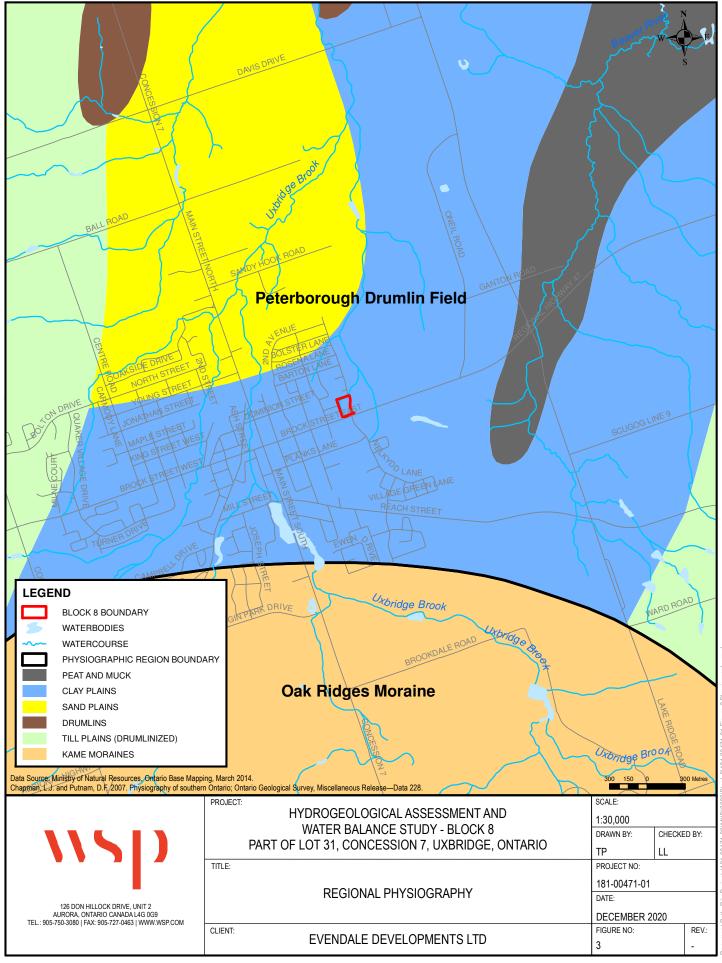
TABLE 5 WATER BALANCE SUMMARY HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY - BLOCK 8 PART OF LOT 31, CONCESSION 7 UXBRIDGE, ONTARIO

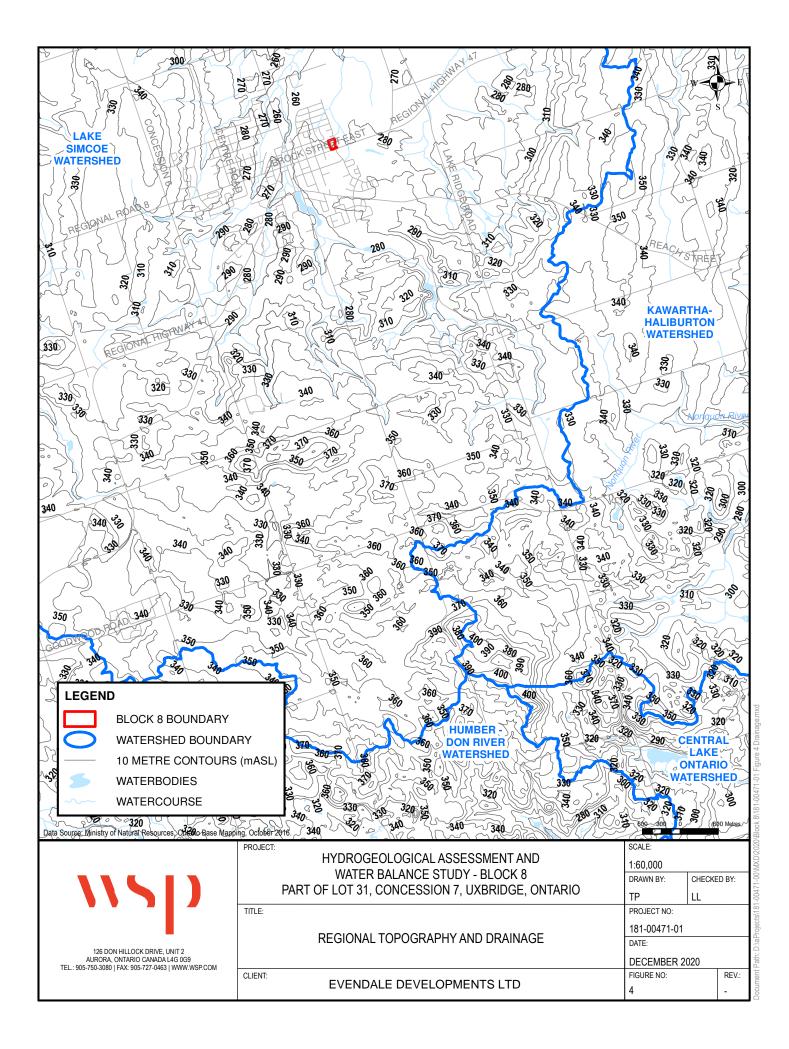
A. WATER BALANCE DEVELOPMENT BLOCK 8

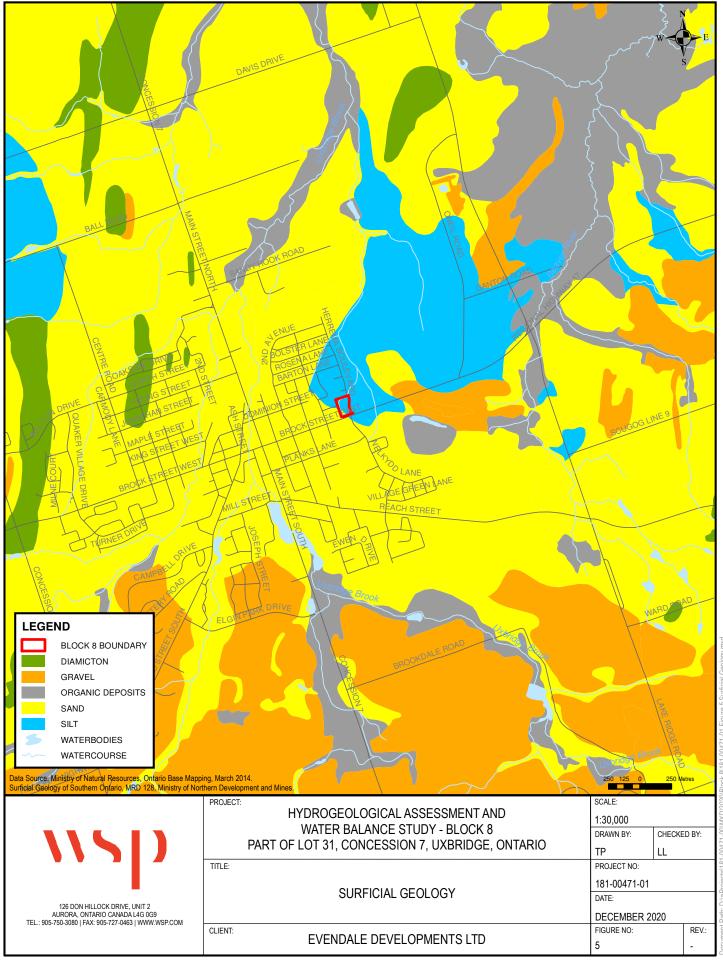
Characteristics			elopment		elopment e mitigation)	Change	
Characterist	Characteristics			Volume (m ³ /yr)	mm/yr	Volume (m³/yr)	%
	Precipitation	12,148	886	12,148	886	0	0%
Input	Runon	0	0	0	0	0	0%
	Total In	12,148	886	12,148	886	0	0.00%
	Infiltration via Pervious Areas	2,216	162	818	60	-1,399	-63%
	Total Infiltration	2,216	162	818	60	-1,399	-63%
Output	Run-off (Net)	3,256	238	7,837	572	4,581	141%
	Evapotranspiration	6,676	487	3,494	255	-3,182	-48%
	Total Out	12,148	886	12,148	886	0	0.00%

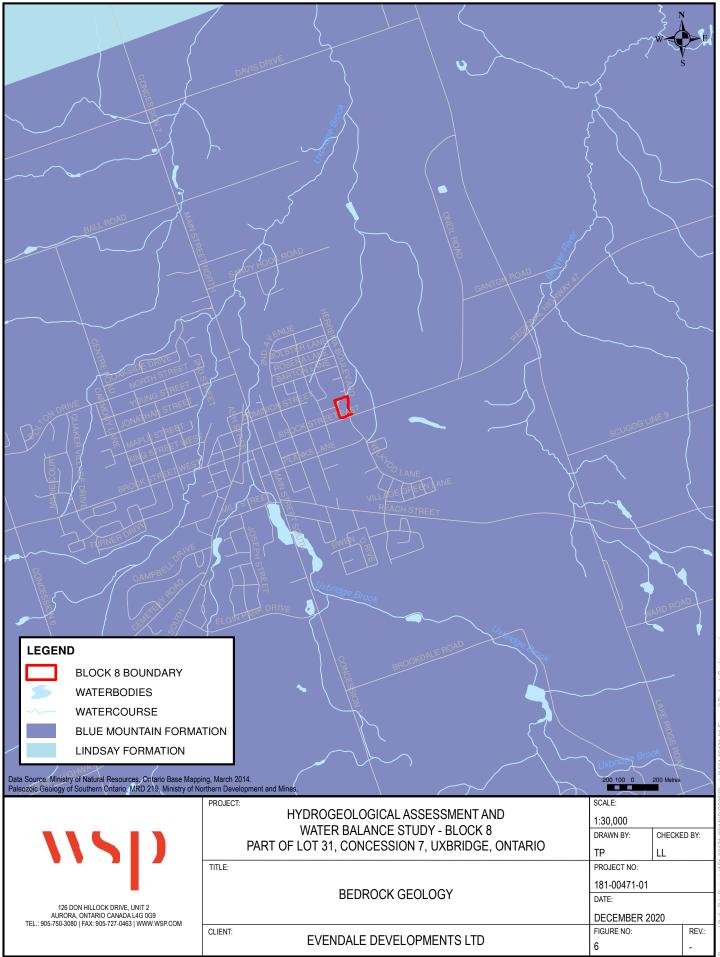

B. Breakdown of Post-Development Run-Off by Land Use - Development Block 8

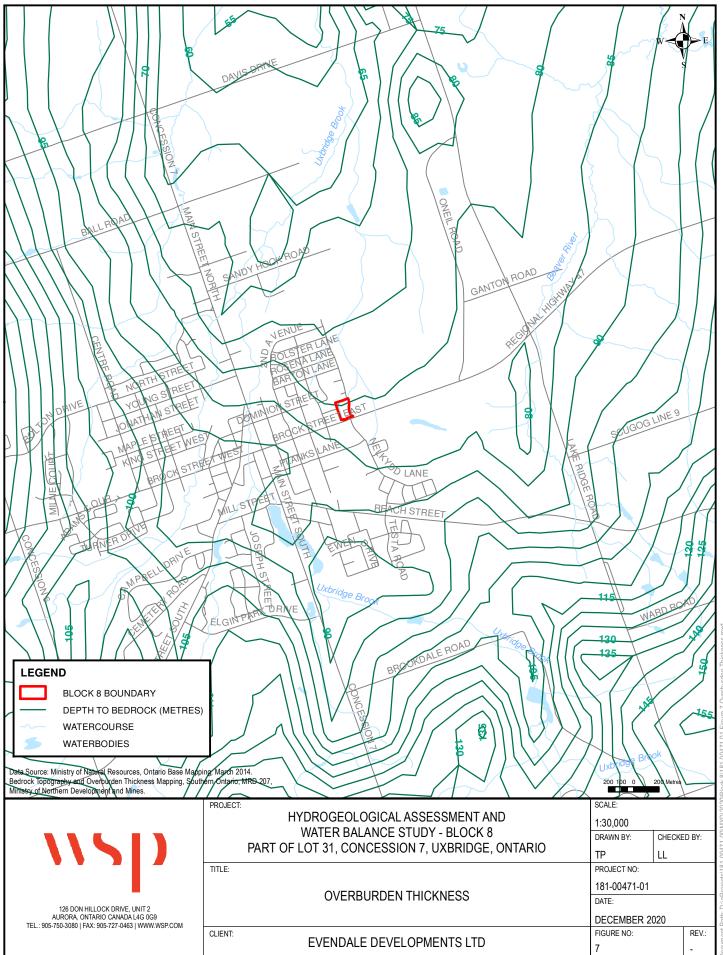
		Post-Dev	Runoff	
Land Use	Description	Area	Volume	Runon
		m²	m³	m³
Buildings	Includes residential homes and commercial buildings	2,808	2,239	2,239
Paved Areas	Includes roads, sidewalks and driveways	5,993	4,780	4,780
Impervious Areas		8,801	7,019	7,019
Pervious Areas	Inclues residential lawns, uncultivated areas and woodland	4,908	818	818
Pervious Areas		4,908	818	818
Total Run-Off		13,708	7,837	7,837

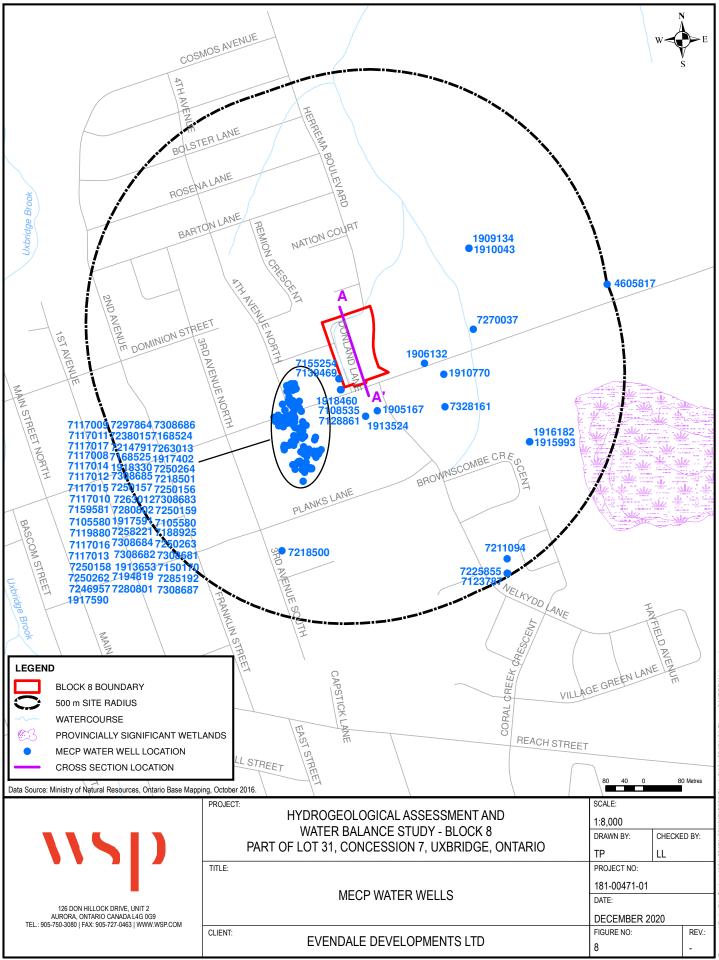

TABLE 6DEWATERING ESTIMATES SUMMARY - RESIDENTIAL CONDOMINIUM BUILDINGHYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY - BLOCK 8PART OF LOT 31, CONCESSION 7,UXBRIDGE, ON


Building	Length (m)	Width	a/b	Assumed	Assumed High	Differen	Construction	Long-term	Grou	nd Seepage /	Alone		Long-Term	
		(m)		Basement	Groundwater	се	Maximum	Maximum	Co	nservative R	ate	Co	nservative R	ate
				Elevation	Elevation		Drawdown	Drawdown	Calculated	Safety	Maximum	Calculated	Safety	Maximum
				(m asl)	(m asl)		(m)	(m)	Value	Factor of 2	ZOI (m)	Value	Factor of 2	ZOI (m)
Footing Elevation Area A	53	18	2.9444	266.55	268.25	-1.7	2.70	1.70	32,077	64,153	38	19,443	38,885	30
Footing Elevation Area B	18	9	2	267.05	269	-1.95	2.95	1.95	17,048	34,096	29	10,015	20,030	22
Footing Elevation Area C1	62	22	2.8182	268.05	268.25	-0.2	1.20	0.20	17,289	34,578	30	8,398	16,796	22
Footing Elevation Area C2	22	19	1.1579	268.05	269.25	-1.2	2.20	0.15	11,435	22,871	28	2,648	5,295	13
Footing Elevation Area C3	19	18	1.0556	268.05	269.25	-1.2	2.20	0.15	10,443	20,887	27	2,203	4,406	12
	Total L/day (Rounded) 88,300 176,600 42,800 85,500													

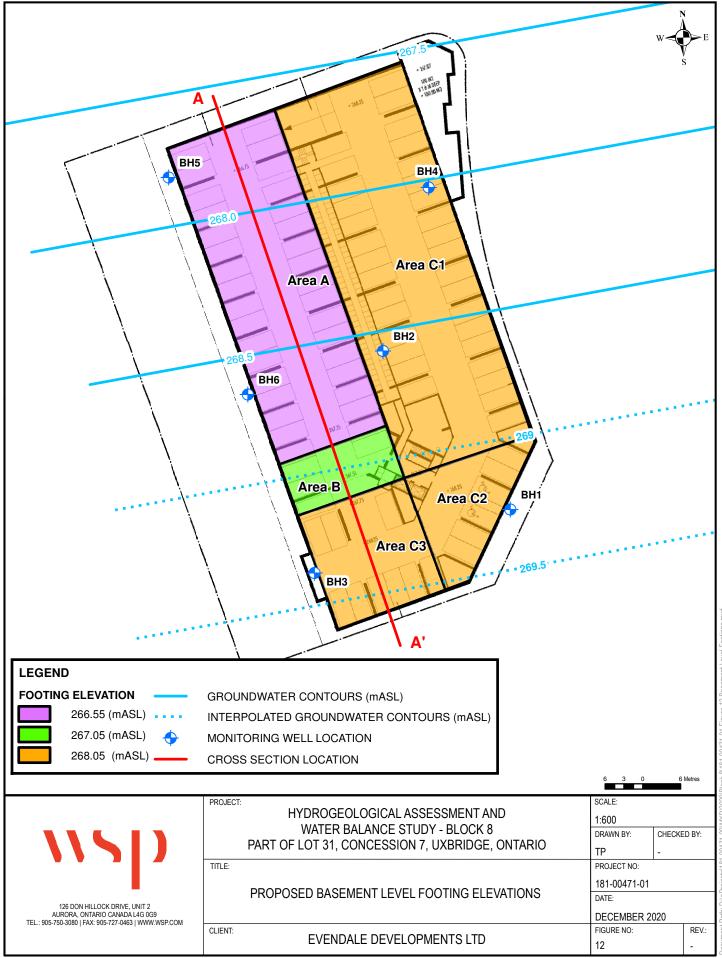

FIGURES

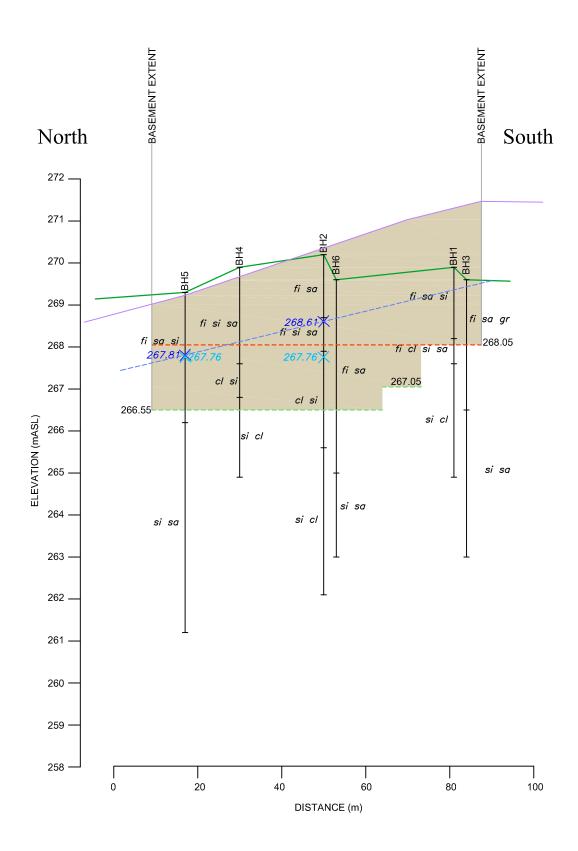


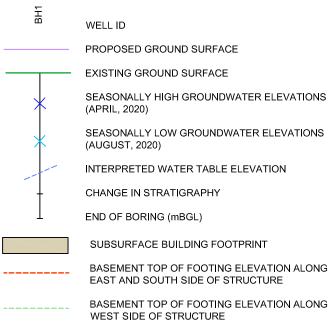






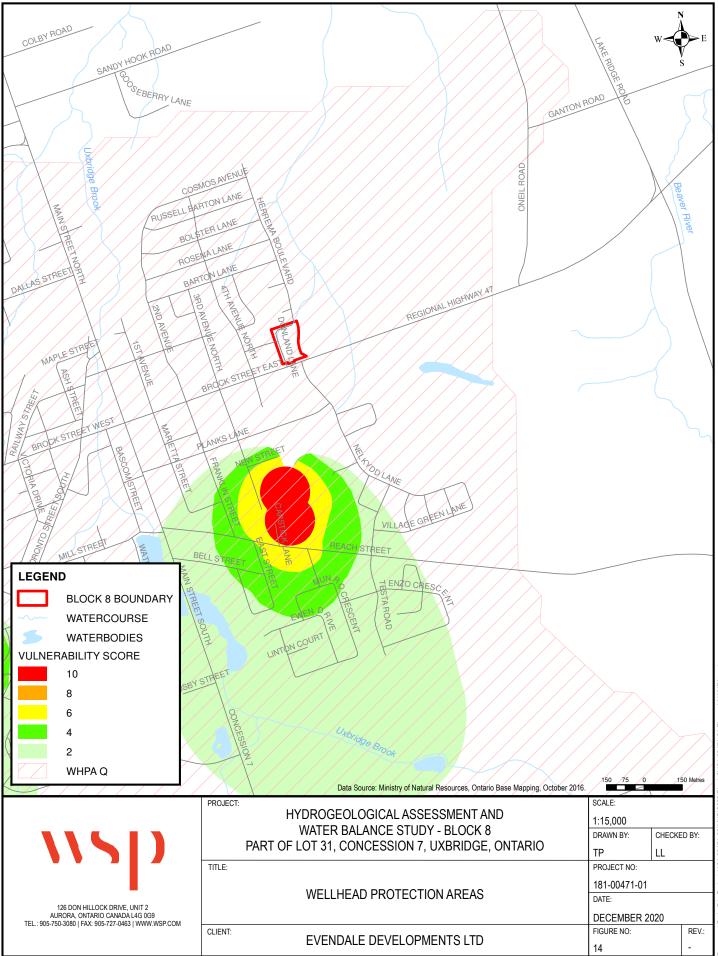


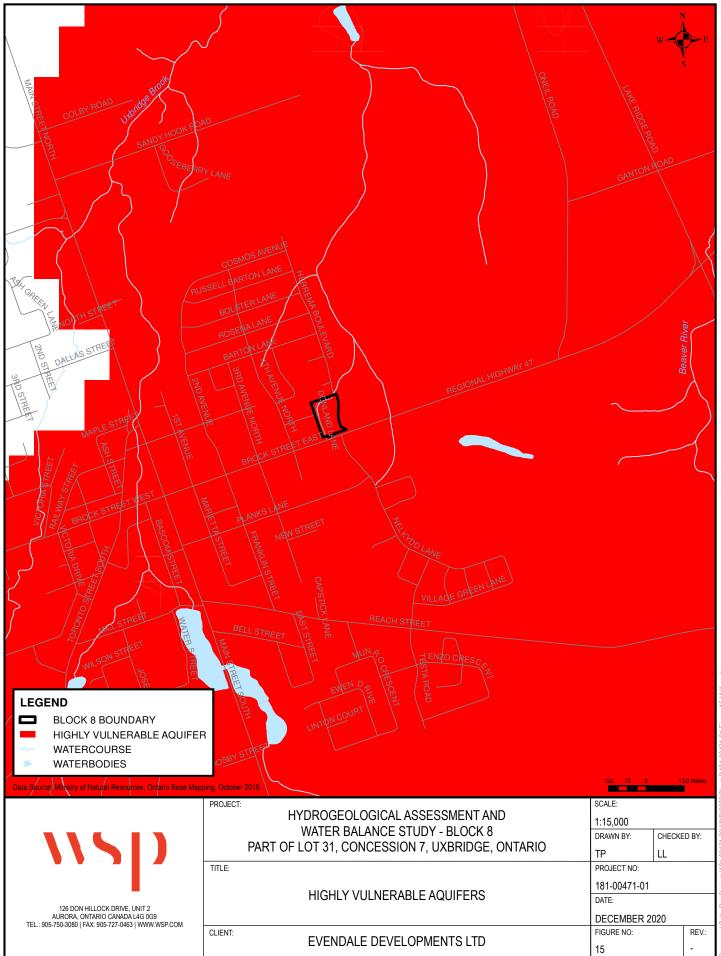

	SP					
AURORA, ONTAR	OCK DRIVE, UNIT 2 IO CANADA L4G 0G9 05-727-0463 WWW.WSP.COM					
ROAD	T CATCHMENT AREAS					
8 4 0 8 Metres	W<	N S E				
CLIENT:	CLIENT: EVENDALE DEVELOPMENTS LTD					
WATER BALANC PART OF LOT 3	AL ASSESSMENT A E STUDY - BLOCK { 31, CONCESSION 7 GE, ONTARIO					
PROJECT NO: 181-00471-01	DATE: DECEMBER 2020					
DESIGNED BY: - DRAWN BY: T.P. CHECKED BY:						
LL FIGURE NO: 10	SCALE: 1:800					
DISCIPLINE:	RONMENT					
ISSUE: -		REV.: -				


AURORA, ONTAR	CK DRIVE, UNIT 2 O CANADA L4G 0G9 J5-727-0463 J WWW.WSP.COM					
TEL.: 905-750-3080 FAX: 9	J5-727-0463 WWW.WSP.COM					
BUILDING CONCRETE DRIVEWAY LAWN ROAD SIDEWALK	IENT CATCHMENT A	-				
8 4 0 8 Metres	W	N S E				
	CLIENT: EVENDALE DEVELOPMENTS LTD					
WATER BALANC PART OF LOT 3	AL ASSESSMENT A E STUDY - BLOCK 8 31, CONCESSION 7 6E, ONTARIO					
PROJECT NO:	DATE:					
181-00471-01 DESIGNED BY:	DECEMBER 2020					
DRAWN BY: T.P.						
CHECKED BY:						
	0015					
FIGURE NO: 11	SCALE: 1:800					
TITLE:	1					
POST DEVELOPMENT B	SITE CATCHMENT LOCK 8	AREAS				
DISCIPLINE:	RONMENT					
ISSUE:		REV.:				
		-				

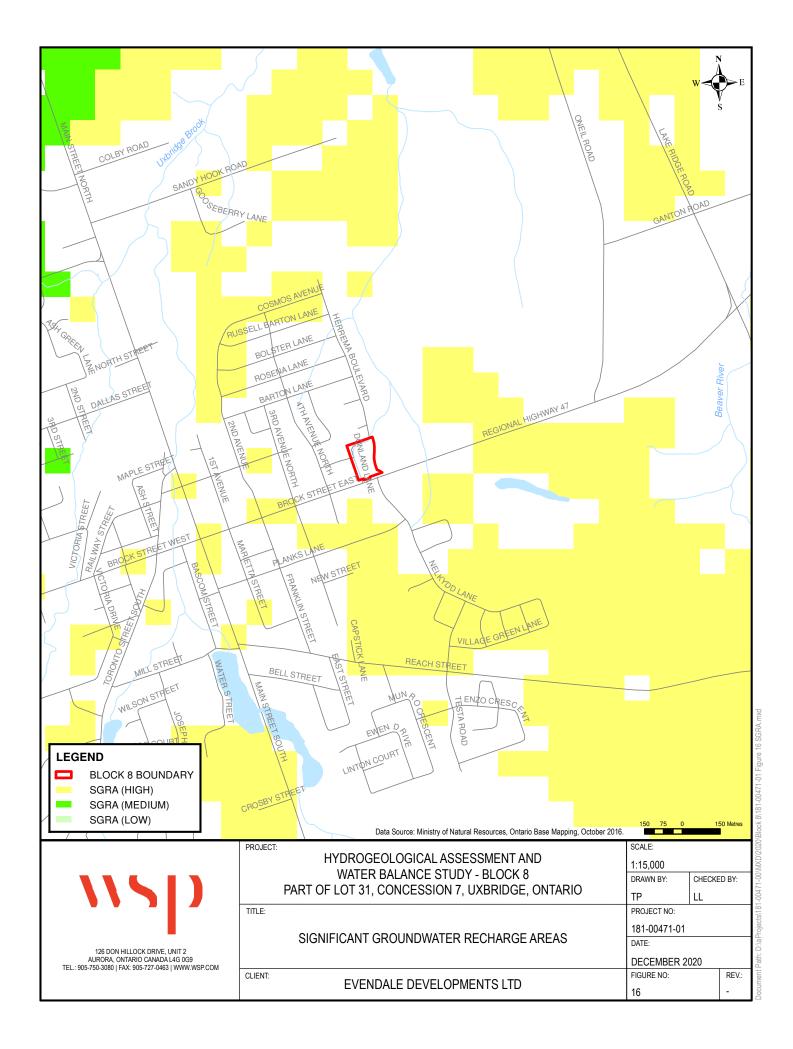
t Path: D:\aProjects\181-00471-00\MXD\2020\Block 8\181-00471-01 Figure 12 Basement Level Foc

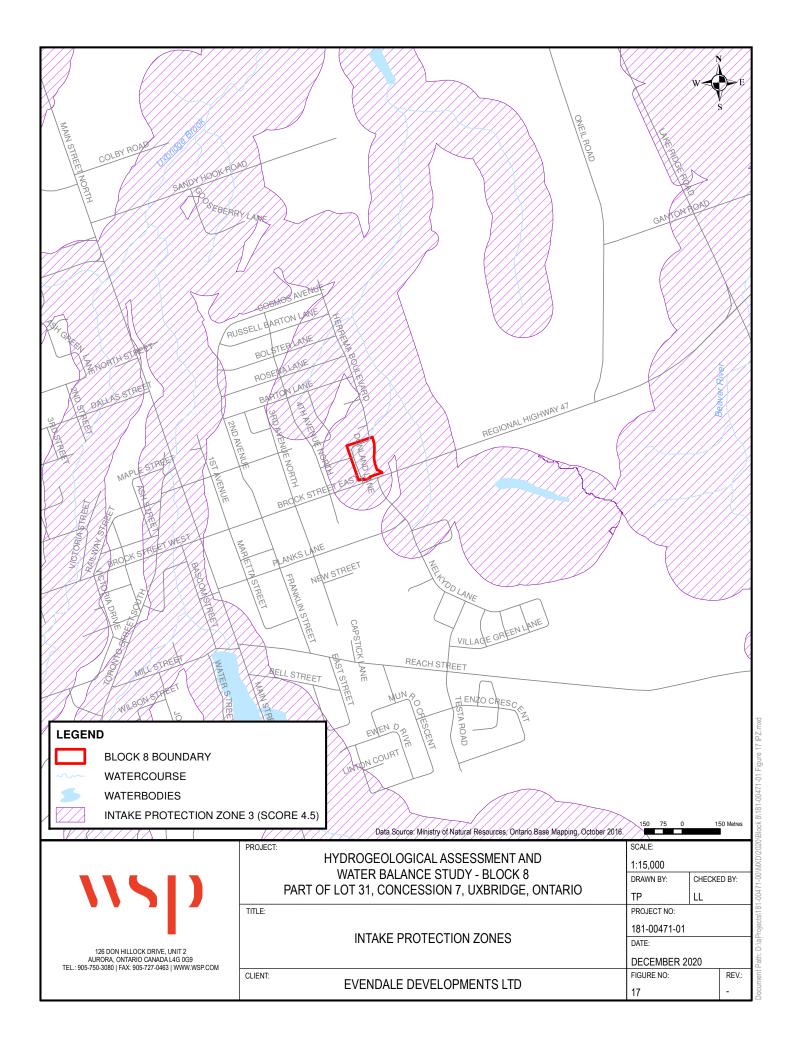
LEGEND

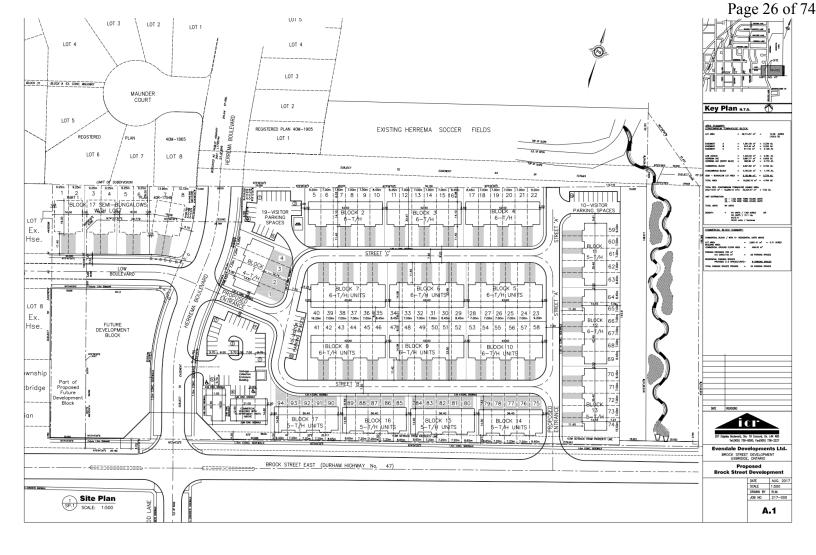

SOIL DESCRIPTION:

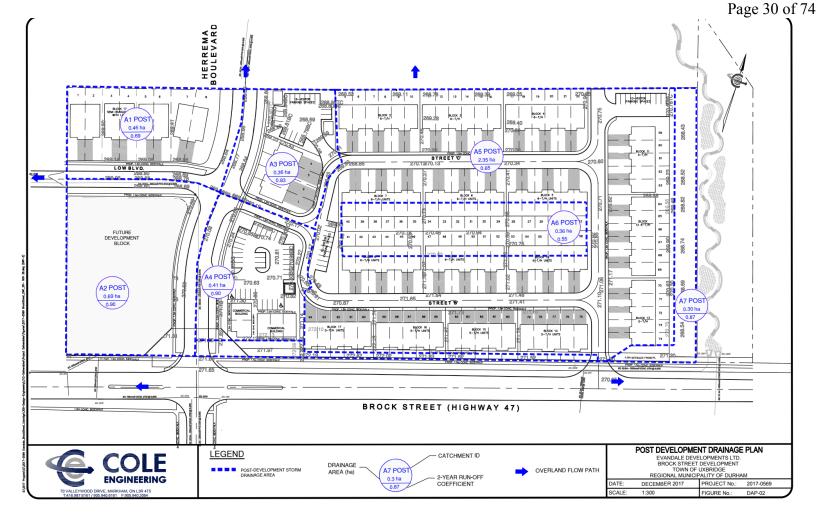

fi - FILL si - SILT sa - SAND cl - CLAY gr - GRAVEL

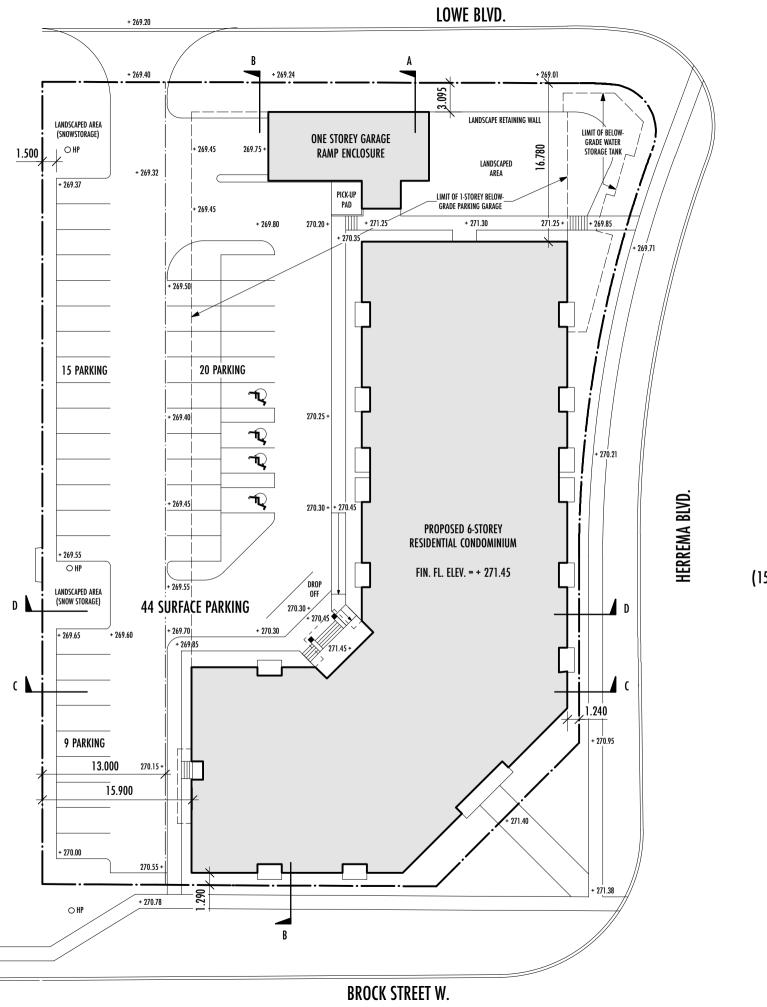
NOTE:


THE ACTUAL SOIL STRATIFICATION HAS BEEN VERIFIED FROM DATA OBTAINED AT THE WELL LOCATIONS ONLY. THE INFERRED CONTACTS SHOWN ARE BASED ON GEOLOGICAL EVIDENCE AND THESE MAY VARY FROM THOSE SHOWN BETWEEN BORINGS. WELL DATA IS PROJECTED ONTO THE SECTION WHICH ALSO MAY CREATE SOME IRREGULARITIES IN CONTACT DEPTHS.


CROSS SECTION A-A'					
HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY - BLOCK 8 PART OF LOT 31, CONCESSION 7, UXBRIDGE, ONTARIO					
DATE: DECEMBER 2020	SCALES: AS SHOWN				
PROJECT: 181-00471-01	FILE NO.: 181-00471-01 F13 CR				
wsp	FIGURE 13				


ient Path: D:\aProjects\181-00471-00\MXD\2020\Block 8\181-00471-01 Figure 15 HVA.mxd







A PROPOSED SITE PLANS

KEITH LOFFLER MCALPINE ARCHITECTS

10 ST. MARY STREET SUITE #402 TORONTO, ONTARIO M4Y 1P9

ONZABANO JOHN LICENCE 4397

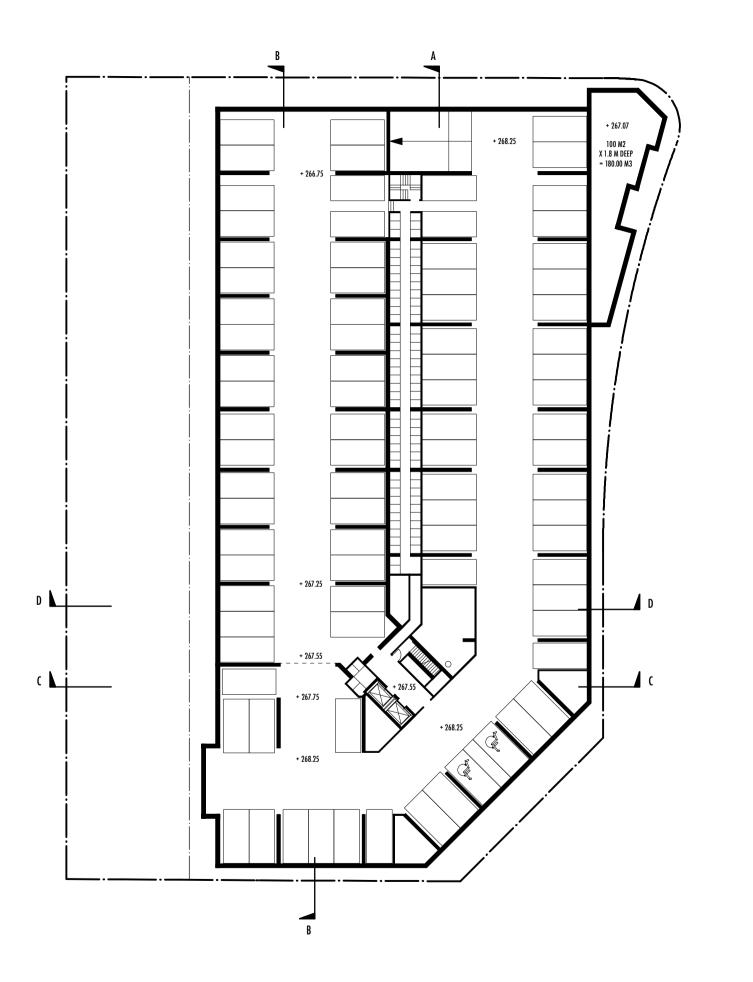
SITE AREA:	4,870.34 M2
COVERAGE:	1,858.93 M2
% COVERAGE:	38.17
G.F.A:	9,738.86 M2
F.S.I:	2.0

86
1,410.37 X 5
+ 932.89 M2
= 7,984.47 M2

PARKING:

SURFACE:	44 SPACES
BELOW GRADE:	86 SPACES
TOTAL PARKING:	130 SPACES

A PARTNERSHIP OF CORPORATION KEITH LOFFLER DESIGN INC MCALPINE ARCHITECT INC


PROPOSED RESIDENTIAL DEVELOPMENT BROCK STREET EAST UXBRIDGE, ONTARIO LEDGEMARK HOMES

SITE PLAN

A1

SCALE: 1 : 400 OCTOBER 14, 2020

BASEMENT LEVEL = 86 CARS

KEITH LOFFLER MCALPINE ARCHITECTS

10 ST. MARY STREET SUITE #402 TORONTO, ONTARIO M4Y 1P9

ANNO NY JOHN LICENCE 4397

A PARTNERSHIP OF CORPORATIONS KEITH LOFFLER DESIGN INC MCALPINE ARCHITECT INC

PROPOSED RESIDENTIAL DEVELOPMENT BROCK STREET EAST UXBRIDGE, ONTARIO LEDGEMARK HOMES

BASEMENT PLAN

SCALE: 1 : 400 OCTOBER 14, 2020

KEITH LOFFLER MCALPINE ARCHITECTS

10 ST. MARY STREET SUITE #402 TORONTO, ONTARIO M4Y 1P9

JOHN LICENCE 4397

A PARTNERSHIP OF CORPORATIONS KEITH LOFFLER DESIGN INC MCALPINE ARCHITECT INC

PROPOSED RESIDENTIAL DEVELOPMENT BROCK STREET EAST UXBRIDGE, ONTARIO LEDGEMARK HOMES

GROUND PLAN

SCALE: 1 : 400 OCTOBER 14, 2020

KEITH LOFFLER MCALPINE ARCHITECTS

10 ST. MARY STREET SUITE #402 TORONTO, ONTARIO M4Y 1P9

NV2410 JOHN LICENCE 4397

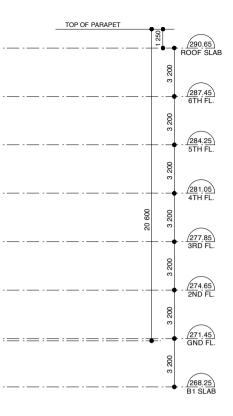
A PARTNERSHIP OF CORPOR KEITH LOFFLER DESIGN INC MCALPINE ARCHITECT INC

PROPOSED RESIDENTIAL DEVELOPMENT BROCK STREET EAST UXBRIDGE, ONTARIO

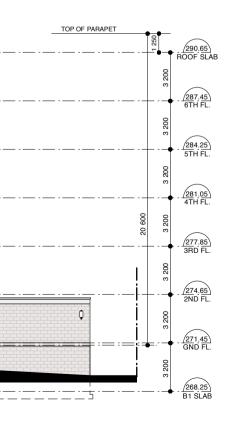
LEDGEMARK HOMES

2ND TO 6TH PLAN

SCALE: 1:400 OCTOBER 14, 2020



SOUTH ELEVATION (BROCK STREET WEST)


EAST ELEVATION (HERREMA BOULEVARD)

KEITH LOFFLER MCALPINE ARCHITECTS

10 ST. MARY STREET SUITE #402 TORONTO, ONTARIO M4Y 1P9

Ē.

A PARTNERSHIP OF CORPO KEITH LOFFLER DESIGN INC MCALPINE ARCHITECT INC

PROPOSED RESIDENTIAL DEVELOPMENT

BROCK STREET EAST UXBRIDGE, ONTARIO LEDGEMARK HOMES

SOUTH ELEVATION EAST ELEVATION

SCALE: 1:250 **OCTOBER 14, 2020**

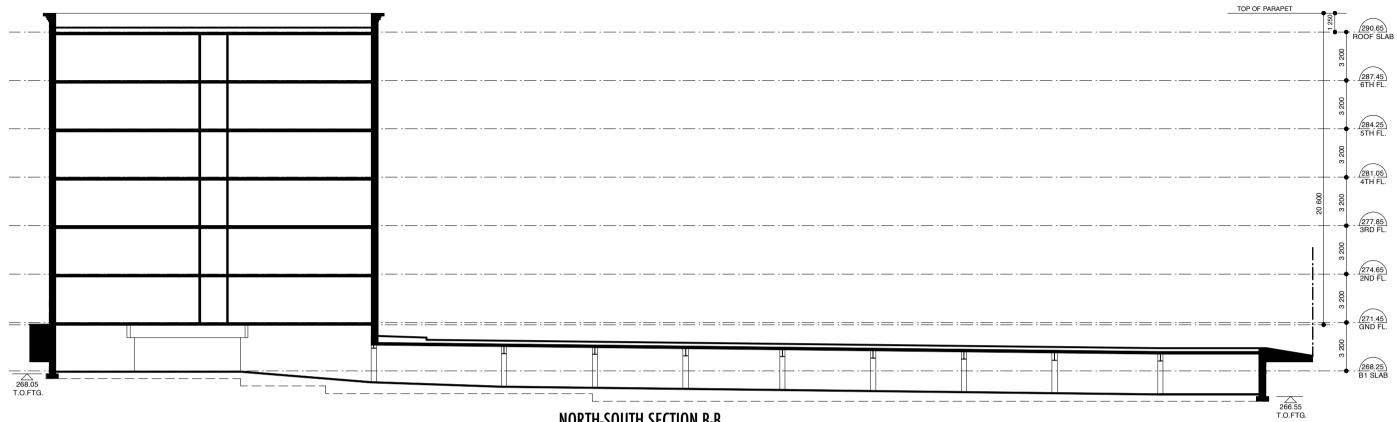
NORTH ELEVATION

WEST ELEVATION

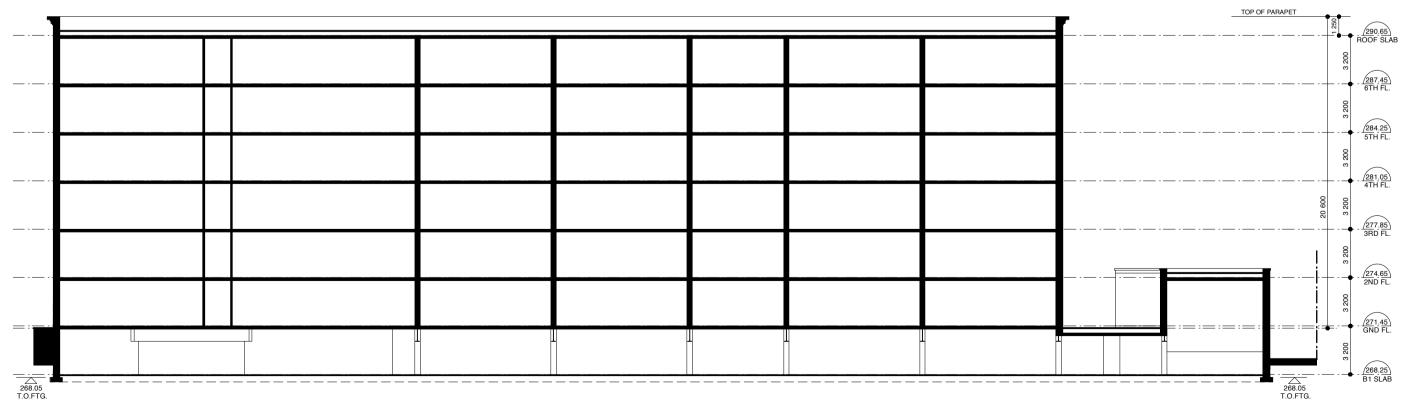
KEITH LOFFLER MCALPINE ARCHITECTS

10 ST. MARY STREET SUITE #402 TORONTO, ONTARIO M4Y 1P9

A PARTNERSHIP OF CORPORATION KEITH LOFFLER DESIGN INC MCALPINE ARCHITECT INC


PROPOSED RESIDENTIAL DEVELOPMENT

BROCK STREET EAST UXBRIDGE, ONTARIO LEDGEMARK HOMES


NORTH ELEVATION WEST ELEVATION

A6

SCALE: 1 : 250 OCTOBER 14, 2020

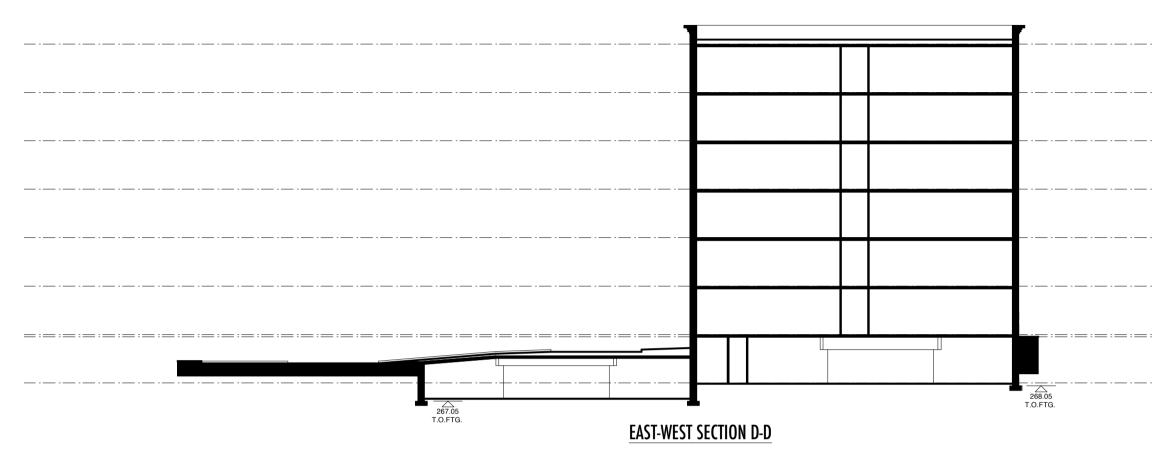
NORTH-SOUTH SECTION B-B

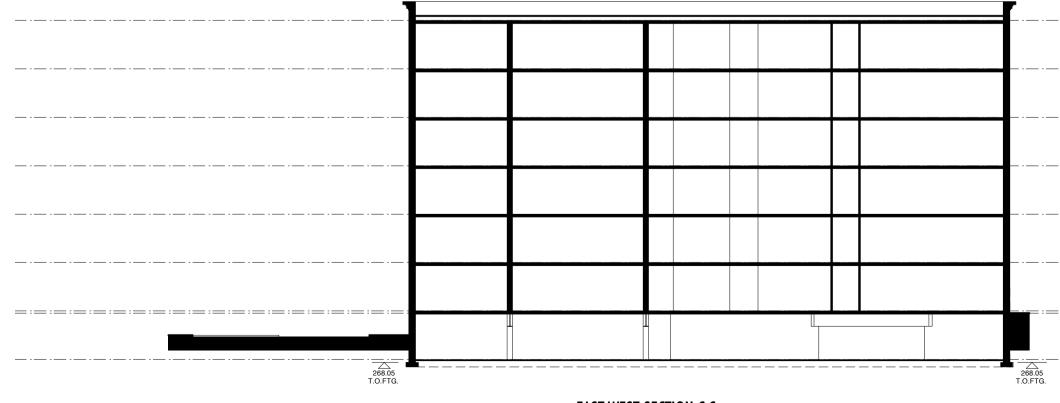
NORTH-SOUTH SECTION A-A

KEITH LOFFLER MCALPINE ARCHITECTS

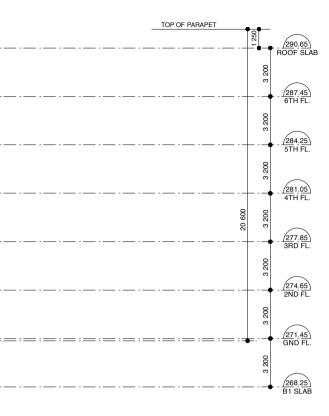
10 ST. MARY STREET SUITE #402 TORONTO, ONTARIO M4Y 1P9

A PARTNERSHIP OF CORPO KEITH LOFFLER DESIGN INC MCALPINE ARCHITECT INC

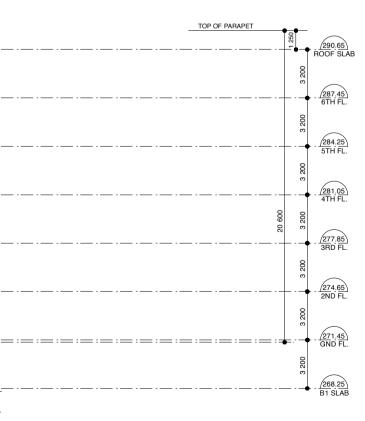

PROPOSED RESIDENTIAL DEVELOPMENT


BROCK STREET EAST UXBRIDGE, ONTARIO LEDGEMARK HOMES

SECTION A-A SECTION B-B


A7

SCALE: 1 : 250 OCTOBER 14, 2020


EAST-WEST SECTION C-C

KEITH LOFFLER MCALPINE ARCHITECTS

10 ST. MARY STREET SUITE #402 TORONTO, ONTARIO M4Y 1P9

A PARTNERSHIP OF CORPORATION KEITH LOFFLER DESIGN INC MCALPINE ARCHITECT INC

PROPOSED RESIDENTIAL DEVELOPMENT

BROCK STREET EAST UXBRIDGE, ONTARIO LEDGEMARK HOMES

SECTION C-C SECTION D-D

A8

SCALE: 1 : 250 OCTOBER 14, 2020

MECP WATER WELL RECORDS AND GEOTECHNICAL BOREHOLE LOGS

TABLE B-1 MECP WATER WELL RECORDS HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY BLOCK 6 - PART OF LOT 31, CONCESSION 7, UXBRIDGE

Well ID	x	Y	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	Units of Measurement	Water Use	Water Status	Formation Depth (m)	Material Colour	Material 1	Material 2	Material 3
905167	651114.9	4885923	272.593658	4.87680006	Boring	3.048000097		GPM	Domestic	Water Supply	0.6	BROWN	TOPSOIL CLAY	STONEY	
					-						4.9 0.6	BLACK	COARSE SAND TOPSOIL		
											5.2	BROWN	CLAY	SOFT	
06132	651214.9	4886023	271.525054	31.69919968	Cable Tool	25.90800095	20	GPM	Domestic	Water Supply	25.9 29.0	BLUE BROWN	CLAY SAND	SOFT	DIRTY
											31.7 16.5	BROWN BROWN	COARSE SAND GRAVEL	CLAY	BOULDERS
09134	651308.9	4886267	269.258789	22.86000061	Rotary (Convent.)	22.86000061	8	GPM	Domestic	Water Supply	20.4	GREY	CLAY	BOULDERS	HARD
											22.9 3.0	GREY BROWN	SAND CLAY	CLEAN DENSE	
910043	651308.9	4886267	269.258789	11.27760029	Rotary (Air)	11.27760029	6	GPM	Domestic	Water Supply	4.6 11.3	BROWN GREY	SAND SAND	FINE SAND FINE SAND	
											3.7	BROWN	CLAY	SOFT	
910770	651255.9	4886000	271.236328	24.38400078	Rotary (Air)	24.38400078	12	GPM	Domestic	Water Supply	5.2 17.4	GREY BLUE	CLAY	SOFT SOFT	
											21.3 24.4	BROWN BROWN	SAND SAND	MEDIUM SAND MEDIUM SAND	CLEAN
											4.6	BROWN	SAND	PACKED	CLEAN
913524	651090	4885911	272.539215	23.46960068	Rotary (Air)	23.46960068	40	GPM	Domestic	Water Supply	12.2 17.1	GREY GREY	CLAY	SOFT SOFT	
											23.5 1.2	BROWN BLACK	SAND TOPSOIL	GRAVEL	COARSE-GRAINEE
											2.7	GREY	SAND	SILTY	CLAY
											5.8 7.6	GREY GREY	SAND CLAY	SILTY SILTY	GRAVEL GRAVEL
											16.8 18.9	GREY GREY	SAND SAND	SILTY	GRAVEL WATER-BEARING
16320	651172	4886647	265.803833	41.45280075	Rotary (Air)	14.93519974	272	GPM		Dewatering	22.6	GREY	SAND	SILTY	GRAVEL
											29.9 30.5	GREY GREY	COARSE SAND SAND	COARSE GRAVEL GRAVEL	WATER-BEARING WATER-BEARING
											31.1 40.8	GREY BROWN	SAND SAND	GRAVEL GRAVEL	WATER-BEARING
											41.5	GREY	CLAY	SILT	DENSE
											9.1 15.8		PREVIOUSLY DUG CLAY	MEDIUM SAND	
603034	651497.9	4885651	274.356475	28.34640121	Cable Tool	28.34640121	9	GPM	Irrigation	Water Supply	18.6	RED	FINE SAND		
											25.0 28.3	BLUE BLACK	MEDIUM SAND MEDIUM SAND		
		7									1.2		CLAY SAND		
605817	651601.9	4886190	272.364318	10.66800022	Boring	6.705600262	0	GPM	Livestock	Water Supply	6.4		SANDSTONE		
											9.4 10.7		QUICKSAND COARSE SAND		
											3.7 6.7		CLAY SAND		
605818	651675.9	4886287	270.361145	10.66800022	Boring	7.924799919		GPM	Livestock	Water Supply	9.1		SANDSTONE		
605920	651580.9	4886286	270.920379	27.43200111	Deter (Count)	27.43200111	9	GPM	Livestock	Water County	10.7 7.6	BROWN	SAND SAND	GRAVEL CLAY	
105580	650938	4885286	270.920379	4.2	Rotary (Convent.) Auger	27.43200111	9	GPM	Not Used	Water Supply Other Status	27.4 4.2	BROWN BROWN	SAND MEDIUM SAND		
13652	650932	4885903	274.26773	4.2	Augei	2.4			Not 03eu	Test Hole	4.572000027	BROWN	SAND	SILT	LOOSE
13653	650928	4885912	274.034484							Test Hole	5.486400127	BROWN	SAND	SILT	LOOSE
915993	651437.2	4885858	273.423126							Abandoned-Other					
916182	651437.2	4885858	273.423126							Abandoned-Other					
916322	651172	4886647	265.803833							Abandoned-Other					
916324	651172	4886647	265.803833							Abandoned-Other					
916325	651172	4886647	265.803833							Abandoned-Other					
											1.22	BROWN	SAND		
917402	650928	4885912	274.034484							Observation Wells	4.28	BROWN	SAND	WATER-BEARING	
917590	650959	4885832	275.415618							Observation Wells	0.15	BROWN BROWN	GRAVEL SAND		
917591	650957	4885900	274.293457							Observation Wells	3 4.5	BROWN BROWN	SAND SAND	DRY	
918330	650940	4885900	274.353515							Observation Wells	2.4	BROWN	MEDIUM SAND	GRAVEL	
											3.6 0.1	BROWN	MEDIUM SAND	GRAVEL	
918460	651037	4885968	270.425231						Not Used	Test Hole	0.3	BROWN	GRAVEL	SANDY	FILL
											2.3	BROWN	SILT	SAND	
108535	651038	4885968	270.408782							Abandoned-Other	6	BROWN	SAND	SILT	
106555	031038	4003900	270.408782							Abandoned-Other	1.2	BROWN	SAND		MEDIUM-GRAINED
17008	650934	4885934	273.390747						Test Hole	Test Hole	3	BROWN	SAND	SILT	
											5.1 1.2	BROWN BROWN	SAND SAND	SILT	COARSE-GRAINED MEDIUM-GRAINED
17009	650898	4885903	274.189971							Test Hole	1.8 4.5	BROWN	SAND SAND	SILT	MEDIUM-GRAINED
									1_	_	0.6	BROWN	SAND	SILT	COARSE-GRAINED
17010	650940	4885909	274.099853						Test Hole	Test Hole	1.8 4.5	BROWN BROWN	SAND SAND	SILT	MEDIUM-GRAINEE WATER-BEARING
											0.6	BROWN	SAND	GRAVEL	COARSE-GRAINED
117011	650933	4885896	274.444671						Test Hole	Test Hole	1.8 4.2	BROWN BROWN	SAND SAND	SILT SILT	FINE-GRAINED WATER-BEARING
											4.6 1.8	GREY BROWN	SILT SAND	SAND	WATER-BEARING FINE-GRAINED
117012	650904	4885899	274.299011						Test Hole	Test Hole	3	BROWN	SAND	SILT	
									<u> </u>		4.5	BROWN	SAND SAND	SILT MEDIUM GRAVEL	MEDIUM-GRAINED
											2.8 3.6	BROWN	SAND SAND	SILT CLAY	SILT
117013	650951	4885871	275.050262						Test Hole	Test Hole	4.8	BROWN	SAND	SILT	CLAY
											5.1 5.9	BROWN BROWN	SILT CLAY	CLAY SILT	WATER-BEARING WATER-BEARING
17014	650917	4885846	275.190399						Test Hole	Test Hole	1.8	BROWN	SAND SAND	SILTY	FINE-GRAINED WATER-BEARING
	116000	4003040	213.130333						IEST HOIG	ופאר חסופ	4.5	BROWN	SAND	SILIT	WATER-BEARING WATER-BEARING
17015	650984	4885867	274.794677						Test Hole	Test Hole	0.3 3.8	BROWN BROWN	TOPSOIL SAND	<u> </u>	WATER-BEARING
1170/ -	650001	4005055	175 400						Terter	Te -+	1.5	BROWN	SAND		MEDIUM-GRAINED
117016	650991	4885836	275.18045						Test Hole	Test Hole	5.3 5.9	BROWN GREY	SAND CLAY	SILT	CLAY WATER-BEARING
117017	650958	4885774	275.578857						Test Hole	Test Hole	1.2 3.6	BROWN BROWN	SAND SAND	MEDIUM-GRAINED SILT	MEDIUM-GRAINE
.1/01/	000300	4003774	213.3/003/						rest noie	TESC HUIE	5.4	BROWN	SAND	SILT	WATER-BEARING
19880	650950	4885814	275.5						Test Hole	Test Hole	3.8	BROWN BROWN	SAND CLAY		SOFT SOFT
									Monitoring		5.2	BROWN BROWN	SAND	SILT	SOFT WATER-BEARING
23787	651582	4885689	273.245361						and Test	Test Hole	10	GREY	SAND	SILT	WATER-BEARING WATER-BEARING
28861	651038	4885968	270.408782							Abandoned-Other					
	651034	4885991	270.067626						Not Used	Test Hole	0.9	GREY	STONES	GRAVEL	
39469											3.05	BROWN	SAND	SILT	SILTY

TABLE B-1 MECP WATER WELL RECORDS HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY BLOCK 6 - PART OF LOT 31, CONCESSION 7, UXBRIDGE

Well ID	x	Y	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	Units of Measurement	Water Use	Water Status	Formation Depth (m)	Material Colour	Material 1	Material 2	Material 3
150170	650938	4885903	274.272674							Abandoned-Other					
155254	651034	4885991													
											3	BROWN	FILL	SAND	LOOSE
159581	650920	4885896							Test Hole	Test Hole	7	BROWN	FILL	SAND	GRAVEL
											15	BROWN	FILL	SAND	WATER-BEARING
168524	650916	4885889								Abandoned-Other					
7168525	650982	4885862								Abandoned-Other					
7188925	650996	4885841													
7194819	650937	4885855							Test Hole	Test Hole	3.657599926	BROWN	FILL		LOOSE
											4.572000027	BROWN	MEDIUM SAND		WATER-BEARING
7211094	651390	4885610								Abandoned-Other					
7214791	650918	4885850								Abandoned Monitoring and					
214/51	050510	4005050								Test Hole					
											0.304800004	BROWN	TOPSOIL	HARD	DENSE
7218500	650913	4885627							Test Hole	Test Hole	3.96239996	YELLOW	SAND	SILT	
											4.572000027	YELLOW	SAND	CLAY	WATER-BEARING
	650040	4005044							T	T	0.304800004	BROWN	TOPSOIL	HARD	DENSE
7218501	650918	4885841							Test Hole	Test Hole	3.96239996	YELLOW	SAND	SILT	
											4.572000027	YELLOW	SAND	CLAY	WATER-BEARING
7225855	651390	4885579							Not Used	Abandoned-Other					
7235444	650587	4886059								Abandoned-Other					
7238015	650948	4885815								Abditabiled Other					
											2.43840003	BROWN	SAND		1
7246957	650949	4885812							Test Hole	Test Hole	4.572000027	BROWN	SAND		WATER-BEARING
											4.572000027	BROWN	TOPSOIL	LOOSE	WATER-DEARING
7250156	650927	4885943							Test Hole	Observation Wells	5	BROWN	FILL	LOOSE	
230130	050527	4003343							rescrible	Coservation vvens	17.5	GREY	SILT	CLAY	SOFT
											1	BROWN	TOPSOIL	LOOSE	3011
7250157	650930	4885938							Test Hole	Observation Wells	5	BROWN	FILL	LOOSE	
230137	050550	4005550							reseriore	observation wens	17.5	GREY	SILT	CLAY	SOFT
											1	BROWN	TOPSOIL	SOFT	5011
7250158	650928	4885953							Test Hole	Observation Wells		BROWN	SAND	SILT	SOFT
											15	GREY	SILT	CLAY	SOFT
											1	BROWN	TOPSOIL	SOFT	5011
7250159	650936	4885944							Test Hole	Observation Wells	5	BROWN	SAND	SILT	SOFT
230133	050550	4005544							reseriore	observation wens	15	GREY	SILT	CLAY	SOFT
											0.152400002	BROWN	TOPSOIL	LOOSE	5011
											0.304800004	BROWN	SAND	SILT	LOOSE
7250262	650933	4885968							Test Hole	Observation Wells	2.743200064	BROWN	SILT	CLAY	LOOSE
											4.572000027	GREY	SILT	CLAY	LOOSE
											0.152400002	BROWN	TOPSOIL	LOOSE	
											0.304800004	BROWN	SAND	SILT	LOOSE
7250263	650933	4885971							Test Hole	Observation Wells	2.743200064	BROWN	SILT	CLAY	LOOSE
											4.572000027	GREY	SILT	CLAY	LOOSE
											0.152400002	BROWN	TOPSOIL	LOOSE	
											0.304800004	BROWN	SAND	SILT	LOOSE
7250264	650940	4885976							Test Hole	Observation Wells	2.743200064	BROWN	SILT	CLAY	LOOSE
											4.572000027	GREY	SILT	CLAY	LOOSE
											0.30000012	BROWN	TOPSOIL		TOPSOIL
7258221	650941	4885799							Monitoring	Observation Wells	2.440000057	BROWN	SAND		SOFT
									-		4.570000172	BROWN	SAND		WATER-BEARING
7263012	650940 650938	4885926 4885923													+
203013	050938	4885923									1.5	BROWN	TOPSOIL		+
7270037	651318	4886095	269.234924	7.619999886	Rotary (Convent.)				Monitoring		4.6	BROWN	SAND	TOPSOIL	
					,						7.6	GREY	CLAY		SILTY
											0.3	BROWN	TOPSOIL		
7280801	650936	4885809	275.492126	3.048000097	Boring				Monitoring		2.7	GREY	SAND		SOFT
					-				Ŭ		3.0	BROWN	FINE SAND	CLAY	
											0.3	BROWN	TOPSOIL		
7280802	650945	4885812	275.49942	3.048000097	Boring				Monitoring		2.7	GREY	SAND		
											3.0	BROWN	FINE SAND	CLAY	SOFT
7285192	650948	4885815	275.5							Abandoned-Other					
7297864	650961	4885869	275.1										-		
308681	650936	4885967													
7308682	650943	4885970													
7308683	650939	4885980													
7308684	650941	4885969													
308685	650940	4885936													
	650952	4885814													
7308686								1			1.2	BROWN	SAND	SAND	
308686															
	650951	4885816		4.572000027	Other Method						2.7	BROWN BROWN	SAND SAND	GRAVEL	

Ministry of the Environment and Climate Change	To or the sticker		on 903 Ontario V		Record
Measurements recorded in: 🗌 Metric 🗌 Imperial	Tag#: A20	12261	Pag		of
Well Owner's Information First Name Last Name / Organization		E-mail Address			Constructed
Mailing Address (Street Number/Name)	Municipality	Province Postal Co	to Tolophan	by W	ell Owner
1595 Clark Blud	Branpton	On LIGTL			area code) 9 8 6 0
Well Location Address of Well Location (Street Number/Name)	Township	Lot			
Danland Ln & Brock St E County/District/Municipality	City/Town/Village		Province		Code
UTM Coordinates Zone, Easting 3 ?) & , Northing	Acbridge		Ontario	FUSIA	
NAD 8 3 1 7 66 51 9 13 1 8 Northing	Municipal Plan and Sub	lot Number	Other		
Overburden and Bedrock Materials/Abandonment Sealing R	lecord (see instructions on th	e back of this form)			
General Colour Most Common Material	Other Materials	General Descriptio	n	From	th (<i>m/ft</i>)
Drown top soil light Brim Sayal S	oil			0	S
arey Silty Clay	01 1			5	15
grey still chy				15	<u></u>
Well #Z					
651064					
65106H 4886095					
				104Medaterren and a state and a second	
Annular Space Depth Set at (m/ft) Type of Sealant Used	Volume Placed	Results of W After test of well yield, water was:	Praw Down		ecovery
From To (Material and Type)	(m³/ft³)	Clear and sand free	Time Water Lev	el Time \	Water Level
O 13 holeplug		Other, <i>specify</i>	Static	(min)	<u>(m/ft)</u>
			Level 1	1	
		Pump intake set at (m/ft)	2	2	
		Pumping rate (I/min / GPM)	3	3	
Method of Construction Well Cable Tool Diamond Public Com		Fumping rate (<i>Milin / GPM</i>)	4	4	
Rotary (Conventional)	icipal	Duration of pumping hrs + min	5	5	
Boring Digging Irrigation Cool	Hole Monitoring	Final water level end of pumping (m/tt)		10	
Air percussion Industrial Other, specify Other, specify		If flowing give rate (I/min / GPM)	15	15	
Construction Record - Casing	Status of Well	n nowing give rate (vmm / GPM)	20	20	
Inside Open Hole OR Material Wall Depth (m/ft) Diameter (Galvanized, Fibreglass, (cm/in) Thickness Concrete, Plastic, Steel) Thickness (cm/in) From To	Water Supply	Recommended pump depth (m/ft)	25	25	
	Test Hole Recharge Well	Recommended pump rate	30		
1. PUC 0 15	Dewatering Well	(Vmin / GPM)		30	
	Observation and/or Monitoring Hole	Well production (I/min / GPM)	40	40	
	(Construction)	Disinfected?	50	50	
Construction Record - Screen	Abandoned, Insufficient Supply	Yes No	60	60	
Outside Material Diameter (Direction Ontonio Slot No. Depth (m/ft)	Abandoned, Poor Water Quality	Please provide a map below following	Il Location	ack.	
(cm/in) (Fiziki, Carvainzeu, Steer) From To	Abandoned, other, specify				
1 PUL 10 15 25	Other, specify				
	Hole Diameter	(> 160 -			
(m/ft) Gas Other, specify From	To (cm/in)	+2			
Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify	25 6	(Constant)			
Water found at Depth Kind of Water: Fresh Untested		land			
(m/ft) Gas Other, specify Well Contractor and Well Technician Informa		F			米1
Business Name of Well Contractor	/ell Contractor's Licence No.	is the second se	*****		SOMP
TEREX Orilling Solution 5 Business Address (Street Number/Name) M	Iunicipality	Brock St	E		
491 Bowes Rd	Daughin	Comments:			
Province Postal Code Business E-mail Address Unt LI 41K/1 J5 terexdrilling Solution		Mail automatical income			
Bus. Telephone No. (inc. area code) Name of Well Technician (Last Name	First Name)	Well owner's Date Package Delivered	Audit No. 🌱	y Use O つつの	nly 7/7
Vell Technician's Licence No. Signature of Technician and/or Contractor Da		delivered		<u> </u>	141
5 6 8 1 Ch	ate Submitted	□ Yes □ No 2 0 1 6 0 8 2	AUG . Received	2 6 201)
506E (2014/11)	Ministry's Copy		© Queen's P	rinter for On	itario, 2014

				R	ECO	RD C	OF BC	DREHOL	E No.	BH1		1 OF	= 3	ME	TRIC	
PROJE	ECT NUMBER 10451A		CATIC	DN _	Brock	Street	East, L	Jxbridge, ON						_ ORIG	INATED	BY JA
DIST_	HWY	BOF	REHC	DLE T	YPE _	Solid	Stem A	Auger							PILED B	Y JA
DATU	M Geodetic	DAT	E _2	2020.03	8.05 - 20	020.03.0	5 LAT	ITUDE		L	ONGITU	DE			CKED BY	
<u>ELEV</u> DEPTH	SOIL PROFILE	STRAT PLOT	NUMBER	SAMPL 34	"N" VALUES	GROUND WATER CONDITIONS	LEVATION SCALE	DYNAMIC C RESISTANC 20 SHEAR ST 0 UNCON • QUICK	40 60 RENGT FINED) 80 TH kPa + Fl	100 LD VANE	- W _P	NATURAL MOISTURE CONTENT W O R CONTEI	W _L	Junit Weight	REMARKS & GRAIN SIZE DISTRIBUTION (%)
269.9 0.0	Gravel CRUSHED LIMESTONE- 125 mm thick		1A	SS				20	40 60	80	100	20	40	60	kN/m ³	GR SA SI C
269.8	FILL- sand and gravel, brown,		1B	SS		-										
<u>269.7</u> 0.2	moist FILL - sand, some silt, trace stones, light brown, moist		1C	SS	16	_										
<u>269.1</u> 0.8	- organic odour, very moist		> 2	SS	19	_ 	269					0				
268.4 1.5 268.3 1.7	FILL - sandy silt, organic odour, brownish grey, very moist PROBABLE FILL - clayey silt, trace sand, grey, moist			SS	16	-						0				
<u>267.6</u> 2.3	SILTY CLAY - trace gravel, trace sand, grey, very stiff, moist		4	SS	17	-	268	3				c				
<u>266.9</u> 3.1	- trace sand, firm					-	267	,								
			5	SS	7	-						o				
							266	5								
	Continued Next Page		1				+ ³ ,×	3. Numbers	refer to	30	[%] STRAIN					

				R	ECO	RD C)F BC	OREHO	LE No	. BH	1	2	OF 3	3	ME	TRIC	
PROJE	CT NUMBER 10451A	_ LOC	CATIC	DN _	Brock	Street	East, L	lxbridge, C	DN						_ ORIG	INATED	BY JA
DIST_	HWY	BOF	REHC		YPE .	Solid	Stem A	uger								PILED B	Y_JA
DATUN	Geodetic	DA1	E _2	2020.03	8.05 - 20	020.03.0	5 LAT	ITUDE _			LONGIT	UDE _			_ CHEO	CKED BY	
	SOIL PROFILE		s	SAMPL	.ES	2	Щ	DYNAMIC RESISTAI	CONE PE		TION		NΔ				REMARKS
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	түре	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCAL	20 SHEAR	40 (STRENG ONFINED K TRIAXIA	50 8 6TH kPa +	0 100 a FIELD VAN LAB VANE		CON TER C	TURAL STURE NTENT W -0 ONTEN 40	W _L	LINN ONIT MEIGHT KN/m ³	GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
<u>265.3</u>	- trace sand, firm <i>(continued)</i> - stiff to very stiff																
264.9	- sun to very sun		6	SS	15		265						0				
5.0	End of Standard Penetration Test (SPT) at 5.03 m Below Ground Surface; Dynamic Cone Penetration Test (DCPT) Starts at 5.18 m;																
							264										
							263										
	Continued Next Page						262										

			F	RECO	RD C)F BC	REHOL	.E No	. BH1		3 C)F 3	M	ETRIC	,
PROJ	ECT NUMBER 10451A	_ LOC	ATION	Brock	Street	East, U	xbridge, Ol	١						GINATED	BY JA
DIST	HWY	_ BOF	REHOLE -	TYPE	Solid	Stem A	uger						COI	MPILED B	Y JA
DATU	M Geodetic	DAT	E 2020.	03.05 - 2	020.03.0	5 LAT	TUDE		L	ONGITUE)E			ECKED BY	(
ELEV DEPTH	SOIL PROFILE	STRAT PLOT	NUMBER TYPE	N" VALUES	GROUND WATER CONDITIONS	EVATION SCALE	SHEAR S	CE PLOT 40 6 TRENG	50 80 TH kPa + FI	100 ELD VANE		CONTE W	ENT UNI		REMARKS & GRAIN SIZE DISTRIBUTION (%)
	DCPT Ends at 9.45 m; End of Borehole at 9.45 m Below Ground Surface. Borehole Caved at 1.22 m Upon Completion of Drilling. Groundwater Measured at 1.17m Upon Completion of Drilling.					261	o UNCON	IFINED TRIAXIAI 40 6	+ FI L × LA 30 80	ELD VANE 100	20	ER CON	ITENT (%)	γ κN/m³ kN/m³ -	GR SA SI CL

				R	ECO	RD C	OF BC	RE	HOL	E No). Bł	12		1	OF 3	3	ME	TRIC		
PROJE	CT NUMBER 10451A	LOC	CATIC	DN _	Brock	Street	East, U	xbridg	ge, ON									INATED	BY JA	
DIST_	HWY	BOF	REHC	DLE T	YPE .	Solid	Stem A	uger									_ COM	PILED B	/ <u>JA</u>	
DATUM	Geodetic	DAT	E _2	2020.03	8.05 - 20	020.03.0	5 LAT	TUDI	Ξ			LO	NGITUI	DE _			_ CHE	CKED BY		
	SOIL PROFILE			Sampl		ATER	SCALE			ONE PI E PLO				PLAST LIMIT		TURAL STURE NTENT	LIQUID LIMIT		REMA &	
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	SHE ol	AR ST	RENC FINED	ithki + L×	Pa FIEL	D VANE	- w _P		w -0	w _∟ 	≤ γ	GRAIN DISTRIB (%	UTION
270.2 To 0.0	ppsoil TOPSOIL- 125 mm thick	- C	-				Ξ		20	40	50	80	100		20	40	60	kN/m ³	GR SA	SI CL
270.1 0.1	FILL- sand, some silt, trace rootlets, trace organic, brown, moist		1A	SS	4		270													
			1B	SS											ס					
<u>269.4</u> 0.8	- trace clay, trace organic, very moist		1 > > >																	
			2	SS	11		269								0					
268.7	<u></u>		> > >				209													
1.5	FILL- silty sand, trace organic, brown, wet		3	SS	12										٥					
<u>267.9</u> 2.3	CLAYEY SILT - trace sand, grey, very stiff, wet					¥ ₽	268													
			4	SS	17										0					
			5	SS	16		267								0					
	Continued Navt Page																			

Continued Next Page

+³, ×³: Numbers refer to Sensitivity O^{3%} STRAIN AT FAILURE

				R	ECO	RD O	F BC	REHOLE No. BH2	2 OF 3	METRIC	
	ECT NUMBER 10451A										
	HWY										
DATU	M Geodetic	DAT	E _2	2020.03	8.05 - 20	020.03.05			DE	_ CHECKED BY	
	SOIL PROFILE		S	SAMPL	.ES	ы К	ΓE		DI ASTIC NATURAL		REMARKS
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	20 40 60 80 100 SHEAR STRENGTH kPa 0 <th>WATER CONTEN</th> <th>[₩], [¬] ₩ , T (%) γ</th> <th>& GRAIN SIZE DISTRIBUTION (%) GR SA SI C</th>	WATER CONTEN	[₩] , [¬] ₩ , T (%) γ	& GRAIN SIZE DISTRIBUTION (%) GR SA SI C
	CLAYEY SILT - trace sand, grey, very stiff, wet (continued)						266				
265.6 4.6	SILTY CLAY- stiff, very moist		6	SS	12				0		
							265				
<u>264.1</u> 6.1	- stiff, moist		7	SS	10		264		o		
							263				
	Continued Next Page		8	SS	11			3: Numbers refer to 0.3% STRAIN	þ		

+ ³, \times ³: Numbers refer to O ^{3%} STRAIN AT FAILURE Sensitivity

				RI	ECO	RD C	OF BC	DRE	IOLE	E No	. BH	2		3 (OF 3		ME	TRIC	
PROJE	CT NUMBER 10451A	_ LOC	ATIC	DN _	Brock	Street	East, U	xbridg	e, ON								ORIG	INATED	BY JA
DIST_	HWY	_ BOF	REHC	DLE TY	PE.	Solid	Stem A	uger									СОМ	PILED B	Y JA
	Geodetic	_ DAT	Е <u></u> 2	2020.03	.05 - 20	020.03.0	5 LAT	ITUDE				LON	GITU	DE			CHE	CKED BY	
	SOIL PROFILE	OT		SAMPL		WATER	EVATION SCALE						00	PLASTI LIMIT	CON	TENT	LIQUID LIMIT	UNIT WEIGHT	REMARKS & GRAIN SIZE
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION	0 UI • QI	AR STI NCONF UICK TI 20 4	INED	+ L X	FIELD LAB V		WP WAT	ER CC		w∟ T (%)	- ≥ Υ∕ kN/m ³	DISTRIBUTION (%) GR SA SI CL
262.1	- stiff, moist (continued)																		
8.1	End of Borehole at 8.08 m Below Ground Surface. Borehole Caved at 6.1 m Upon Completion of Drilling. Groundwater Measured at 2.13 m Upon Completion of Drilling.																		

					R	ECO	RD C)F BC	RE	HOLI	E No	. BH	3		1	OF 2	2	ME	TRIC	
DATUM Generalization DATE 20001015-20201030 LATTUDE LONGTUDE CHECKED BY SOUL PROPILIE SAMPLES Big grad	PRO.	JECT NUMBER 10451A	LOC	ATIC	DN _	Brock	Street	East, U	xbridg	e, ON									INATED	BY JA
SOLL PROFILE SAMPLES Unit of the second sec	DIST	HWY	BOF	REHC		YPE _	Solid	Stem A	uger									_ СОМ	PILED BY	/ JA
LEF DESCRPTION Image: series of the series	DATU	JM _Geodetic	DAT	Е <u></u> 2	2020.03	8.05 - 20	020.03.0	5 LAT	ITUDE	I			LON	GITU	DE			CHE	CKED BY	
LEDT DESCRPTION USE USE USE USE USE USE USE USE USE USE		SOIL PROFILE		5	SAMPL	.ES	с	щ	DYNA	MIC CO	ONE PE		ATION			NAT				DEMARKS
2886 10 PESCIL: 50 mm thick 14 28 10			STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATE	ELEVATION SCAI	2 SHE/ 0 U • Q	AR STI NCONF	RENG	50 8 	30 1 Pa FIELD LAB V	00 VANE ANE	WP WA			LIMIT WL 	γ	& GRAIN SIZE DISTRIBUTION (%)
2805	269.0	TOPSOIL- 50 mm thick	<u> </u>		SS												Ť	1	KN/III	
288.9 FEL: sand, there grave, take 2 SS 15 288.9 FEL: sand, there grave, take 2 SS 11 288.1 2 SS 11 0 0 288.1	269.5	··· clav. grev. moist		1B	SS															
200.9	0.2	- brown		1C	SS	15	-	269												
2 55 11 2 55 11 3 - wei 4 55 4 55 4 55 4 55 4 55 4 55 4 55 4 55 4 55 4 55 5 55 3 SILTY SAND - brown, dense, wery moist		FILL- sand, trace gravel, trace																		
267.3 -very moist 268 - </td <td></td> <td>Sint, brown, very moist</td> <td></td> <td>2</td> <td>SS</td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>c</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Sint, brown, very moist		2	SS	11									c					
2.3 - very moist 4 SS 40 4 SS 40 0 0 266.6 - - - - 0 3.1 SILTY SAND - brown, dense, very moist - - - - - 5 SS 36 - - - - - -		- wet		3	SS	21	Ţ	268								0				
266.6 3.1 SILTY SAND - brown, dense, very moist 5 5	<u>267.3</u> 2.3	- very moist		4	SS	40	-								0					
3.1 SILTY SAND - brown, dense, very moist 5 SS 36				• • •			-	267												
				5	SS	36	-								0					
Continued Next Page								266												

+³, ×³. Numbers refer to O^{3%} STRAIN AT FAILURE Sensitivity

				R	ECO	RD O	F BC	REH	OLE	E No	. BH	3		2 0	OF 2		ME	TRIC	
PROJ	IECT NUMBER 10451A	LOC	ATIC	ом _	Brock	Street I	East, U	xbridge	, ON								ORIG	INATED	BY JA
DIST	HWY	BOR	₹EHC)LE TY	/PE _	Solid	Stem A	uger									COM	PILED BY	′JA
DATU	JM Geodetic	DAT	Е <u></u> 2	2020.03	.05 - 20	020.03.0	5 LAT						GITUD	E			CHE	CKED BY	
	SOIL PROFILE		5	SAMPL	ES	ER (ALE	DYNAN RESIS	IIC CC	NE PE PLOT		ATION		PLASTI		JRAL	LIQUID	Ŧ	REMARKS
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	20 SHEA O UN • QL 20	R STF ICONF IICK TF	RENG [®] INED RIAXIAI	TH kP + - ×	0 10 a FIELD V LAB V 0 10	VANE	W _P			LIMIT W _L	NUIT MEIGHT KN/m ³	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	SILTY SAND - brown, dense, very moist <i>(continued)</i>																		
<u>265.1</u> 4.6	- dense to very dense		6	SS	30	-	265							0					
<u>263.5</u> 6.1	- compact						264												
			7	SS	16									o					
263.1	End of Borehole at 6.55 m Below Ground Surface. Borehole Caved at 3.05 m Upon Completion of Drilling. Groundwater Measured at 1.52 m Upon Completion of Drilling.																		

O 3% STRAIN AT FAILURE

				R	ECO	RD O	F BC	DRE	HOLI	E No	. BH	14		1	OF 3		ME	TRIC	
PRO	JECT NUMBER 10451A	LOC	CATIC	DN _	Brock	Street E	East, U	xbridg	e, ON								ORIG	INATED	BY JA
DIST	HWY	BOF	REHO	LE T	/PE _	Solid S	Stem A	uger									COM	PILED B	YJA
DATU	JM Geodetic	DAT	E _2	020.03	.05 - 20	020.03.05	5 LAT	ITUDE				LON	GITUE	DE			CHE	CKED BY	
<u>ELEV</u> DEPTH	SOIL PROFILE	STRAT PLOT	NUMBER	AMPL 34	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	SHE/ OU	20 4 AR STI NCONF	PLOT PLOT RENG NED RIAXIA	i0 8 H KF +	30 1 Pa FIELD	VANE	W _P	,	ITENT W O	LIQUID LIMIT WL	الالله UNIT Weight	REMARKS & GRAIN SIZE DISTRIBUTION (%)
269.9 26 9.9	Topsoil TOPSOIL- 50 mm thick		1A	SS	-		Ξ	:	20 4	10 6	3 0	30 1	00	2	20 4	10 (60	kN/m ³	GR SA SI C
0.1	FILL- silty sand, trace gravel, trace clay, trace rootlets, brown, moist		> 1B	SS	8	-								c	5				
<u>269.1</u> 0.8	FILL- sandy silt, mottled, light brown, moist		2	SS	24		269					K							
<u>268.4</u> 1.5	FILL- silty sand, brown, very wet		> 3	SS	17		268								0				
<u>267.6</u> 2.3	CLAYEY SILT- some sand, grey, very stiff, wet		4	SS	26										0				
<u>266.8</u> 3.1	SILTY CLAY- grey, firm to stiff,						267												
	very moist		5	SS	8														
							266												
	Continued Next Page						_	<u> </u>		refer to		3% ~							

+ ³, \times ³: Numbers refer to O ^{3%} STRAIN AT FAILURE Sensitivity

				R	ECO	RD C)F BC	DRE	HOLI	E No). Bł	14		2	OF 3	\$	ME	TRIC		
PROJ	ECT NUMBER 10451A		CATIC)N _	Brock	Street	East, L	lxbridg	e, ON								_ ORIG	INATED	BY JA	
DIST	HWY	BOF	REHO	ILE TY	γPE .	Solid	Stem A	uger										PILED B	r <u>JA</u>	
DATU	M Geodetic	DAT	Е_ <u>2</u>	020.03	3.05 - 20	020.03.0	5 LAT	ITUDE				LO	NGITUI	DE			_ CHE	CKED BY		
	SOIL PROFILE		s	AMPL	ES	Ř	Ē	DYNA RESIS	MIC CO	DNE PE E PLOT			1	D: 1				L	REMARK	s
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHEA 0 UI • Q	20 AR ST NCONF UICK T	IO 6 RENG	50 FTH kl +	80 Pa FIEL LAB	100 D VANE	WA		NTENT W -O	LIQUID LIMIT WL NT (%) 60		GRAIN SIZ DISTRIBUTI (%) GR SA SI	ZE 'ION
<u>265.3</u> 4.6	SILTY CLAY- grey, firm to stiff, very moist <i>(continued)</i> - trace sand, firm to stiff		6	SS	8	_	265								0					
264.8 5.0	End of Standard Penetration Test (SPT) at 5.03 m Below Ground Surface Vane Shear Test at 5.11 m Below Ground Surface Dynamic Cone Penetration Test (DCPT) Starts at 5.18 m;						264													
	Continued Next Page						262													

+ ³, \times ³: Numbers refer to Sensitivity O ^{3%} STRAIN AT FAILURE

				R	ECO	RD O	F BC	RE	IOLE	E No	. BH	4		3 (OF 3		ME	TRIC	
PROJ	ECT NUMBER 10451A	LOC	CATIO	ОМ _	Brock	Street I	East, U	xbridg	e, ON								ORIG	INATED	BY JA
DIST	HWY	BOF	REHO	DLE TI	/PE _	Solid	Stem A	uger									COM	PILED B1	′JA
DATU	M Geodetic	DAT	Έ <u>΄</u>	2020.03	.05 - 20)20.03.0	5 LATI	TUDE				LON	GITUD	E			CHEC	CKED BY	
ELEV DEPTH	SOIL PROFILE	STRAT PLOT	NUMBER	SAMPL	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHEA 0 UI	MIC CC TANCE AR ST F NCONF UICK TI	E PLOT 0 6 RENG INED RIAXIAI	0 8 TH kP + - ×	a FIELD	VANE ANE			URAL TURE TENT W D DNTEN		NUIT MEIGHT KN/m ³	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	DCPT Ends at 10.67 m;						261												
	End of Borehole at 10.67 m Below Ground Surface. Borehole Caved at 2.44 m Upon Completion of Drilling. Groundwater Measured at 1.52 m Upon Completion of Drilling.																		

				R	ECO	RD C	OF BC	RE	IOLI	E No	. BH	5		1	OF	3	ME	TRIC	
PROJE	CT NUMBER 10451A	LOC	CATIC	DN _	Brock	Street	East, U	xbridg	e, ON									SINATED	BY JA
DIST_	HWY	BOF	REHC	DLE T	YPE	Solid	Stem A	uger									_ COM	PILED B	۲JA
DATUN	Geodetic	DAT	Έ <u></u>	2020.03	3.05 - 2	020.03.0	5 LAT	ITUDE				LON	GITUI	DE _			_ CHE	CKED BY	
	SOIL PROFILE	1.	S	Sampl		AS VS	CALE			DNE PE E PLOT				PLAS ⁻ LIMIT	TIC MO	ATURAL DISTURE	LIQUID LIMIT	нт ВНТ	REMARKS &
<u>ELEV</u> DEPTH 269.3 T	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	SHE/ 0 UI • Q	AR STI NCONF UICK T	IO 6 RENG INED RIAXIA IO 6	TH kF + L ×	Pa FIELD LAB V	VANE	W _P I WA			WL	LIND MEIGHT KN/m ³	GRAIN SIZE DISTRIBUTION (%) GR SA SI CI
0.0	TOPSOIL- 125 mm thick	<u> </u>	1A	SS													+		
0.1	FILL- sandy silt, trace stone, trace organic, trace rootlets, dark brown, moist		1B	SS	7		269												
<u>268.5</u>	FILL- silty sand, trace rootlets,	. X	×																
0.0	grey, very moist		2A		17					ľ				G	,				
268.2 1.1	FILL- sand, some silt, organic odour, light brown, very moist		2B																
<u>267.8</u>	- brown, wet		> > >				268												
1.0	- Diowii, wet		3	SS	16										o				
<u>267.0</u> 2.3	FILL- sand, some silt, brown, wet			SS	20		267							c	<u> </u>				
			> > >																
266.3 3.1	SILTY SAND- grey, compact, wet		5	SS	28		266								0				

+³, ×³. Numbers refer to O^{3%} STRAIN AT FAILURE Sensitivity

			R	ECOI	RD O	F BC	REHO		lo. B	H5		2 (OF 3		ME	TRIC	
PROJECT NUMBER 10451A																	
DIST HWY																	Y JA
DATUM Geodetic	DA1	ΓΕ <u>2</u>	020.03	.05 - 20	20.03.05	E LAT	ITUDE _			_ LON	GITUD	E			CHEC	CKED BY	
SOIL PROFILE		S	AMPL	ES	ER	ALE	DYNAMI RESISTA	C CONE		RATION			NATI	URAL	LIQUID	F	REMARKS
ELEV DEPTH DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	20 SHEAR ○ UNC ● QUIC 20	ONFINE	NGTH I D -	80 10 kPa + FIELD < LAB V/ 80 10	VANE ANE			N D DNTEN		N/m ³	& GRAIN SIZE DISTRIBUTIC (%) GR SA SI
SILTY SAND- grey, compac wet <i>(continued)</i>	ct,																
264.7 4.6 - dense		6	SS	46		265						0					
						264											
						262											
261.7																	
7.6 - very dense					~~~~~												
		7	SS	68								0					

+³, ×³: Numbers refer to Sensitivity O^{3%} STRAIN AT FAILURE

				RI	ECO	RD C)F BC	DRE	IOLE	E No	. BH	5		3 (OF 3		ME	TRIC	
PROJE	CT NUMBER 10451A	LOC	CATIC	DN _	Brock	Street	East, L	xbridg	e, ON								ORIG	SINATED	BY JA
DIST_	HWY	BOF	REHC	DLE T	PE.	Solid	Stem A	uger										PILED B	Y_JA
DATUM	Geodetic	DAT	E _2	2020.03	.05 - 2	020.03.0	5 LAT	ITUDE				LON	GITU	DE			CHE	CKED BY	
	SOIL PROFILE		5	SAMPL	ES	S ER	ALE	RESIS	TANCE	NE PE E PLOT	\geq			PLASTI		URAL	LIQUID	. +	REMARKS
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	SHEA OUI	AR STI NCONF	RIAXIAI	TH kP + - ×	a FIELD LAB V	VANE	- w _P - WA1			LIMIT W _L T (%)	LH9I3M KN/m ³	& GRAIN SIZE DISTRIBUTION (%) GR SA SI C
261.2	- very dense (continued)																		
8.1	End of Borehole at 8.08 m Below Ground Surface. Borehole Caved at 1.83 m Upon Completion of Drilling. Groundwater Measured at 1.22 m Upon Completion of Drilling.																		

				R	ECO	RD C	F BC	RE	IOLI	E No	. BH	16		1	OF 2	2	ME	TRIC	
PROJEC	CT NUMBER 10451A	LOC	ATIC	DN _	Brock	Street	East, U	xbridg	e, ON									INATED	BY JA
DIST_	HWY	BOF	REHC	DLE די	YPE _	Solid	Stem A	uger									_ СОМ	PILED B	/ JA
DATUM	Geodetic	DAT	E _2	2020.03	8.05 - 20	020.03.0	5 LAT	TUDE	:			LON	IGITU	DE _			_ CHE	CKED BY	
	SOIL PROFILE		s	ampl	.ES	к	Щ	DYNA RESIS	MIC CO	DNE PE E PLOT		ATION			NA	TURAI			REMARKS
ELEV DEPTH 269.6 To	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHE/ 0 U ● Q	20 4 AR STI NCONF	10 6 RENG FINED RIAXIA	50 8 H KF +	30 1 Pa FIELD LAB V	100 VANE	WA	COI	TURAL STURE NTENT W -0 ONTEN 40	LIQUID LIMIT WL VT (%) 60	LH9I3M MEIGHT	& GRAIN SIZE DISTRIBUTION (%) GR SA SI C
0.0	TOPSOIL- 150 mm thick	· · · · · · · · · · · · · · · · · · ·	1A	SS															
0.2	FILL- sand, trace silt, brown, moist		18	SS	7		269												
<u>268.8</u> 0.8	FILL- sand, trace to some silt, trace organic, very moist		2	SS	25	Ţ									0				
<u>268.1</u> 1.5	- wet		3	SS	22		268								b				
			4	SS	24		267							c					
			5	SS	30		266							c					
	Continued Next Page																		

+ ³, \times ³: Numbers refer to O ^{3%} STRAIN AT FAILURE Sensitivity

				R	ECO	RD C	OF BC	RE	IOL	E No	. BH	6		2 (OF 2		ME	TRIC	
PROJ	IECT NUMBER 10451A	_ LOC	ATIC	DN _	Brock	Street	East, U	xbridg	e, ON								ORIG	INATED	BY JA
DIST	HWY	_ BOR	EHC	DLE T	YPE .	Solid	Stem A	uger									COM	PILED B	/JA
DATU	JM Geodetic	DAT	E _2	2020.03	8.05 - 20	020.03.0	5 LAT	TUDE	<u> </u>			LON	GITUE	DE			CHEC	CKED BY	
	SOIL PROFILE	от		SAMPL		NATER IONS	I SCALE	RESIS	MIC CC STANCE	E PLOT	\geq	ATION 	00	PLASTI LIMIT	C NAT MOIS CON	URAL STURE ITENT	LIQUID LIMIT	UNIT WEIGHT	REMARKS &
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	0 U 0 Q		INED	+ L X	FIELD LAB V			TER CO		w∟ T (%) 50	γ	GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
265.0	- wet (continued)																		
4.6	SILTY SAND- brown, dense, wet		6	SS	39		265							0					
263.5	- very dense						264												
6.1			7	SS	52														
6.6	End of Borehole at 6.55 m Below Ground Surface. Borehole Caved at 0.92 m Upon Completion of Drilling. Groundwater Measured at 0.92 m Upon Completion of Drilling.																		

IN-SITU HYDRAULIC CONDUCTIVITY TESTING

					Slug Test - W	ater Level Data	Page 1 of 1
					Project: Brock	Street East - Evandale	
					Number: 171-00	0471-00	
					Client:		
Locatio	on: Uxbridge		Slug 1	Test: MW2 - Te	st 1 Manual	Test Well: MW2	
Test Co	onducted by:	I	Test D	Date: 2/1/2018			
Water	level at t=0 [m]: 0.00		Static	Water Level [m	ו]: 1.94	Water level change	at t=0 [m]: -1.94
	Time	Water Leve		WL Change	-		
	[s]	[m]		[m]			
1	15	0.43		-1.51			
2	30	0.66		-1.28			
3	<u>45</u> 60	0.77		-1.17 -1.07			
4 5	90	1.11		-1.07 -0.83			
6	120	1.11		-0.83			
7	150	1.40		-0.54			
8	180	1.49		-0.45			
9	210	1.56		-0.38			
10	240	1.62		-0.32			
11	270	1.66		-0.28			
12	300	1.70		-0.24			
13	420	1.79		-0.15			
14	540	1.85		-0.09			
15	660	1.88		-0.06			
16	780	1.90		-0.04			
17	900	1.92		-0.02			
18	1020	1.94		0.00			

Project: Brock Street East - Evandale Number: 171-00471-00 Client: Test Outloted by: Test Well: MW2 Aquifer Thickness: NAN m Test Date: 2/1/2018 Aquifer Thickness: NAN m Method name Well T (m²/s) S I New analysis 1 2/10/2018 Hvorslev MW2 4.90 ×				Slug Test - A	nalyses Report		
Client: Client: Client: Client: Client: Client: Test Well: MW2 Test Well: MW2 Test Date: 2/1/2018 Aquifer Thickness: NAN m Analysis Name Analysis Performed by Analysis Date Method name Well T [m²/s] S				Project: Brock	Street East - Eva	ndale	
Ocation: Uxbridge Slug Test: MW2 - Test 1 Manual Test Well: MW2 Fest Conducted by: Test Date: 2/1/2018 Aquifer Thickness: NAN m Analysis Name Analysis Performed by Analysis Date Method name Well T [m²/s] S				Number: 171-0	0471-00		
Test Conducted by: Test Date: 2/1/2018 Aquifer Thickness: NAN m Analysis Name Analysis Name Analysis Date Method name Well T [m²/s]				Client:			
Aquifer Thickness: NAN m Aquifer Thickness: NAN m Analysis Name Analysis Performed by Analysis Date Method name Well T [m²/s] S	ocation: Uxbridge	SI	ug Test: MW2 -	Test 1 Manual	Test Well: I	MW2	
Analysis Name Analysis Performed by Analysis Date Method name Well T [m²/s] S	est Conducted by:				Test Date:	2/1/2018	
	quifer Thickness: N	AN m			I		
New analysis 1 2/10/2018 Hvorslev MW2 4.90 ×	Analysis Name	Analysis Performed by	Analysis Date	Method name	Well	T [m²/s]	S
	New analysis 1		2/10/2018	Hvorslev	MW2		4.90 × 10

				Slug Test - Water I	_evel Data	Page 1 of 23
				Project: Brock Street	East - Evandale	
				Number: 171-00471-0	00	
				Client:		
Lootio						
	n: Uxbridge		lug Test: MW1 - Te		Test Well: MW1	
Test Co	onducted by:	Те	est Date: 2/10/2018			
Water I	evel at t=0 [m]: 0.00	St	tatic Water Level [n	ı]: 1.02	Water level change	at t=0 [m]: -1.02
	Time	Water Level	WL Change			
1	[S]	[m]	[m] -0.02			
1	1 2	1.00 0.0827	-0.02			
3	3	0.1032	-0.9373			
4	4	0.1032	-0.8939			
4 5	5	0.1281	-0.8745			
5	6	0.1455	-0.8583			
7	7	0.1617	-0.8583			
8	8	0.195	-0.825			
9 10	9 10	0.2102	-0.8098			
10	10					
11	11	0.245	-0.775 -0.7707			
13 14	13 14	0.2705	-0.7495			
14	14	0.2928				
		0.311	-0.709			
16	16	0.3219	-0.6981			
17	17	0.3214	-0.6986			
18	18	0.3368	-0.6832			
19	19	0.3414	-0.6786			
20	20	0.3478	-0.6722			
21	21	0.331	-0.689			
22	22	0.3361	-0.6839			
23	23	0.346	-0.674			
24	24	0.3548	-0.6652			
25	25	0.363	-0.657			
26	26	0.3716	-0.6484			
27	27	0.3791	-0.6409			
28	28	0.4281	-0.5919			
29	29	0.4434	-0.5766			
30	30	0.4367	-0.5833			
31	31	0.4368	-0.5832			
32	32	0.4447	-0.5753			
33	33	0.4488	-0.5712			
34 35	34	0.453	-0.567			
35	35 36	0.4602	-0.5598 -0.5553			
37	37	0.4349	-0.5851			
38 39	38	0.4445	-0.5755			
40	39 40	0.4516	-0.5684 -0.5614			
40		0.4586				
	41	0.465	-0.555			
42	42	0.4729	-0.5471			
43	43	0.5285	-0.4915			
44	44	0.5302	-0.4898			
45	45	0.5347	-0.4853			
46	46	0.5389	-0.4811			
47	47	0.5417	-0.4783			
48	48	0.5293	-0.4907			

				Slug Test - Water Level Data	Page 2 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
49	49	0.535	-0.485		
50	50	0.5383	-0.4817		
51	51	0.5433	-0.4767		
52	52	0.5422	-0.4778		
53	53	0.5489	-0.4711		
54	54	0.5538	-0.4662		
55	55	0.5568	-0.4632		
56	56	0.5641	-0.4559		
57	57	0.5677	-0.4523		
58	58	0.5728	-0.4472		
59	59	0.5753	-0.4447		
60	60	0.5806	-0.4394		
61	61	0.5826	-0.4374		
62	62	0.5882	-0.4318		
63	63	0.5912	-0.4288		
64	64	0.5941	-0.4259		
65	65	0.5832	-0.4368		
66	66	0.581	-0.439		
67	67	0.5859	-0.4341		
68	68	0.591	-0.429		
69	69	0.5979	-0.4221		
70	70	0.6024	-0.4176		
71	71	0.6078	-0.4122		
72	72	0.6125	-0.4075		
73	73	0.6159	-0.4041		
74	74	0.6206	-0.3994		
75	75	0.6252	-0.3948		
76	76	0.6541	-0.3659		
77	77	0.6453	-0.3747		
78	78	0.6555	-0.3645		
79	79	0.6597	-0.3603		
80	80	0.6621	-0.3579		
81	81	0.6648	-0.3552		
82	82	0.667	-0.353		
83	83	0.6696	-0.3504		
84	84	0.6717	-0.3483		
85	85	0.6746	-0.3454		
86	86	0.6696	-0.3504		
87	87	0.6637	-0.3563		
88	88	0.6654	-0.3546		
89	89	0.6716	-0.3484		
90	90	0.6739	-0.3461		
91	91	0.6773	-0.3427		
92	92	0.6783	-0.3417		
93	93	0.6813	-0.3387		
94	94	0.6835	-0.3365		
95	95	0.6853	-0.3347		
96	96	0.6724	-0.3476		
97	97	0.6643	-0.3557		
98	98	0.6686	-0.3514		
99	99	0.6717	-0.3483		
100	100	0.6746	-0.3454		
101	101	0.6782	-0.3418		

				Slug Test - Water Level Data	Page 3 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
102	102	0.6814	-0.3386		
102	103	0.6839	-0.3361		
104	104	0.7205	-0.2995		
105	105	0.7218	-0.2982		
106	106	0.7175	-0.3025		
107	107	0.7202	-0.2998		
108	108	0.7213	-0.2987		
109	109	0.7227	-0.2973		
110	110	0.7242	-0.2958		
111	111	0.7262	-0.2938		
112	112	0.7276	-0.2924		
113	113	0.7293	-0.2907		
114	114	0.73	-0.29		
115	115	0.7308	-0.2892		
116	116	0.7314	-0.2886		
117	117	0.7166	-0.3034		
118	118	0.7235	-0.2965		
119	119	0.7244	-0.2956		
120	120	0.7268	-0.2932		
121	121	0.7283	-0.2917		
122	122	0.7299	-0.2901		
123	123	0.73	-0.29		
124	124	0.7314	-0.2886		
125	125	0.7315	-0.2885		
126	126	0.7346	-0.2854		
127	127	0.6956	-0.3244		
128	128	0.7011	-0.3189		
129	129	0.7035	-0.3165		
130	130	0.7066	-0.3134		
131	131	0.7086	-0.3114		
132	132	0.7097	-0.3103		
133	133	0.7117	-0.3083		
134	134	0.7158	-0.3042		
135	135	0.7701	-0.2499		
136	136	0.7671	-0.2529		
137	137	0.7604	-0.2596		
138	138	0.7634	-0.2566		
139	139	0.7645	-0.2555		
140	140	0.7651	-0.2549		
141	141	0.7658	-0.2542		
142	142	0.7668	-0.2532		
143	143	0.7681	-0.2519		
144	144	0.7683	-0.2517		
145	145	0.7697	-0.2503		
146	146	0.7719	-0.2481		
147	147	0.7709	-0.2491		
148	148	0.7598	-0.2602		
149	149	0.7621	-0.2579		
150	150	0.764	-0.256		
151	151	0.7647	-0.2553		
152	152	0.7643	-0.2557		
153	153	0.7644	-0.2556		
154	154	0.7664	-0.2536		

				Slug Test - Water Level Data	Page 4 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
155	155	0.7656	-0.2544		
156	156	0.7707	-0.2493		
157	157	0.7778	-0.2422		
158	158	0.7325	-0.2875		
159	159	0.7336	-0.2864		
160	160	0.7347	-0.2853		
161	161	0.7372	-0.2828		
162	162	0.7383	-0.2817		
163	163	0.7397	-0.2803		
164	164	0.7411	-0.2789		
165	165	0.7422	-0.2778		
166	166	0.743	-0.277		
167	167	0.7455	-0.2745		
168	168	0.7866	-0.2334		
169	169	0.7873	-0.2327		
170	170	0.7872	-0.2328		
171	171	0.7888	-0.2312		
172	172	0.7897	-0.2303		
173	173	0.7903	-0.2297		
174	174	0.7916	-0.2284		
175	175	0.7924	-0.2276		
176	176	0.7937	-0.2263		
177	177	0.7941	-0.2259		
178	178	0.78	-0.24		
179	179	0.7839	-0.2361		
180	180	0.7949	-0.2251		
181	181	0.7941	-0.2259		
182	182	0.794	-0.226		
183	183	0.796	-0.224		
184	184	0.7978	-0.2222		
185	185	0.7977	-0.2223		
186	186	0.8002	-0.2198		
187	187	0.7617	-0.2583		
188	188	0.7626	-0.2574		
189	189	0.7637	-0.2563		
190	190	0.7652	-0.2548		
191	191	0.7664	-0.2536		
192	192	0.7678	-0.2522		
193	193	0.7699	-0.2501		
194	194	0.7707	-0.2493		
195	195	0.7725	-0.2475		
196	196	0.7733	-0.2467		
197	197	0.7749	-0.2451		
198	198	0.8109	-0.2091		
199	199	0.8312	-0.1888		
200	200	0.8314	-0.1886		
201	201	0.8309	-0.1891		
202	202	0.8318	-0.1882		
203	203	0.8318	-0.1882		
204	204	0.8325	-0.1875		
205	205	0.8343	-0.1857		
206	206	0.8345	-0.1855		
207	207	0.832	-0.188		

				Slug Test - Water Level Data	Page 5 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
208	208	0.833	-0.187		
209	209	0.8345	-0.1855		
210	210	0.8349	-0.1851		
211	211	0.8179	-0.2021		
212	212	0.8204	-0.1996		
213	213	0.8217	-0.1983		
214	214	0.8212	-0.1988		
215	215	0.8214	-0.1986		
216	216	0.8316	-0.1884		
217	217	0.7888	-0.2312		
218	218	0.7938	-0.2262		
219	219	0.7954	-0.2246		
220	220	0.7968	-0.2232		
221	221	0.7979	-0.2221		
222	222	0.799	-0.221		
223	223	0.8003	-0.2197		
224	224	0.8024	-0.2176		
225	225	0.8026	-0.2174		
226	226	0.8047	-0.2153		
227	227	0.8063	-0.2137		
228	228	0.8296	-0.1904		
229	229	0.8553	-0.1647		
230	230	0.8545	-0.1655		
231	231	0.8546	-0.1654		
232	232	0.8508	-0.1692		
233	233	0.8456	-0.1744		
234	234	0.8553	-0.1647		
235	235	0.8565	-0.1635		
236	236	0.8558	-0.1642		
237	237	0.8564	-0.1636		
238	238	0.8376	-0.1824		
239	239	0.8397	-0.1803		
240	240	0.8446	-0.1754		
241	241	0.8427	-0.1773		
242	242	0.8429	-0.1771		
243	243	0.8427	-0.1773		
244	244	0.8449	-0.1751		
245	245	0.8448	-0.1752		
246	246	0.8452	-0.1748		
247	247	0.846	-0.174		
248	248	0.85	-0.17		
249	249	0.8598	-0.1602		
250 251	250 251	0.8642	-0.1558 -0.1541		
251	251				
252	252	0.8657	-0.1543 -0.1543		
253	253				
254	254 255	0.8658	-0.1542 -0.1541		
255	255	0.8659	-0.1541 -0.1532		
256	256	0.8665	-0.1532 -0.1535		
257	257	0.8665			
258	258	0.8672	-0.1528 -0.1521		
259	260	0.8691	-0.1521		
200	200	0.0031	-0.1309		

				Slug Test - Water Level Data	Page 6 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
261	261	0.8694	-0.1506		
262	262	0.8704	-0.1496		
263	263	0.8706	-0.1494		
264	264	0.8717	-0.1483		
265	265	0.8721	-0.1479		
266	266	0.8729	-0.1471		
267	267	0.8732	-0.1468		
268	268	0.8741	-0.1459		
269	269	0.8745	-0.1455		
270	270	0.875	-0.145		
271	271	0.8754	-0.1446		
272	272	0.8761	-0.1439		
273	273	0.8767	-0.1433		
274	274	0.8771	-0.1429		
275	275	0.8769	-0.1431		
276	276	0.8591	-0.1609		
277	277	0.8607	-0.1593		
278	278	0.8631	-0.1569		
279	279	0.865	-0.155		
280	280	0.872	-0.148		
281	281	0.877	-0.143		
282	282	0.8816	-0.1384		
283	283	0.8822	-0.1378		
284	284	0.8824	-0.1376		
285	285	0.8831	-0.1369		
286	286	0.8838	-0.1362		
287	287	0.8838	-0.1362		
288	288	0.8844	-0.1356		
289	289	0.8846	-0.1354		
290	290	0.8857	-0.1343		
291	291	0.8866	-0.1334		
292	292	0.8861	-0.1339		
293	293	0.8876	-0.1324		
294	294	0.8883	-0.1317		
295	295	0.889	-0.131		
296	296	0.8897	-0.1303		
297	297	0.8897	-0.1303		
298	298	0.888	-0.132		
299	299	0.8759	-0.1441		
300	300	0.8761	-0.1439		
301	301	0.8739	-0.1461		
302	302	0.8759	-0.1441		
303	303	0.8768	-0.1432		
304	304	0.8773	-0.1427		
305 306	305 306	0.8779	-0.1421		
		0.8782	-0.1418	·	
307	307	0.879	-0.141		
308	308	0.8801	-0.1399		
309	309	0.8905	-0.1295		
310	310	0.8952	-0.1248		
311 312	311 312	0.8988	-0.1212		
		0.8988	-0.1212		
313	313	0.8987	-0.1213		

				Slug Test - Water Level Data	Page 7 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m])	
314	314	0.8989	-0.1211		
315	315	0.8991	-0.1209		
316	316	0.8997	-0.1203		
317	317	0.9003	-0.1197	,	
318	318	0.9009	-0.1191		
319	319	0.901	-0.119		
320	320	0.9016	-0.1184		
321	321	0.902	-0.118		
322	322	0.9012	-0.1188		
323	323	0.903	-0.117		
324	324	0.903	-0.117		
325	325	0.9038	-0.1162		
326	326	0.9044	-0.1156		
327	327	0.9048	-0.1152		
328	328	0.9051	-0.1149		
329	329	0.9059	-0.1141		
330	330	0.9062	-0.1138		
331	331	0.9057	-0.1143		
332	332	0.9068	-0.1132		
333	333	0.9077	-0.1123		
334	334	0.9074	-0.1126		
335	335	0.9083	-0.1117		
336	336	0.9086	-0.1114		
337	337	0.9089	-0.1111		
338	338	0.9087	-0.1113		
339	339	0.9087	-0.1113		
340	340	0.9098	-0.1102		
341	341	0.9104	-0.1096		
342	342	0.911	-0.109		
343	343	0.9119	-0.1081		
344	344	0.913	-0.107 -0.1065		
345	345	0.9135			
346 347	<u>346</u> 347	0.9138	-0.1062 -0.1067		
347	347	0.9133	-0.1067 -0.1054		
348	348	0.9146	-0.1054 -0.1051		
349	350	0.9149	-0.1051		
351	351	0.9164	-0.1048		
352	352	0.9159	-0.1030		
353	353	0.9175	-0.1025		
354	354	0.917	-0.103		
355	355	0.9176	-0.1024		
356	356	0.9185	-0.1015		
357	357	0.9188	-0.1012		
358	358	0.9191	-0.1009		
359	359	0.9198	-0.1002		
360	360	0.9203	-0.0997		
361	361	0.9208	-0.0992		
362	362	0.9213	-0.0987		
363	363	0.9217	-0.0983		
364	364	0.9223	-0.0977		
365	365	0.9222	-0.0978		
366	366	0.9231	-0.0969		

				Slug Test - Water Level Data	Page 8 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
367	367	0.9236	-0.0964		
368	368	0.9245	-0.0955		
369	369	0.9249	-0.0951		
370	370	0.9249	-0.0951		
371	371	0.9254	-0.0946		
372	372	0.9262	-0.0938		
373	373	0.9263	-0.0937		
374	374	0.9269	-0.0931		
375	375	0.9276	-0.0924		
376	376	0.9275	-0.0925		
377	377	0.9283	-0.0917		
378	378	0.9285	-0.0915		
379	379	0.9288	-0.0912		
380	380	0.9293	-0.0907		
381	381	0.9296	-0.0904		
382	382	0.9305	-0.0895		
383	383	0.9307	-0.0893		
384	384	0.931	-0.089		
385	385	0.931	-0.089		
386	386	0.9316	-0.0884		
387	387	0.9321	-0.0879		
388	388	0.9323	-0.0877		
389	389	0.9324	-0.0876		
390	390	0.9332	-0.0868		
391	391	0.9334	-0.0866		
392	392	0.9343	-0.0857		
393	393	0.9343	-0.0857		
394	394	0.935	-0.085		
395	395	0.9349	-0.0851		
396 397	396	0.9356	-0.0844		
397	397 398	0.9362	-0.0838 -0.0839		
398	398	0.9361			
400	400	0.9371	-0.0833 -0.0829		
400	400	0.9376	-0.0829		
401	401	0.9376	-0.0824 -0.0826		
402	402	0.9374	-0.0828		
403	403	0.9383	-0.0818		
404	405	0.9385	-0.0815		
405	406	0.9393	-0.0807		
407	407	0.9395	-0.0805		
408	408	0.9397	-0.0803		
409	409	0.9403	-0.0797		
410	410	0.9404	-0.0796		
411	411	0.9409	-0.0791		
412	412	0.9416	-0.0784		
413	413	0.9418	-0.0782		
414	414	0.9422	-0.0778		
415	415	0.9301	-0.0899		
416	416	0.9246	-0.0954		
417	417	0.9287	-0.0913		
418	418	0.9286	-0.0914		
419	419	0.9264	-0.0936		

				Slug Test - Water Level Data	Page 9 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
420	420	0.9277	-0.0923		
421	421	0.9288	-0.0912	2	
422	422	0.9293	-0.0907	· · · · · · · · · · · · · · · · · · ·	
423	423	0.9297	-0.0903		
424	424	0.9296	-0.0904		
425	425	0.9309	-0.0891		
426	426	0.9294	-0.0906		
427	427	0.9412	-0.0788		
428	428	0.9467	-0.0733		
429	429	0.9463	-0.0737	,	
430	430	0.946	-0.074		
431	431	0.947	-0.073		
432	432	0.9469	-0.0731		
433	433	0.9473	-0.0727		
434	434	0.9478	-0.0722		
435	435	0.9481	-0.0719		
436	436	0.9485	-0.0715		
437	437	0.9488	-0.0712		
438	438	0.9495	-0.0705		
439	439	0.9493	-0.0707		
440	440	0.9499	-0.0701		
441	441	0.9501	-0.0699		
442	442	0.9504	-0.0696		
443	443	0.9509	-0.0691		
444	444	0.9513	-0.0687		
445	445	0.9515	-0.0685		
446	446	0.9515	-0.0685		
447	447	0.9519	-0.0681		
448	448	0.9512	-0.0688		
449	449	0.9519	-0.0681		
450	450	0.952	-0.068		
451	451	0.9526	-0.0674		
452	452	0.9531	-0.0669		
453	453	0.953	-0.067		
454	454	0.953	-0.067		
455	455	0.9532	-0.0668		
456	456	0.9539	-0.0661		
457	457	0.9536	-0.0664		
458	458	0.9543	-0.0657		
459	459	0.9538	-0.0662		
460	460	0.9543	-0.0657		
461	461	0.9546	-0.0654		
462 463	462 463	0.9548	-0.0652 -0.065		
463	463 464	0.955	-0.065 -0.0645		
464	464 465	0.9555	-0.0645 -0.0647		
465	465 466	0.9558	-0.0647		
466	466	0.9558	-0.0642 -0.0645		
468 469	468 469	0.9559	-0.0641 -0.0645		
469 470					
470	470 471	0.9557	-0.0643		
471	471 472		-0.0636		
4/2	4/2	0.9565	-0.0635		

				Slug Test - Water Level Data	Page 10 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]	9	
473	473	0.9568	-0.0632		
474	474	0.9565	-0.0635		
475	475	0.9573	-0.0627	· · · · · · · · · · · · · · · · · · ·	
476	476	0.9579	-0.0621		
477	477	0.9579	-0.0621		
478	478	0.957	-0.063		
479	479	0.958	-0.062		
480	480	0.9583	-0.0617	· · · · · · · · · · · · · · · · · · ·	
481	481	0.9579	-0.0621		
482	482	0.958	-0.062		
483	483	0.9584	-0.0616		
484	484	0.9583	-0.0617		
485	485	0.959	-0.061		
486	486	0.959	-0.061		
487	487	0.9589	-0.0611		
488	488	0.9593	-0.0607		
489	489	0.9591	-0.0609		
490	490	0.9591	-0.0609		
491	491	0.9591	-0.0609		
492	492	0.9589	-0.0611		
493	493	0.9593	-0.0607		
494	494	0.9592	-0.0608		
495	495	0.9592	-0.0608		
496	496	0.9592	-0.0608		
497	497	0.9597	-0.0603		
498	498	0.9607	-0.0593		
499	499	0.9606	-0.0594		
500	500	0.9607	-0.0593		
501	501	0.9603	-0.0597		
502	502	0.9601	-0.0599		
503	503	0.9604	-0.0596		
504	504	0.9602	-0.0598		
505	505	0.9594	-0.0606		
506	506		-0.061		
507 508	507 508	0.9594 0.9588	-0.0606 -0.0612		
508	508	0.9588	-0.0612 -0.0619		
509	510	0.9581	-0.0619 -0.0621		
510	511	0.9601	-0.0599		
512	512	0.9596	-0.0599		
513	513	0.9587	-0.0613		
514	514	0.9556	-0.0644		
515	515	0.9555	-0.0645		
516	516	0.9609	-0.0591		
517	517	0.9587	-0.0613		
518	518	0.9599	-0.0601		
519	519	0.961	-0.059		
520	520	0.9619	-0.0581		
521	521	0.9603	-0.0597		
522	522	0.9593	-0.0607		
523	523	0.9598	-0.0602		
524	524	0.9592	-0.0608		
525	525	0.9594	-0.0606		

				Slug Test - Water Level Data	Page 11 of 23
1				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
526	526	0.9596	-0.0604		
527	527	0.9617	-0.0583		
528	528	0.9605	-0.0595		
529	529	0.9569	-0.0631		
530	530	0.9619	-0.0581		
531	531	0.9619	-0.0581		
532	532	0.9618	-0.0582		
533	533	0.9621	-0.0579		
534	534	0.9632	-0.0568		
535	535	0.9624	-0.0576		
536	536	0.9619	-0.0581		
537	537	0.9595	-0.0605		
538	538	0.9199	-0.1001		
539	539	0.9544	-0.0656		
540	540	0.949	-0.071		
541	541	0.9447	-0.0753		
542	542	0.9471	-0.0729		
543	543	0.9467	-0.0733		
544	544	0.9477	-0.0723		
545	545	0.9458	-0.0742		
546	546	0.9503	-0.0697		
547	547	0.9458	-0.0742		
548	548	0.9135	-0.1065		
549	549	0.9668	-0.0532		
550	550	0.9655	-0.0545		
551	551	0.9671	-0.0529		
552	552	0.9659	-0.0541		
553	553	0.9649	-0.0551		
554	554	0.9658	-0.0542		
555	555	0.9655	-0.0545		
556	556	0.9647	-0.0553		
557	557	0.9659	-0.0541		
558	558	0.9664	-0.0536		
559	559	0.9651	-0.0549		
560	560	0.966	-0.054		
561	561	0.9627	-0.0573		
562	562	0.9655	-0.0545		
563	563	0.9664	-0.0536		
564 565	564	0.9657	-0.0543		
	565		-0.0544		
566 567	566 567	0.9651	-0.0549 -0.0534		
567		0.9666	-0.0534 -0.0534		
568	568 569	0.9666	-0.0534 -0.0541		
570	570	0.9659	-0.0541		
570	570	0.9662	-0.0536		
572	572	0.9667	-0.0533		
572	573	0.9665	-0.0535		
574	574	0.9664	-0.0535		
575	575	0.9668	-0.0532		
576	576	0.9664	-0.0532		
577	577	0.9665	-0.0535		
578	578	0.9677	-0.0523		

				Slug Test - Water Level Data	Page 12 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
579	579	0.9675	-0.0525		
580	580	0.9678	-0.0522		
581	581	0.968	-0.052		
582	582	0.9692	-0.0508		
583	583	0.9686	-0.0514		
584	584	0.9675	-0.0525		
585	585	0.9667	-0.0533		
586	586	0.9672	-0.0528		
587	587	0.9682	-0.0518		
588	588	0.9678	-0.0522		
589	589	0.9687	-0.0513		
590	590	0.9685	-0.0515		
591	591	0.9695	-0.0505		
592	592	0.9687	-0.0513		
593	593	0.969	-0.051		
594	594	0.9692	-0.0508		
595	595	0.9707	-0.0493		
596	596	0.9687	-0.0513		
597	597	0.9692	-0.0508		
598	598	0.9689	-0.0511		
599	599	0.969	-0.051		
600	600	0.9698	-0.0502		
601	601	0.9695	-0.0505	,	
602	602	0.9695	-0.0505		
603	603	0.9701	-0.0499		
604	604	0.9692	-0.0508	,	
605	605	0.97	-0.05		
606	606	0.9698	-0.0502		
607	607	0.9698	-0.0502		
608	608	0.9699	-0.0501		
609	609	0.9697	-0.0503		
610	610	0.9694	-0.0506		
611	611	0.9698	-0.0502		
612	612	0.9704	-0.0496		
613	613	0.9699	-0.0501		
614	614	0.9688	-0.0512		
615	615	0.9695	-0.0505		
616	616	0.9694	-0.0506		
617 618	617 618	0.9688	-0.0512 -0.0515		
618	618	0.9685	-0.0515 -0.0514		
620	620	0.9686	-0.0514 -0.0523		
620	621	0.9679	-0.0523		
621	622	0.9673	-0.0521		
623	623	0.9668	-0.0532		
624	624	0.966	-0.052		
625	625	0.9645	-0.0555		
626	626	0.9627	-0.0573		
627	627	0.9624	-0.0576		
628	628	0.962	-0.058		
629	629	0.962	-0.058		
630	630	0.9615	-0.0585		
631	631	0.9609	-0.0591		

				Slug Test - Water Level Data	Page 13 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]	9	
632	632	0.9621	-0.0579	1	
633	633	0.9604	-0.0596		
634	634	0.9605	-0.0595		
635	635	0.9596	-0.0604		
636	636	0.9599	-0.0601		
637	637	0.9608	-0.0592		
638	638	0.9606	-0.0594		
639	639	0.9612	-0.0588		
640	640	0.9596	-0.0604		
641	641	0.9605	-0.0595		
642	642	0.96	-0.06		
643	643	0.9596	-0.0604		
644	644	0.9596	-0.0604		
645	645	0.9594	-0.0606		
646	646	0.9595	-0.0605		
647	647	0.9591	-0.0609		
648	648	0.9593	-0.0607		
649	649	0.9588	-0.0612		
650	650	0.9585	-0.0615		
651	651	0.9599	-0.0601		
652	652	0.9587	-0.0613		
653	653	0.9586	-0.0614		
654	654	0.9587	-0.0613		
655	655	0.9589	-0.0611		
656	656	0.9597	-0.0603		
657	657	0.9598	-0.0602		
658	658	0.9599	-0.0601		
659	659	0.9594	-0.0606	i i i i i i i i i i i i i i i i i i i	
660	660	0.9591	-0.0609	1	
661	661	0.9593	-0.0607	,	
662	662	0.9594	-0.0606	;	
663	663	0.951	-0.069		
664	664	0.9434	-0.0766	;	
665	665	0.9411	-0.0789		
666	666	0.9423	-0.0777	·	
667	667	0.9442	-0.0758		
668	668	0.9435	-0.0765		
669	669	0.9448	-0.0752		
670	670	0.945	-0.075		
671	671	0.9448	-0.0752		
672	672	0.946	-0.074		
673	673	0.945	-0.075		
674	674	0.9467	-0.0733		
675	675	0.9476	-0.0724		
676	676	0.9482	-0.0718		
677	677	0.95	-0.07		
678	678	0.949	-0.071		
679	679	0.95	-0.07		
680	680	0.9555	-0.0645		
681	681	0.9572	-0.0628		
682	682	0.9682	-0.0518		
683	683	0.9674	-0.0526		
684	684	0.9676	-0.0524		

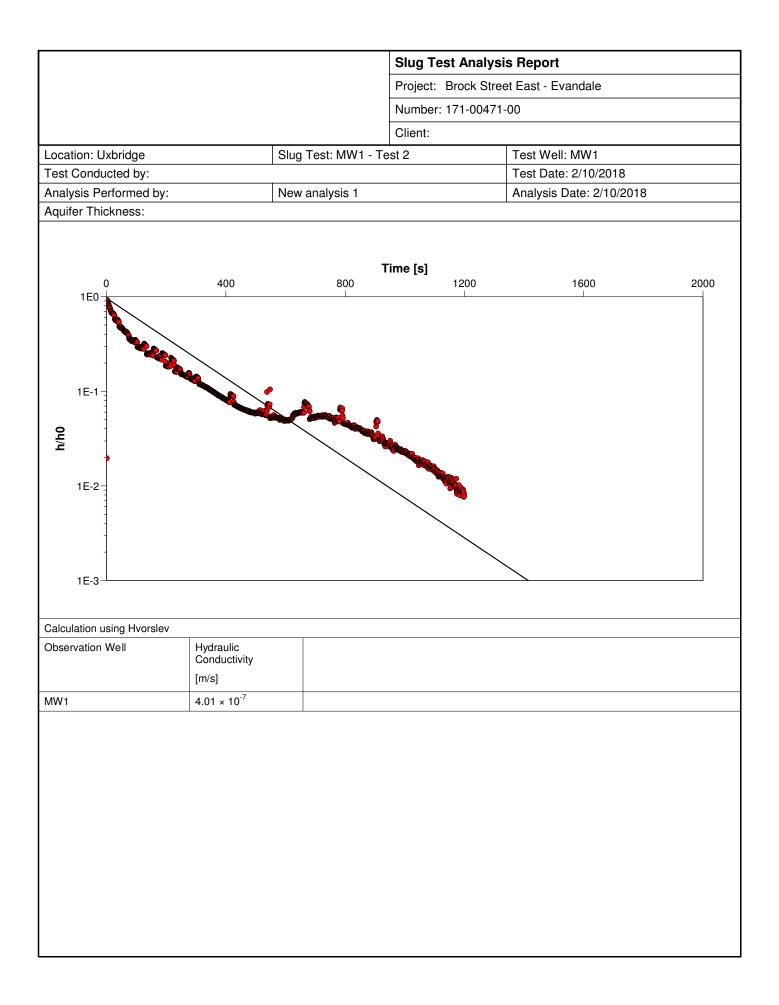
				Slug Test - Water Level Data	Page 14 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
685	685	0.9661	-0.0539		
686	686	0.9668	-0.0532		
687	687	0.9656	-0.0544		
688	688	0.9658	-0.0542		
689	689	0.9671	-0.0529		
690	690	0.9664	-0.0536		
691	691	0.9666	-0.0534		
692	692	0.9663	-0.0537		
693	693	0.967	-0.053		
694	694	0.9663	-0.0537		
695	695	0.9659	-0.0541		
696	696	0.967	-0.053		
697	697	0.9652	-0.0548		
698	698	0.9652	-0.0548		
699	699	0.9655	-0.0545		
700	700	0.9657	-0.0543		
701	701	0.9662	-0.0538		
702	702	0.9664	-0.0536		
703	703	0.9666	-0.0534		
704	704	0.9655	-0.0545		
705	705	0.9643	-0.0557		
706	706	0.9648	-0.0552		
707	707	0.9638	-0.0562		
708	708	0.9638	-0.0562		
709	709	0.9632	-0.0568		
710	710	0.9642	-0.0558		
711	711	0.9637	-0.0563		
712	712	0.9641	-0.0559		
713	713	0.9642	-0.0558		
714	714	0.9639	-0.0561		
715	715	0.9646	-0.0554		
716	716	0.9653	-0.0547		
717	717	0.9641	-0.0559		
718	718	0.9637	-0.0563		
719	719	0.9639	-0.0561		
720	720	0.9644	-0.0556		
721	721	0.9635	-0.0565		
722	722	0.9646	-0.0554	·	
723	723	0.965	-0.055		
724	724	0.9634	-0.0566		
725	725	0.9635	-0.0565		
726	726	0.9631	-0.0569		
727	727	0.9651	-0.0549		
728	728	0.9644	-0.0556		
729	729	0.9644	-0.0556		
730	730	0.9641	-0.0559		
731	731	0.9649	-0.0551		
732	732	0.9647	-0.0553		
733	733	0.9633	-0.0567		
734	734	0.9631	-0.0569		
735	735	0.9633	-0.0567		
736	736	0.9639	-0.0561		
737	737	0.965	-0.055		

				Slug Test - Water Level Data	Page 15 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m])	
738	738	0.9648	-0.0552		
739	739	0.9647	-0.0553		
740	740	0.9643	-0.0557	· · · · · · · · · · · · · · · · · · ·	
741	741	0.9656	-0.0544		
742	742	0.965	-0.055		
743	743	0.966	-0.054		
744	744	0.9667	-0.0533		
745	745	0.9666	-0.0534		
746	746	0.9666	-0.0534		
747	747	0.9642	-0.0558		
748	748	0.966	-0.054		
749	749	0.9651	-0.0549)	
750	750	0.968	-0.052		
751	751	0.967	-0.053		
752	752	0.9681	-0.0519		
753	753	0.9673	-0.0527		
754	754	0.9669	-0.0531		
755	755	0.9674	-0.0526		
756	756	0.9671	-0.0529		
757	757	0.9681	-0.0519		
758	758	0.967	-0.053		
759	759	0.967	-0.053		
760	760	0.9672	-0.0528		
761	761	0.9692	-0.0508		
762	762	0.9682	-0.0518		
763	763	0.969	-0.051		
764	764	0.9699	-0.0501		
765	765	0.9731	-0.0469		
766	766	0.9712	-0.0488		
767	767	0.9694	-0.0506		
768	768	0.9687	-0.0513		
769	769	0.9682	-0.0518		
770	770	0.9659	-0.0541		
771	771	0.9666	-0.0534		
772 773	772 773	0.9698	-0.0502		
773	774	0.9699	-0.0499 -0.0501		
774	775	0.9699	-0.0501		
775	776	0.9685	-0.0503		
777	777	0.9685	-0.0515		
778	778	0.967	-0.0528		
779	779	0.9709	-0.033		
780	780	0.9703	-0.0491		
781	781	0.9714	-0.0486		
782	782	0.971	-0.049		
783	783	0.9553	-0.0647		
784	784	0.9513	-0.0687		
785	785	0.9538	-0.0662		
786	786	0.9554	-0.0646		
787	787	0.9539	-0.0661		
788	788	0.9549	-0.0651		
789	789	0.954	-0.066		
790	790	0.9528	-0.0672		

				Slug Test - Water Level Data	Page 16 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
791	791	0.9564	-0.0636		
792	792	0.9635	-0.0565		
793	793	0.9672	-0.0528		
794	794	0.9734	-0.0466		
795	795	0.9728	-0.0472		
796	796	0.9733	-0.0467		
797	797	0.9735	-0.0465		
798	798	0.9739	-0.0461		
799	799	0.9739	-0.0461		
800	800	0.9743	-0.0457		
801	801	0.9743	-0.0457		
802	802	0.9737	-0.0463		
803	803	0.9737	-0.0463		
804	804	0.9746	-0.0454		
805	805	0.9747	-0.0453		
806	806	0.9746	-0.0454		
807	807	0.9743	-0.0457		
808	808	0.9746	-0.0454		
809	809	0.9744	-0.0456		
810	810	0.9724	-0.0476		
811	811	0.9752	-0.0448		
812	812	0.9752	-0.0448		
813	813	0.9748	-0.0452		
814	814	0.9749	-0.0451		
815	815	0.9757	-0.0443		
816	816	0.9759	-0.0441		
817	817	0.9762	-0.0438		
818	818	0.9759	-0.0441		
819	819	0.9757	-0.0443		
820	820	0.9764	-0.0436		
821	821	0.977	-0.043		
822	822	0.9777	-0.0423		
823	823	0.977	-0.043		
824	824	0.9761	-0.0439		
825	825	0.9766	-0.0434		
826	826	0.9762	-0.0438		
827	827	0.9761	-0.0439		
828	828	0.976	-0.044		
829	829	0.9756	-0.0444		
830	830	0.9761	-0.0439		
831	831	0.9754	-0.0446		
832	832	0.9766	-0.0434		
833	833	0.978	-0.042		
834	834	0.979	-0.041		
835	835	0.9789	-0.0411		
836	836	0.9783	-0.0417		
837	837	0.9789	-0.0411		
838	838	0.9784	-0.0416		
839	839	0.9792	-0.0408		
840	840	0.978	-0.042		
841	841	0.9775	-0.0425		
842	842	0.9783	-0.0417		
843	843	0.9786	-0.0414		

				Slug Test - Water Level Data	Page 17 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
844	844	0.9784	-0.0416		
845	845	0.9787	-0.0413		
846	846	0.9787	-0.0413		
847	847	0.9782	-0.0418		
848	848	0.979	-0.041		
849	849	0.9792	-0.0408		
850	850	0.9787	-0.0413		
851	851	0.9792	-0.0408		
852	852	0.9798	-0.0402		
853	853	0.9798	-0.0402		
854	854	0.98	-0.04		
855	855	0.9802	-0.0398		
856	856	0.981	-0.039		
857	857	0.9814	-0.0386	i	
858	858	0.9814	-0.0386		
859	859	0.9814	-0.0386		
860	860	0.9809	-0.0391		
861	861	0.9811	-0.0389		
862	862	0.9807	-0.0393		
863	863	0.9808	-0.0392		
864	864	0.9811	-0.0389		
865	865	0.9815	-0.0385		
866	866	0.9831	-0.0369		
867	867	0.9832	-0.0368		
868	868	0.9829	-0.0371		
869	869	0.9829	-0.0371		
870	870	0.9831	-0.0369		
871	871	0.9832	-0.0368		
872	872	0.983	-0.037		
873	873	0.9833	-0.0367	,	
874	874	0.9839	-0.0361		
875	875	0.983	-0.037		
876	876	0.9828	-0.0372		
877	877	0.9817	-0.0383		
878	878	0.9824	-0.0376		
879	879	0.9838	-0.0362		
880	880	0.9841	-0.0359		
881	881	0.9837	-0.0363		
882	882	0.9839	-0.0361		
883	883	0.9833	-0.0367		
884	884	0.9826	-0.0374		
885	885	0.9833	-0.0367		
886	886	0.9839	-0.0361		
887	887	0.9832	-0.0368		
888	888	0.9824	-0.0376		
889	889	0.9832	-0.0368		
890	890	0.9841	-0.0359		
891	891	0.9846	-0.0354		
892	892	0.9855	-0.0345		
893	893	0.9855	-0.0345		
894	894	0.9866	-0.0334		
895	895	0.9883	-0.0317		
896	896	0.9874	-0.0326		

				Slug Test - Water Level Data	Page 18 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
897	897	0.988	-0.032		
898	898	0.9882	-0.0318	5	
899	899	0.9874	-0.0326	;	
900	900	0.9875	-0.0325		
901	901	0.9875	-0.0325		
902	902	0.9869	-0.0331		
903	903	0.9866	-0.0334		
904	904	0.9765	-0.0435		
905	905	0.9715	-0.0485		
906	906	0.97	-0.05		
907	907	0.9694	-0.0506		
908	908	0.9703	-0.0497		
909	909	0.9715	-0.0485		
910	910	0.9709	-0.0491		
911	911	0.9836	-0.0364		
912	912	0.9858	-0.0342		
913	913	0.9886	-0.0314		
914	914	0.9889	-0.0311		
915	915	0.9891	-0.0309		
916	916	0.9898	-0.0302		
917	917	0.9898	-0.0302	2	
918	918	0.9897	-0.0303	}	
919	919	0.9893	-0.0307	,	
920	920	0.9887	-0.0313		
921	921	0.9895	-0.0305		
922	922	0.9876	-0.0324		
923	923	0.9887	-0.0313	}	
924	924	0.9874	-0.0326	;	
925	925	0.986	-0.034		
926	926	0.9882	-0.0318	;	
927	927	0.9873	-0.0327		
928	928	0.9892	-0.0308	;	
929	929	0.9889	-0.0311		
930	930	0.9903	-0.0297	,	
931	931	0.991	-0.029		
932	932	0.9917	-0.0283	<u>}</u>	
933	933	0.9921	-0.0279		
934	934	0.9929	-0.0271		
935	935	0.9933	-0.0267	,	
936	936	0.992	-0.028		
937	937	0.9917	-0.0283		
938	938	0.9908	-0.0292	<u> </u>	
939	939	0.991	-0.029		
940	940	0.9919	-0.0281		
941	941	0.9917	-0.0283		
942	942	0.9912	-0.0288		
943	943	0.9914	-0.0286		
944	944	0.9913	-0.0287		
945	945	0.9918	-0.0282		
946	946	0.9928	-0.0272		
947	947	0.9933	-0.0267		
948	948	0.9934	-0.0266		
949	949	0.9917	-0.0283		


				Slug Test - Water Level Data	Page 19 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
950	950	0.9907	-0.0293		
951	951	0.9894	-0.0306		
952	952	0.9926	-0.0274		
953	953	0.9915	-0.0285		
954	954	0.9926	-0.0274		
955	955	0.994	-0.026		
956	956	0.9931	-0.0269		
957	957	0.9946	-0.0254		
958	958	0.9934	-0.0266		
959	959	0.9935	-0.0265		
960	960	0.993	-0.027		
961	961	0.9958	-0.0242		
962	962	0.9946	-0.0254		
963	963	0.9954	-0.0246		
964	964	0.9962	-0.0238		
965	965	0.9951	-0.0249		
966	966	0.9935	-0.0265		
967	967	0.9924	-0.0276		
968	968	0.9922	-0.0278		
969	969	0.9933	-0.0267		
970	970	0.9941	-0.0259		
971	971	0.9944	-0.0256		
972	972	0.9936	-0.0264		
973	973	0.9937	-0.0263		
974	974	0.9939	-0.0261		
975	975	0.9943	-0.0257		
976	976	0.9952	-0.0248		
977	977	0.9946	-0.0254		
978	978	0.9946	-0.0254		
979	979	0.9951	-0.0249		
980	980	0.9952	-0.0248		
981	981	0.9957	-0.0243		
982	982	0.9956	-0.0244		
983	983	0.9953	-0.0247		
984	984	0.9958	-0.0242		
985	985	0.9962	-0.0238		
986	986	0.9959	-0.0241		
987	987	0.9951	-0.0249		
988	988	0.9955	-0.0245		
989	989	0.9966	-0.0234		
990	990	0.996	-0.024		
991	991	0.9965	-0.0235		
992	992	0.9964	-0.0236		
993	993	0.9969	-0.0231		
994	994	0.9963	-0.0237		
995	995	0.9963	-0.0237		
996	996	0.9961	-0.0239		
997	997	0.9968	-0.0232		
998	998	0.997	-0.023		
999	999	0.9971	-0.0229		
1000	1000	0.9963	-0.0237		
1001	1001	0.9962	-0.0238		
1002	1002	0.9965	-0.0235		

				Slug Test - Water Level Data	Page 20 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
1003	1003	0.9962	-0.0238		
1004	1004	0.9968	-0.0232		
1005	1005	0.9971	-0.0229		
1006	1006	0.9976	-0.0224		
1007	1007	0.9977	-0.0223		
1008	1008	0.9971	-0.0229		
1009	1009	0.9977	-0.0223		
1010	1010	0.9971	-0.0229		
1011	1011	0.9982	-0.0218		
1012	1012	0.9976	-0.0224		
1013	1013	0.9978	-0.0222		
1014	1014	0.9981	-0.0219		
1015	1015	0.9982	-0.0218		
1016	1016	0.9989	-0.0211		
1017	1017	0.9989	-0.0211		
1018	1018	0.998	-0.022		
1019	1019	0.9978	-0.0222		
1020	1020	0.9981	-0.0219		
1021	1021	0.9985	-0.0215		
1022	1022	0.9993	-0.0207		
1023	1023	0.9986	-0.0214		
1024	1024	0.9979	-0.0221		
1025	1025	0.9976	-0.0224		
1026	1026	0.9996	-0.0204		
1027	1027	0.9999	-0.0201		
1028	1028	0.9995	-0.0205		
1029	1029	0.9998	-0.0202		
1030	1030	1.00	-0.02		
1031	1031	0.9996	-0.0204		
1032	1032	0.9997	-0.0203		
1033	1033	1.0005	-0.0195		
1034	1034	1.0008	-0.0192		
1035	1035	0.9999	-0.0201		
1036	1036	0.9998	-0.0202		
1037	1037	1.0009	-0.0191		
1038	1038	1.0015	-0.0185		
1039	1039	1.0013	-0.0187		
1040	1040	1.0008	-0.0192		
1041	1041	1.0006	-0.0194		
1042	1042	1.0004	-0.0196		
1043	1043	1.0005	-0.0195		
1044	1044	1.0003	-0.0197		
1045	1045	1.0001	-0.0199		
1046	1046	1.0009	-0.0191		
1047	1047	1.0032	-0.0168		
1048	1048	1.0018	-0.0182		
1049	1049	1.0023	-0.0177		
1050	1050	1.0013	-0.0187		
1051	1051	1.0016	-0.0184		
1052	1052	1.0009	-0.0191		
1053	1053	1.0014	-0.0186		
1054	1054	1.0015	-0.0185		
1055	1055	1.0015	-0.0185		

				Slug Test - Water Level Data	Page 21 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
1056	1056	1.0013	-0.0187		
1057	1057	1.002	-0.018		
1058	1058	1.001	-0.019		
1059	1059	1.0015	-0.0185		
1060	1060	1.0009	-0.0191		
1061	1061	1.0017	-0.0183		
1062	1062	1.002	-0.018		
1063	1063	1.0027	-0.0173		
1064	1064	1.003	-0.017		
1065	1065	1.0014	-0.0186		
1066	1066	1.0019	-0.0181		
1067	1067	1.0019	-0.0181		
1068	1068	1.0021	-0.0179		
1069	1069	1.0016	-0.0184		
1070	1070	1.0028	-0.0172		
1071	1071	1.0031	-0.0169		
1072	1072	1.0029	-0.0171		
1073	1073	1.0027	-0.0173		
1074	1074	1.0039	-0.0161		
1075	1075	1.0038	-0.0162		
1076	1076	1.0023	-0.0177		
1077	1077	1.002	-0.018		
1078	1078	1.002	-0.018		
1079	1079	1.0036	-0.0164		
1080	1080	1.004	-0.016		
1081	1081	1.0046	-0.0154		
1082	1082	1.0036	-0.0164		
1083	1083	1.0034	-0.0166		
1084	1084	1.0039	-0.0161		
1085	1085	1.0032	-0.0168		
1086	1086	1.0033	-0.0167		
1087	1087	1.0036	-0.0164		
1088	1088	1.0044	-0.0156		
1089	1089	1.0038	-0.0162		
1000	1090	1.0046	-0.0154		
1090	1090	1.0049	-0.0151		
1092	1092	1.0043	-0.0163		
1092	1093	1.0037	-0.016		
1093	1094	1.004	-0.015		
1094	1094	1.0043	-0.0157		
1095	1095	1.0048	-0.0152		
1090	1090	1.0048	-0.0152		
1097	1098	1.0046	-0.0154		
1090	1099	1.0040	-0.0159		
1100	1100	1.0046	-0.0154		
1100	1101	1.0040	-0.0143		
1102	1102	1.0051	-0.0149		
1102	1102	1.0049	-0.0149		
1103	1103	1.0049	-0.0151		
1104	1104	1.0048	-0.0152		
1105	1105	1.005	-0.015 -0.0144		
1106	1106	1.0056	-0.0144 -0.0138		
1107	1107	1.0062	-0.0138		
1100	1100	1.0001	-0.0139		

				Slug Test - Water Level Data	Page 22 of 23
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time [s]	Water Level [m]	WL Change [m]		
1109	1109	1.0062	-0.0138		
1110	1110	1.0051	-0.0149		
1111	1111	1.0055	-0.0145		
1112	1112	1.006	-0.014		
1113	1113	1.0073	-0.0127		
1114	1114	1.007	-0.013		
1115	1115	1.0059	-0.0141		
1116	1116	1.0066	-0.0134		
1117	1117	1.007	-0.013		
1118	1118	1.0071	-0.0129		
1119	1119	1.0069	-0.0131		
1120	1120	1.0069	-0.0131		
1121	1121	1.0064	-0.0136		
1122	1122	1.0061	-0.0139		
1123	1123	1.0067	-0.0133		
1124	1124	1.007	-0.013		
1125	1125	1.0069	-0.0131		
1126	1126	1.0067	-0.0133		
1127	1127	1.0062	-0.0138		
1128	1128	1.0078	-0.0122		
1129	1129	1.0071	-0.0129		
1130	1130	1.0073	-0.0127		
1131	1131	1.0073	-0.0127		
1132	1132	1.0077	-0.0123		
1133	1133	1.0074	-0.0126		
1134	1134	1.0077	-0.0123		
1135	1135	1.0086	-0.0114		
1136	1136	1.0084	-0.0116		
1137	1137	1.0078	-0.0122		
1138	1138	1.0078	-0.0122		
1139	1139	1.0084	-0.0116		
1140	1140	1.0092	-0.0108		
1141	1141	1.0076	-0.0124		
1142	1142	1.0077	-0.0123		
1143	1143	1.0083	-0.0117		
1144	1144	1.0075	-0.0125		
1145	1145	1.0073	-0.0127		
1146	1146	1.008	-0.012		
1147	1147	1.0074	-0.0126		
1148	1148	1.0079	-0.0121		
1149	1149	1.0079	-0.0121		
1150	1150	1.0087	-0.0113		
1151	1151	1.0091	-0.0109		
1152	1152	1.0104	-0.0096		
1153	1153	1.0091	-0.0109		
1154	1154	1.0087	-0.0113		
1155	1155	1.0075	-0.0125		
1156	1156	1.0088	-0.0112		
1157	1157	1.0101	-0.0099		
1158	1158	1.0078	-0.0122		
1150	1159	1.0070	-0.0113		
1160	1160	1.0086	-0.0114		
1161	1161	1.0082	-0.0118		
וסוו	101	1.0002	-0.0118		

				Slug Test - Water Level Data	Page 23 of 2
				Project: Brock Street East - Evandale	
				Number: 171-00471-00	
				Client:	
	Time	Water Level	WL Change		
	[S]	[m]	[m]		
1162	1162	1.0085	-0.0115		
1163	1163	1.0089	-0.0111		
1164	1164	1.0096	-0.0104		
1165	1165	1.0096	-0.0104		
1166	1166	1.0101	-0.0099		
1167	1167	1.0097	-0.0103		
1168	1168	1.0093	-0.0107		
1169	1169	1.0095	-0.0105		
1170	1170	1.0096	-0.0104		
1171	1171	1.01	-0.01		
1172	1172	1.0097	-0.0103		
1173	1173	1.0079	-0.0121		
1174	1174	1.0109	-0.0091		
1175	1175	1.0112	-0.0088		
1176	1176	1.0116	-0.0084		
1177	1177	1.0112	-0.0088		
1178	1178	1.0107	-0.0093		
1179	1179	1.0105	-0.0095		
1180	1180	1.0102	-0.0098		
1181	1181	1.0099	-0.0101		
1182	1182	1.0096	-0.0104		
1183	1183	1.0105	-0.0095		
1184	1184	1.0117	-0.0083		
1185	1185	1.0119	-0.0081		
1186	1186	1.0104	-0.0096		
1187	1187	1.0105	-0.0095		
1188	1188	1.0104	-0.0096		
1189	1189	1.0103	-0.0097		
1190	1190	1.0111	-0.0089		
1191	1191	1.0111	-0.0089		
1192	1192	1.0113	-0.0087		
1193	1193	1.0112	-0.0088		
1194	1194	1.0108	-0.0092		
1195	1195	1.011	-0.009		
1196	1196	1.0107	-0.0093		
1197	1197	1.011	-0.009		
1198	1198	1.0122	-0.0078		
1199	1199	1.0116	-0.0084		
1200	1200	1.0121	-0.0079		
	.===	1.0121	0.0070		

					Siug Test - I	Analyses Report		
					Project: Broc	k Street East - Eva	ndale	
					Number: 171-	00471-00		
					Client:			
	ation: Uxbridge		Slug	g Test: MW1 -	Test 2	Test Well: I	MW1	
	st Conducted by:			-		Test Date:		
	uifer Thickness: NAI	Nm						
-	Analysis Name	Analysis Perfor	med by	Analysis Date	Method name	Well	T [m²/s]	s
	New analysis 1			2/10/2018	Hvorslev	MW1		4.01 × 1

HYDRAULIC CONDUCTIVITY DETERMINATION SINGLE WELL RESPONSE TESTS

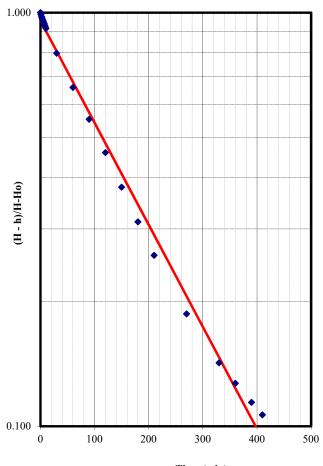
Project Name:	Evendale - Block 8		Project Number:	181-0047	1-00		
Test Date:	21-Oct-20		Well Number:	BH2			
Field Personnel:	T. Watters			Analysis By:	V.Bernar	d	
Well Diameter (2r):	0.08636	m	Screen	(Sand Pack) Length (L):	3.66	m
Borehole Diameter (2R):	0.1524	m	Static W	ater Depth (H):		3.327	m

HYDRAULIC CONDUCTIVITY: $K = [(r^2)*ln(L/R)]/(2*L*To)$

K	=

9.8E-08 m/sec

9.8E-06 cm/sec


8.5E-03 m/day

RISING HEAD

Time (min)	Measured Water Depth (m)	H-h (m)	(H-h)/ (H-Ho)
0	6.835	-3.508	1.000
1	6.795	-3.468	0.989
2	6.755	-3.428	0.977
3	6.727	-3.4	0.969
4	6.699	-3.372	0.961
5	6.673	-3.346	0.954
6	6.644	-3.317	0.946
7	6.619	-3.292	0.938
8	6.591	-3.264	0.930
9	6.565	-3.238	0.923
10	6.539	-3.212	0.916
30	6.125	-2.798	0.798
60	5.64	-2.313	0.659
90	5.2639	-1.9369	0.552
120	4.9364	-1.6094	0.459
150	4.6541	-1.3271	0.378
180	4.4209	-1.0939	0.312
210	4.2352	-0.9082	0.259
270	3.9825	-0.6555	0.187
330	3.8261	-0.4991	0.142
360	3.7722	-0.4452	0.127
390	3.7276	-0.4006	0.114
410	3.7007	-0.3737	0.107

NORMALIZED RECOVERY CURVE

TIME LAG (To): 167.1 min

Time (min)

HYDRAULIC CONDUCTIVITY DETERMINATION SINGLE WELL RESPONSE TESTS

Project Name:	Evendale - Block 8		Project Number:	181-00471-00			
Test Date:	22-Oct-20		v	Vell Number:	BH5		
Field Personnel:	T. Watters		A	Analysis By:	V.Bernar	d	
				6.2E-06			
Well Diameter (2r):	0.08636	m	Screen (Sand Pack) Length (L):		:	1.52	m
Borehole Diameter (2R):	0.1524	m	Static Wat	ter Depth (H):		2.665	m

HYDRAULIC CONDUCTIVITY: $K = [(r^2)*ln(L/R)]/(2*L*To)$

6.2E-06 m/sec

6.2E-04 cm/sec

5.4E-01 m/day

RISING HEAD

Time (min)	Measured Water Depth (m)	H-h (m)	(H-h)/ (H-Ho)
0	3.47	-0.805	1.000
1	3.335	-0.67	0.832
2	3.205	-0.54	0.671
3	3.085	-0.42	0.522
4	3.006	-0.341	0.424
5	2.96	-0.295	0.366
6	2.917	-0.252	0.313
7	2.895	-0.23	0.286
8	2.88	-0.215	0.267
9	2.868	-0.203	0.252
9 10			0.232
	2.863	-0.198	
20	2.85	-0.185	0.230
30	2.845	-0.18	0.224
60	2.8383	-0.1733	0.215
120	2.8355	-0.1705	0.212
240	2.8362	-0.1712	0.213
360	2.835	-0.17	0.211
480	2.8291	-0.1641	0.204
600	2.8279	-0.1629	0.202
720	2.8292	-0.1642	0.204
840	2.8306	-0.1656	0.206
840	2.8306	-0.1656	0.206
960	2.8279	-0.1629	0.202
1080	2.8295	-0.1645	0.204
1200	2.8299	-0.1649	0.205
1320	2.8302	-0.1652	0.205
1440	2.8303	-0.1653	0.205
1600	2.8356	-0.1706	0.212

NORMALIZED RECOVERY CURVE

TIME LAG (To): 4.9 min

D WATER QUALITY TESTING

WSP Canada Inc. (Aurora) ATTN: JAKE WHITTAMORE 126 Hillock Drive Unit 2 Aurora ON L4G 0G9 Date Received: 15-FEB-18 Report Date: 23-FEB-18 09:52 (MT) Version: FINAL

Client Phone: 905-750-3080

Certificate of Analysis

Lab Work Order #:L2057407Project P.O. #:NOT SUBMITTEDJob Reference:181-00471-00C of C Numbers:17-618284Legal Site Desc:17-618284

Mary-Lynn Pike Client Services Supervisor

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2057407 CONTD.... PAGE 2 of 9 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2057407-1 MW1 Sampled By: JFA on 14-FEB-18 @ 10:30 Matrix: WATER							
Physical Tests							
Colour, Apparent	20.7		2.0	CU		16-FEB-18	R3966764
Conductivity	2680		3.0	umhos/cm		16-FEB-18	R3966444
PH	7.64		0.10	pH units		16-FEB-18	R3966444
Total Dissolved Solids	1580	DLDS	20	mg/L		20-FEB-18	R3966889
Turbidity	>4000		0.10	NTU		16-FEB-18	R3962769
Anions and Nutrients							
Alkalinity, Bicarbonate (as CaCO3)	275		10	mg/L		21-FEB-18	R3966994
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L		21-FEB-18	R3966994
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L		21-FEB-18	R3966994
Alkalinity, Total (as CaCO3)	275		10	mg/L		21-FEB-18	R3966994
Ammonia, Total (as N)	0.202		0.020	mg/L		16-FEB-18	R3962989
Bromide (Br)	0.88	DLDS	0.50	mg/L		20-FEB-18	R3967011
Chloride (Cl)	770	DLDS	2.5	mg/L		20-FEB-18	R3967011
Computed Conductivity	2510			uS/cm		21-FEB-18	
Conductivity % Difference	-6.8			%		21-FEB-18	
Fluoride (F)	<0.10	DLDS	0.10	mg/L		20-FEB-18	R3967011
Hardness (as CaCO3)	566			mg/L		21-FEB-18	
Ion Balance	97.8			%		21-FEB-18	
Langelier Index	0.8					21-FEB-18	
Nitrate and Nitrite as N	2.304		0.11	mg/L		21-FEB-18	
Nitrate (as N)	2.08	DLDS	0.10	mg/L		20-FEB-18	R3967011
Nitrite (as N)	0.224	DLDS	0.050	mg/L		20-FEB-18	R3967011
Saturation pH	6.87			pН		21-FEB-18	
Orthophosphate-Dissolved (as P)	0.0039		0.0030	mg/L		16-FEB-18	R3966396
TDS (Calculated)	1640			mg/L		21-FEB-18	
Sulfate (SO4)	97.7	DLDS	1.5	mg/L		20-FEB-18	R3967011
Anion Sum	28.4			me/L		21-FEB-18	
Cation Sum	27.8			me/L		21-FEB-18	
Cation - Anion Balance	-1.1			%		21-FEB-18	
Organic / Inorganic Carbon							
Dissolved Organic Carbon	3.4		1.0	mg/L		20-FEB-18	R3967300
Inorganic Parameters							
Silica	13.3		1.1	mg/L		16-FEB-18	
Dissolved Metals							
Dissolved Metals Filtration Location	FIELD					16-FEB-18	R3962995
Aluminum (AI)-Dissolved	<0.050	DLHC	0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Antimony (Sb)-Dissolved	<0.0010	DLHC	0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Arsenic (As)-Dissolved	<0.0010	DLHC	0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Barium (Ba)-Dissolved	0.336	DLHC	0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Beryllium (Be)-Dissolved	<0.0010	DLHC	0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Bismuth (Bi)-Dissolved	<0.00050	DLHC	0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Boron (B)-Dissolved	<0.10	DLHC	0.10	mg/L	16-FEB-18	16-FEB-18	R3963327

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2057407-1 MW1							
Sampled By: JFA on 14-FEB-18 @ 10:30 Matrix: WATER							
Dissolved Metals							
Cadmium (Cd)-Dissolved	<0.000050	DLHC	0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Calcium (Ca)-Dissolved	193	DLHC	0.50	mg/L	16-FEB-18	16-FEB-18	R3963327
Chromium (Cr)-Dissolved	<0.0050	DLHC	0.0050	mg/L	16-FEB-18	16-FEB-18	R3963327
Cobalt (Co)-Dissolved	<0.0030	DLHC	0.0030	mg/L	16-FEB-18	16-FEB-18	R3963327
Copper (Cu)-Dissolved	<0.0010	DLHC	0.0020	mg/L	16-FEB-18	16-FEB-18	R3963327
Iron (Fe)-Dissolved	<0.10	DLHC	0.10	mg/L	16-FEB-18	16-FEB-18	R3963327
Lead (Pb)-Dissolved	<0.00050	DLHC	0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Magnesium (Mg)-Dissolved	20.5	DLHC	0.50	mg/L	16-FEB-18	16-FEB-18	R3963327
Magnesium (Mg) Dissolved	0.108	DLHC	0.0050	mg/L	16-FEB-18	16-FEB-18	R3963327
Molybdenum (Mo)-Dissolved	<0.00050	DLHC	0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Nickel (Ni)-Dissolved	<0.0050	DLHC	0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Phosphorus (P)-Dissolved	<0.50	DLHC	0.50	mg/L	16-FEB-18	16-FEB-18	R3963327
Potassium (K)-Dissolved	5.09	DLHC	0.50	mg/L	16-FEB-18	16-FEB-18	R3963327
Selenium (Se)-Dissolved	<0.00050	DLHC	0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Silicon (Si)-Dissolved	6.21	DLHC	0.50	mg/L	16-FEB-18	16-FEB-18	R3963327
Silver (Ag)-Dissolved	<0.00050	DLHC	0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Sodium (Na)-Dissolved	376	DLHC	5.0	mg/L	16-FEB-18	16-FEB-18	R3963327
Strontium (Sr)-Dissolved	0.757	DLHC	0.010	mg/L	16-FEB-18	16-FEB-18	R3963327
Sulfur (S)-Dissolved	15.4	DLHC	5.0	mg/L	16-FEB-18	16-FEB-18	R3963327
Thallium (TI)-Dissolved	<0.00010	DLHC	0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Tin (Sn)-Dissolved	<0.0010	DLHC	0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Titanium (Ti)-Dissolved	<0.0030	DLHC	0.0030	mg/L	16-FEB-18	16-FEB-18	R3963327
Tungsten (W)-Dissolved	<0.0010	DLHC	0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Uranium (U)-Dissolved	0.00169	DLHC	0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Vanadium (V)-Dissolved	<0.0050	DLHC	0.0050	mg/L	16-FEB-18	16-FEB-18	R3963327
Zinc (Zn)-Dissolved	<0.010	DLHC	0.010	mg/L	16-FEB-18	16-FEB-18	R3963327
Zirconium (Zr)-Dissolved	<0.0030	DLHC	0.0030	mg/L	16-FEB-18		
L2057407-2 MW2							
Sampled By: JFA on 14-FEB-18 @ 11:50							
Matrix: WATER							
Physical Tests							
Colour, Apparent	32.2		2.0	CU		16-FEB-18	R3966764
Conductivity	457		3.0	umhos/cm		16-FEB-18	R3966444
рН	7.94		0.10	pH units		16-FEB-18	R3966444
Total Dissolved Solids	382	DLDS	20	mg/L		20-FEB-18	R3966889
Turbidity	>4000		0.10	NTU		16-FEB-18	R3962769
Anions and Nutrients							
Alkalinity, Bicarbonate (as CaCO3)	192		10	mg/L		21-FEB-18	
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L		21-FEB-18	
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L		21-FEB-18	
Alkalinity, Total (as CaCO3)	192		10	mg/L		21-FEB-18	
Ammonia, Total (as N)	0.276		0.020	mg/L		16-FEB-18	R3962989

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2057407-2 MW2							
Sampled By: JFA on 14-FEB-18 @ 11:50 Matrix: WATER							
Anions and Nutrients							
Bromide (Br)	<0.10		0.10	mg/L		20-FEB-18	R3967011
Chloride (Cl)	16.8		0.10	mg/L		20-FEB-18	R3967011
Computed Conductivity	401		0.00	uS/cm		21-FEB-18	
Conductivity % Difference	-13.1			%		21-FEB-18	
Fluoride (F)	0.086		0.020	mg/L		20-FEB-18	R3967011
Hardness (as CaCO3)	209		0.020	mg/L		21-FEB-18	
Ion Balance	114			%		21-FEB-18	
Langelier Index	0.6			70		21-FEB-18	
Nitrate and Nitrite as N	<0.022		0.022	mg/L		21-FEB-18	
Nitrate (as N)	<0.020		0.020	mg/L		20-FEB-18	R3967011
Nitrite (as N)	<0.010		0.010	mg/L		20-FEB-18	R3967011
Saturation pH	7.29			pH		21-FEB-18	
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L		16-FEB-18	R3966396
TDS (Calculated)	238			mg/L		21-FEB-18	
Sulfate (SO4)	17.6		0.30	mg/L		20-FEB-18	R3967011
Anion Sum	4.03			me/L		21-FEB-18	
Cation Sum	4.60			me/L		21-FEB-18	
Cation - Anion Balance	6.6			%		21-FEB-18	
Organic / Inorganic Carbon						_	
Dissolved Organic Carbon	2.2		1.0	mg/L		20-FEB-18	R3967300
Inorganic Parameters							
Silica	24.9		0.11	mg/L		16-FEB-18	
Dissolved Metals							
Dissolved Metals Filtration Location	FIELD					16-FEB-18	R3962995
Aluminum (AI)-Dissolved	<0.0050		0.0050	mg/L	16-FEB-18	16-FEB-18	R3963327
Antimony (Sb)-Dissolved	0.00016		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Arsenic (As)-Dissolved	0.00127		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Barium (Ba)-Dissolved	0.118		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Beryllium (Be)-Dissolved	<0.00010		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Boron (B)-Dissolved	<0.010		0.010	mg/L	16-FEB-18	16-FEB-18	R3963327
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L	16-FEB-18	16-FEB-18	R3963327
Calcium (Ca)-Dissolved	68.7		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Chromium (Cr)-Dissolved	<0.00050		0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Cobalt (Co)-Dissolved	0.00012		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Copper (Cu)-Dissolved	<0.00020		0.00020	mg/L	16-FEB-18	16-FEB-18	R3963327
Iron (Fe)-Dissolved	0.062		0.010	mg/L	16-FEB-18	16-FEB-18	R3963327
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Magnesium (Mg)-Dissolved	9.15		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Manganese (Mn)-Dissolved	0.100		0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Molybdenum (Mo)-Dissolved	0.000392		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Nickel (Ni)-Dissolved	<0.00050		0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2057407-2 MW2 Sampled By: JFA on 14-FEB-18 @ 11:50 Matrix: WATER							
Dissolved Metals							
Phosphorus (P)-Dissolved	<0.050		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Potassium (K)-Dissolved	1.30		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Selenium (Se)-Dissolved	<0.000050		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Silicon (Si)-Dissolved	11.6		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Silver (Ag)-Dissolved	<0.000050		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Sodium (Na)-Dissolved	8.45		0.50	mg/L	16-FEB-18	16-FEB-18	R3963327
Strontium (Sr)-Dissolved	0.182		0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Sulfur (S)-Dissolved	6.4		5.0	mg/L	16-FEB-18	16-FEB-18	R3963327
Thallium (TI)-Dissolved	<0.000010		0.000010	mg/L	16-FEB-18	16-FEB-18	R3963327
Tin (Sn)-Dissolved	0.00011		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L	16-FEB-18	16-FEB-18	R3963327
Tungsten (W)-Dissolved	<0.00010		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Uranium (U)-Dissolved	0.000091		0.000010	mg/L	16-FEB-18	16-FEB-18	R3963327
Vanadium (V)-Dissolved	0.00070		0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Zinc (Zn)-Dissolved	<0.0010		0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Zirconium (Zr)-Dissolved	<0.00030		0.00030	mg/L	16-FEB-18	16-FEB-18	R3963327
L2057407-3 GW DUPLICATE Sampled By: JFA on 14-FEB-18 @ 10:30 Matrix: WATER							
Physical Tests							
Colour, Apparent	20.3		2.0	CU		16-FEB-18	R3966764
Conductivity	452		3.0	umhos/cm		16-FEB-18	R3966444
рН	7.87		0.10	pH units		16-FEB-18	R3966444
Total Dissolved Solids	340	DLDS	20	mg/L		20-FEB-18	R3966889
Turbidity	>4000		0.10	NTU		16-FEB-18	R3962769
Anions and Nutrients							
Alkalinity, Bicarbonate (as CaCO3)	197		10	mg/L		21-FEB-18	R3966994
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L		21-FEB-18	R3966994
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L		21-FEB-18	R3966994
Alkalinity, Total (as CaCO3)	197		10	mg/L		21-FEB-18	R3966994
Ammonia, Total (as N)	0.319		0.020	mg/L		16-FEB-18	R3962989
Bromide (Br)	<0.10		0.10	mg/L		20-FEB-18	R3967011
Chloride (Cl)	22.9		0.50	mg/L		20-FEB-18	R3967011
Computed Conductivity	411			uS/cm		21-FEB-18	
Conductivity % Difference	-9.5			%		21-FEB-18	
Fluoride (F)	0.088		0.020	mg/L		20-FEB-18	R3967011
Hardness (as CaCO3)	209			mg/L		21-FEB-18	
Ion Balance	109			%		21-FEB-18	
Langelier Index	0.6					21-FEB-18	
Nitrate and Nitrite as N	<0.022		0.022	mg/L		21-FEB-18	
Nitrate (as N)	<0.020		0.020	mg/L		20-FEB-18	R3967011
Nitrite (as N)	<0.010		0.010	mg/L		20-FEB-18	R3967011

L2057407 CONTD.... PAGE 6 of 9 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2057407-3 GW DUPLICATE							
Sampled By: JFA on 14-FEB-18 @ 10:30 Matrix: WATER							
Anions and Nutrients							
Saturation pH	7.28			pН		21-FEB-18	
Orthophosphate-Dissolved (as P)	< 0.0030		0.0030	' mg/L		16-FEB-18	R3966396
TDS (Calculated)	244			mg/L		21-FEB-18	
Sulfate (SO4)	15.1		0.30	mg/L		20-FEB-18	R3967011
Anion Sum	4.22			me/L		21-FEB-18	
Cation Sum	4.61			me/L		21-FEB-18	
Cation - Anion Balance	4.5			%		21-FEB-18	
Organic / Inorganic Carbon				,			
Dissolved Organic Carbon	4.2		1.0	mg/L		20-FEB-18	R3967300
Inorganic Parameters				-			
Silica	23.9		0.11	mg/L		16-FEB-18	
Dissolved Metals							
Dissolved Metals Filtration Location	FIELD					16-FEB-18	R3962995
Aluminum (Al)-Dissolved	<0.0050		0.0050	mg/L	16-FEB-18	16-FEB-18	R3963327
Antimony (Sb)-Dissolved	0.00015		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Arsenic (As)-Dissolved	0.00132		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Barium (Ba)-Dissolved	0.116		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Beryllium (Be)-Dissolved	<0.00010		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Boron (B)-Dissolved	<0.010		0.010	mg/L	16-FEB-18	16-FEB-18	R3963327
Cadmium (Cd)-Dissolved	<0.000010		0.000010	mg/L	16-FEB-18	16-FEB-18	R3963327
Calcium (Ca)-Dissolved	68.2		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Chromium (Cr)-Dissolved	<0.00050		0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Cobalt (Co)-Dissolved	0.00013		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Copper (Cu)-Dissolved	<0.00020		0.00020	mg/L	16-FEB-18	16-FEB-18	R3963327
Iron (Fe)-Dissolved	0.070		0.010	mg/L	16-FEB-18	16-FEB-18	R3963327
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Magnesium (Mg)-Dissolved	9.47		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Manganese (Mn)-Dissolved	0.104		0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Molybdenum (Mo)-Dissolved	0.000389		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Nickel (Ni)-Dissolved	<0.00050		0.00050	mg/L	16-FEB-18	16-FEB-18	R3963327
Phosphorus (P)-Dissolved	<0.050		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Potassium (K)-Dissolved	1.31		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Selenium (Se)-Dissolved	0.000054		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Silicon (Si)-Dissolved	11.2		0.050	mg/L	16-FEB-18	16-FEB-18	R3963327
Silver (Ag)-Dissolved	<0.000050		0.000050	mg/L	16-FEB-18	16-FEB-18	R3963327
Sodium (Na)-Dissolved	8.56		0.50	mg/L	16-FEB-18	16-FEB-18	R3963327
Strontium (Sr)-Dissolved	0.186		0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Sulfur (S)-Dissolved	6.3		5.0	mg/L	16-FEB-18	16-FEB-18	R3963327
Thallium (TI)-Dissolved	<0.000010		0.000010	mg/L	16-FEB-18	16-FEB-18	R3963327
Tin (Sn)-Dissolved	0.00011		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L	16-FEB-18	16-FEB-18	R3963327

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2057407-3 GW DUPLICATE							
Sampled By: JFA on 14-FEB-18 @ 10:30							
Matrix: WATER							
Dissolved Metals							
Tungsten (W)-Dissolved	<0.00010		0.00010	mg/L	16-FEB-18	16-FEB-18	R3963327
Uranium (U)-Dissolved	0.000087		0.000010	mg/L	16-FEB-18		R3963327
Vanadium (V)-Dissolved	0.00070		0.00050	mg/L	16-FEB-18		R3963327
Zinc (Zn)-Dissolved	<0.0010		0.0010	mg/L	16-FEB-18	16-FEB-18	R3963327
Zirconium (Zr)-Dissolved	<0.00030		0.00030	mg/L	16-FEB-18	16-FEB-18	R3963327

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Boron (B)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Molybdenum (Mo)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Potassium (K)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Sulfur (S)-Dissolved	MS-B	L2057407-1, -2, -3	
Matrix Spike	Uranium (U)-Dissolved	MS-B	L2057407-1, -2, -3	
Sample Parameter Qualifier	key listed:			
Qualifier Description				

DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-AUTO-WT This analysis is carried o colourimetric method.	Water out using pro	Automated Speciated Alkalinity cedures adapted from EPA Method 310.	EPA 310.2 2 "Alkalinity". Total Alkalinity is determined using the methyl orange
ALK-SPECIATED-WT Water samples are anal	Water yzed directly	pH Measurement for Spec. Alk by a calibrated pH meter.	APHA 4500 H-Electrode
BR-IC-N-WT Inorganic anions are and	Water alyzed by Ion	Bromide in Water by IC Chromatography with conductivity and/o	EPA 300.1 (mod) or UV detection.
C-DIS-ORG-WT Sample is filtered throug vaporized and the organ infrared detector.	Water h a 0.45um f ic carbon is d	Dissolved Organic Carbon filter, then injected into a heated reaction oxidized to carbon dioxide. The carbon d	APHA 5310B a chamber which is packed with an oxidative catalyst. The water is lioxide is transported in a carrier gas and is measured by a non-dispersive
CL-IC-N-WT Inorganic anions are ana	Water alyzed by Ion	Chloride by IC Chromatography with conductivity and/o	EPA 300.1 (mod) or UV detection.
Analysis conducted in a Protection Act (July 1, 2		th the Protocol for Analytical Methods U	sed in the Assessment of Properties under Part XV.1 of the Environmenta
decanting. Colour meas	sured spectro surements ca		APHA 2120 um-cobalt standards using the single wavelength method after sample the pH of the sample as received (at time of testing), without pH
EC-WT Water samples can be r	Water neasured dire	Conductivity ectly by immersing the conductivity cell i	APHA 2510 B nto the sample.
ETL-N2N3-WT	Water	Calculate from NO2 + NO3	APHA 4110 B
ETL-SILICA-CALC-WT	Water	Calculate from SI-TOT-WT	EPA 200.8
F-IC-N-WT Inorganic anions are and	Water alyzed by Ion	Fluoride in Water by IC Chromatography with conductivity and/o	EPA 300.1 (mod) or UV detection.
ONBALANCE-OP03-WT	Water	Detailed Ion Balance Calculation	APHA 1030E, 2330B, 2510A
MET-D-CCMS-WT	Water	Dissolved Metals in Water by CRC	APHA 3030B/6020A (mod)
Water samples are filter	ed (0.45 um)	, preserved with nitric acid, and analyzed	d by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Reference Information

Analysis conducted in a Protection Act (July 1, 2		th the Protocol for Analytical Methods Us	sed in the Assessment of Properties under Part XV.1 of the Environmental
NH3-WT	Water	Ammonia, Total as N	EPA 350.1
Sample is measured co colorimetrically.	orimetrically.	When sample is turbid a distillation step	is required, sample is distilled into a solution of boric acid and measured
NO2-IC-WT	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions are an	alyzed by Ion	Chromatography with conductivity and/o	r UV detection.
NO3-IC-WT	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions are an	alyzed by Ion	Chromatography with conductivity and/c	r UV detection.
PO4-DO-COL-WT	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		edures adapted from APHA Method 450 s been lab or field filtered through a 0.45	00-P "Phosphorus". Dissolved Orthophosphate is determined micron membrane filter.
SO4-IC-N-WT	Water	Sulfate in Water by IC Chromatography with conductivity and/c	EPA 300.1 (mod)
5	, ,	<u> </u>	
SOLIDS-TDS-WT	Water	Total Dissolved Solids	APHA 2540C
			40 "Solids". Solids are determined gravimetrically. Total Dissolved Solids determined by evaporating the filtrate to dryness at 180 degrees celsius.
TURBIDITY-WT	Water	Turbidity	APHA 2130 B
•		, 0	by the sample under defined conditions with the intensity of light scattered ings are obtained from a Nephelometer.
** ALS test methods may in	ncorporate m	odifications from specified reference me	hods to improve performance.
The last two letters of the	above test c	ode(s) indicate the laboratory that perfor	med analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Labor	bratory Location
WT ALS E	ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

17-618284

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L2057407	r Rej	oort Date: 23-FE	B-18		Page 1 of 11		
126	SP Canada Inc. (Aurora) S Hillock Drive Unit 2 rora ON L4G 0G9									
Contact: JA	KE WHITTAMORE									
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
ALK-AUTO-WT	Water									
Batch R39	66994									
WG2719604-3 Alkalinity, Total (a		WT-ALK-CRM	104.9		%		80-120	21-FEB-18		
		L2057363-2	120		~~~/l	0.7	00			
Alkalinity, Total (a WG2719604-2		137	138		mg/L	0.7	20	21-FEB-18		
Alkalinity, Total (a	is CaCO3)		97.7		%		85-115	21-FEB-18		
WG2719604-1 Alkalinity, Total (a	MB Is CaCO3)		<10		mg/L		10	21-FEB-18		
ALK-SPECIATED-W	T Water									
Batch R39	66444									
WG2717494-12	DUP	WG2717494-11								
рН		7.86	7.86	J	pH units	0.00	0.2	16-FEB-18		
WG2717494-10 рН	LCS		6.99		pH units		6.9-7.1	16-FEB-18		
BR-IC-N-WT	Water									
Batch R39	67011									
WG2718847-4 Bromide (Br)	DUP	L2057075-2 0.29	0.28		mg/L	1.1	20	20-FEB-18		
WG2718847-8 Bromide (Br)	DUP	L2057428-2 <0.10	<0.10	RPD-NA	mg/L	N/A	20	20-FEB-18		
WG2718847-2 Bromide (Br)	LCS		99.1		%		85-115	20-FEB-18		
WG2718847-7 Bromide (Br)	LCS		96.8		%		85-115	20-FEB-18		
	MB		<0.10		mg/L		0.1	20-FEB-18		
	МВ		<0.10		mg/L		0.1			
WG2718847-5	MS	L2057075-2			-			20-FEB-18		
	MS	L2057428-2	106.2		%		75-125	20-FEB-18		
Bromide (Br) C-DIS-ORG-WT	Water		89.4		%		75-125	20-FEB-18		
	67300									
	DUP	L2057075-1								
Dissolved Organi		2.0	2.6	J	mg/L	0.7	2	20-FEB-18		
WG2719466-2	LCS									

WG2717514-1 MB

WG2717494-12 DUP

WG2717494-10 LCS

Conductivity

R3966444

Water

Colour, Apparent

EC-WT

Batch

Quality Control Report

			· · · · · · · · · · · · · · · · · · ·					
		Workorder:	L2057407		Report Date: 23-FI	EB-18		Page 2 of 11
Chorne	WSP Canada Inc. (Aurora) 126 Hillock Drive Unit 2 Aurora ON L4G 0G9							
Contact:	JAKE WHITTAMORE							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-WT	Water							
Batch R WG2719466-2 Dissolved Org			104.4		%		80-120	20-FEB-18
WG2719466-1 Dissolved Org			<1.0		mg/L		1	20-FEB-18
WG2719466-4 Dissolved Org		L2057075-1	97.9		%		70-130	20-FEB-18
CL-IC-N-WT	Water							
Batch R	3967011							
WG2718847-4 Chloride (Cl)	DUP	L2057075-2 40.7	40.4		mg/L	0.6	20	20-FEB-18
WG2718847-8 Chloride (Cl)	DUP	L2057428-2 57.1	57.1		mg/L	0.1	20	20-FEB-18
WG2718847-2 Chloride (Cl)	LCS		100.5		%		90-110	20-FEB-18
WG2718847-7 Chloride (Cl)	LCS		101.1		%		90-110	20-FEB-18
WG2718847-1 Chloride (Cl)	MB		<0.50		mg/L		0.5	20-FEB-18
WG2718847-6 Chloride (Cl)	MB		<0.50		mg/L		0.5	20-FEB-18
WG2718847-5 Chloride (Cl)	MS	L2057075-2	99.7		%		75-125	20-FEB-18
WG2718847-9 Chloride (Cl)	MS	L2057428-2	101.0		%		75-125	20-FEB-18
COLOUR-APPAR	ENT-WT Water							
Batch R	3966764							
WG2717514-3 Colour, Appar	-	L2057397-1 <2.0	2.1	RPD-NA	CU	N/A	20	16-FEB-18
WG2717514-2 Colour, Appar			98.7		%		85-115	16-FEB-18

CU

umhos/cm

2

10

0.3

16-FEB-18

16-FEB-18

<2.0

WG2717494-11

1100 1100

			Workorder: I	_2057407	R	eport Date: 23-F	EB-18		Page 3 of 11
Client:	126 Hillock	ada Inc. (Aurora) CDrive Unit 2 NL4G 0G9							
Contact:	JAKE WH	ITTAMORE							
Test		Matrix	Reference	Result C	lualifier	Units	RPD	Limit	Analyzed
EC-WT		Water							
Batch I	R3966444								
WG2717494-1 Conductivity	0 LCS			98.7		%		90-110	16-FEB-18
WG2717494-9	MB								
Conductivity				<3.0		umhos/cm		3	16-FEB-18
F-IC-N-WT		Water							
Batch I	R3967011								
WG2718847-4 Fluoride (F)	DUP		L2057075-2 0.265	0.266		mg/L	0.6	20	
WG2718847-8	B DUP		L2057428-2	0.200		ilig/L	0.6	20	20-FEB-18
Fluoride (F)	DUP		0.058	0.058		mg/L	0.5	20	20-FEB-18
WG2718847-2 Fluoride (F)	LCS			100.5		%		90-110	20-FEB-18
WG2718847-7 Fluoride (F)	LCS			106.8		%		90-110	20-FEB-18
WG2718847-1 Fluoride (F)	МВ			<0.020		mg/L		0.02	20-FEB-18
WG2718847-6 Fluoride (F)	6 MB			<0.020		mg/L		0.02	20-FEB-18
WG2718847-5 Fluoride (F)	5 MS		L2057075-2	102.1		%		75-125	20-FEB-18
WG2718847-9 Fluoride (F)) MS		L2057428-2	105.8		%		75-125	20-FEB-18
MET-D-CCMS-W	т	Water							
Batch I	R3963327								
WG2717994-4 Aluminum (Al			WG2717994-3 <0.050	<0.050		mg/L	N1/A	20	
Antimony (Sb			<0.000	<0.000	RPD-NA RPD-NA	mg/L	N/A N/A	20 20	16-FEB-18 16-FEB-18
Arsenic (As)-	,		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-FEB-18
Barium (Ba)-I			0.455	0.410		mg/L	10	20	16-FEB-18
Beryllium (Be			<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-FEB-18
Bismuth (Bi)-I	, ,		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-FEB-18
Boron (B)-Dis			<0.10	<0.10	RPD-NA	mg/L	N/A	20	16-FEB-18
Cadmium (Co	d)-Dissolved	1	<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	16-FEB-18
Calcium (Ca)	-Dissolved		611	529		mg/L	14	20	16-FEB-18
Chromium (C	r)-Dissolved	Ł	<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-FEB-18
Cobalt (Co)-D	Dissolved		0.0014	0.0012		mg/L	9.8	20	16-FEB-18

Workorder: L2057407 Report Date: 23-FEB-18 Page 4 of 11 WSP Canada Inc. (Aurora) Client: 126 Hillock Drive Unit 2 Aurora ON L4G 0G9 JAKE WHITTAMORE Contact: Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-WT Water R3963327 Batch WG2717994-4 DUP WG2717994-3 Copper (Cu)-Dissolved < 0.0020 < 0.0020 **RPD-NA** mg/L N/A 20 16-FEB-18 Iron (Fe)-Dissolved 0.36 0.33 mg/L 10 20 16-FEB-18 < 0.00050 < 0.00050 Lead (Pb)-Dissolved RPD-NA mg/L N/A 20 16-FEB-18 80.6 73.2 Magnesium (Mg)-Dissolved mg/L 9.6 20 16-FEB-18 Manganese (Mn)-Dissolved 5.14 4.67 mg/L 9.5 20 16-FEB-18 Molybdenum (Mo)-Dissolved 0.00067 0.00066 mg/L 1.4 20 16-FEB-18 Nickel (Ni)-Dissolved < 0.0050 < 0.0050 **RPD-NA** mg/L N/A 20 16-FEB-18 Phosphorus (P)-Dissolved < 0.50 < 0.50 **RPD-NA** mg/L N/A 20 16-FEB-18 Potassium (K)-Dissolved 4.81 4.32 mg/L 20 16-FEB-18 11 Selenium (Se)-Dissolved < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 16-FEB-18 Silicon (Si)-Dissolved 7.50 6.73 mg/L 11 20 16-FEB-18 Silver (Ag)-Dissolved < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 16-FEB-18 Sodium (Na)-Dissolved 606 548 mg/L 10 20 16-FEB-18 Strontium (Sr)-Dissolved 1.39 1.28 mg/L 8.4 20 16-FEB-18 Sulfur (S)-Dissolved 44.5 38.1 mg/L 16 20 16-FEB-18 Thallium (TI)-Dissolved < 0.00010 < 0.00010 mg/L **RPD-NA** N/A 20 16-FEB-18 Tin (Sn)-Dissolved < 0.0010 < 0.0010 **RPD-NA** mg/L N/A 20 16-FEB-18 Titanium (Ti)-Dissolved < 0.0030 < 0.0030 **RPD-NA** mg/L N/A 20 16-FEB-18 Tungsten (W)-Dissolved < 0.0010 < 0.0010 mg/L N/A **RPD-NA** 20 16-FEB-18 Uranium (U)-Dissolved 0.00311 0.00298 mg/L 4.2 20 16-FEB-18 Vanadium (V)-Dissolved < 0.0050 < 0.0050 mg/L **RPD-NA** N/A 20 16-FEB-18 Zinc (Zn)-Dissolved < 0.010 < 0.010 mg/L **RPD-NA** N/A 20 16-FEB-18 Zirconium (Zr)-Dissolved < 0.0030 < 0.0030 **RPD-NA** mg/L N/A 20 16-FEB-18 WG2717994-2 LCS Aluminum (AI)-Dissolved 103.5 % 80-120 16-FEB-18 Antimony (Sb)-Dissolved 89.7 % 80-120 16-FEB-18 Arsenic (As)-Dissolved 100.3 % 80-120 16-FEB-18 Barium (Ba)-Dissolved 99.2 % 80-120 16-FEB-18 Beryllium (Be)-Dissolved 98.4 % 80-120 16-FEB-18 Bismuth (Bi)-Dissolved 94.4 % 80-120 16-FEB-18 Boron (B)-Dissolved % 96.2 80-120 16-FEB-18 Cadmium (Cd)-Dissolved 97.8 % 80-120 16-FEB-18 Calcium (Ca)-Dissolved 100.9 % 80-120 16-FEB-18

Work			L205740	7	Report Date: 23-FEB-18			Page 5 of 11	
Client:	WSP Canada Inc. (Aurora) 126 Hillock Drive Unit 2 Aurora ON L4G 0G9 JAKE WHITTAMORE	1							
Contact:									
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS									
Batch	R3963327								
WG271799 Chromium	4-2 LCS (Cr)-Dissolved		101.6		%		80-120	16-FEB-18	
	b)-Dissolved		99.6		%		80-120	16-FEB-18	
	u)-Dissolved		99.5		%		80-120	16-FEB-18	
Iron (Fe)-D			93.1		%		80-120	16-FEB-18	
Lead (Pb)-			96.7		%		80-120	16-FEB-18	
	n (Mg)-Dissolved		102.6		%		80-120	16-FEB-18	
Manganes	e (Mn)-Dissolved		109.2		%		80-120	16-FEB-18	
Molybdenu	um (Mo)-Dissolved		100.1		%		80-120	16-FEB-18	
Nickel (Ni)	-Dissolved		99.5		%		80-120	16-FEB-18	
Phosphoru	us (P)-Dissolved		105.6		%		80-120	16-FEB-18	
Potassium	(K)-Dissolved		104.8		%		80-120	16-FEB-18	
Selenium	(Se)-Dissolved		96.0		%		80-120	16-FEB-18	
Silicon (Si))-Dissolved		101.0		%		60-140	16-FEB-18	
Silver (Ag)	-Dissolved		96.2		%		80-120	16-FEB-18	
Sodium (N	la)-Dissolved		98.7		%		80-120	16-FEB-18	
Strontium	(Sr)-Dissolved		104.0		%		80-120	16-FEB-18	
Sulfur (S)-	Dissolved		96.1		%		80-120	16-FEB-18	
Thallium (TI)-Dissolved		100.3		%		80-120	16-FEB-18	
Tin (Sn)-D	issolved		95.3		%		80-120	16-FEB-18	
Titanium (Ti)-Dissolved		99.0		%		80-120	16-FEB-18	
Tungsten	(W)-Dissolved		98.2		%		80-120	16-FEB-18	
Uranium (I	U)-Dissolved		97.2		%		80-120	16-FEB-18	
Vanadium	(V)-Dissolved		101.8		%		80-120	16-FEB-18	
Zinc (Zn)-I	Dissolved		95.5		%		80-120	16-FEB-18	
Zirconium	(Zr)-Dissolved		97.3		%		80-120	16-FEB-18	
WG271799									
	(AI)-Dissolved		<0.0050		mg/L		0.005	16-FEB-18	
-	(Sb)-Dissolved		<0.00010		mg/L		0.0001	16-FEB-18	
,	s)-Dissolved		<0.00010		mg/L		0.0001	16-FEB-18	
,	a)-Dissolved		<0.00010		mg/L		0.0001	16-FEB-18	
	(Be)-Dissolved		<0.00010	2	mg/L		0.0001	16-FEB-18	
`	Bi)-Dissolved		< 0.00005	J	mg/L		0.00005	16-FEB-18	
Boron (B)-			<0.010		mg/L		0.01	16-FEB-18	
Cadmium	(Cd)-Dissolved		<0.00000	DL	mg/L		0.000005	16-FEB-18	

		Workorder:	L2057407		Report Date: 23-FEB-18			Page 6 of 11		
Client: Contact:	WSP Canada Inc. (Aurora) 126 Hillock Drive Unit 2 Aurora ON L4G 0G9 JAKE WHITTAMORE							-		
		Defenses	Desult	0	1114		1 1 14	A		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-D-CCMS-	-WT Water									
Batch WG2717994	R3963327 4-1 MB Ca)-Dissolved		<0.050		mg/L		0.05			
	(Cr)-Dissolved		<0.00050		mg/L		0.0005	16-FEB-18 16-FEB-18		
)-Dissolved		<0.00010		mg/L		0.0001	16-FEB-18		
, ,	u)-Dissolved		<0.00020		mg/L		0.0002	16-FEB-18		
Iron (Fe)-D			<0.010		mg/L		0.01	16-FEB-18		
Lead (Pb)-			<0.000050		mg/L		0.00005	16-FEB-18		
· · ·	n (Mg)-Dissolved		<0.050		mg/L		0.05	16-FEB-18		
-	e (Mn)-Dissolved		<0.00050		mg/L		0.0005	16-FEB-18		
-	im (Mo)-Dissolved		<0.000050		mg/L		0.00005	16-FEB-18		
Nickel (Ni)-	-Dissolved		<0.00050		mg/L		0.0005	16-FEB-18		
Phosphoru	is (P)-Dissolved		<0.050		mg/L		0.05	16-FEB-18		
Potassium	(K)-Dissolved		<0.050		mg/L		0.05	16-FEB-18		
Selenium (Se)-Dissolved		<0.000050		mg/L		0.00005	16-FEB-18		
Silicon (Si)	-Dissolved		<0.050		mg/L		0.05	16-FEB-18		
Silver (Ag)-	-Dissolved		<0.000050		mg/L		0.00005	16-FEB-18		
Sodium (Na	a)-Dissolved		<0.50		mg/L		0.5	16-FEB-18		
Strontium ((Sr)-Dissolved		<0.0010		mg/L		0.001	16-FEB-18		
Sulfur (S)-[Dissolved		<0.50		mg/L		0.5	16-FEB-18		
Thallium (T	FI)-Dissolved		<0.000010		mg/L		0.00001	16-FEB-18		
Tin (Sn)-Di	issolved		<0.00010		mg/L		0.0001	16-FEB-18		
Titanium (1	Fi)-Dissolved		<0.00030		mg/L		0.0003	16-FEB-18		
Tungsten (W)-Dissolved		<0.00010		mg/L		0.0001	16-FEB-18		
Uranium (L	J)-Dissolved		<0.000010		mg/L		0.00001	16-FEB-18		
Vanadium	(V)-Dissolved		<0.00050		mg/L		0.0005	16-FEB-18		
Zinc (Zn)-D	Dissolved		<0.0010		mg/L		0.001	16-FEB-18		
Zirconium	(Zr)-Dissolved		<0.00030		mg/L		0.0003	16-FEB-18		
WG2717994 Aluminum	4-5 MS (Al)-Dissolved	WG2717994-6	94.3		%		70-130	16-FEB-18		
Antimony (Sb)-Dissolved		89.0		%		70-130	16-FEB-18		
Arsenic (As	s)-Dissolved		94.3		%		70-130	16-FEB-18		
Barium (Ba	a)-Dissolved		N/A	MS-B	%		-	16-FEB-18		
Beryllium (I	Be)-Dissolved		92.8		%		70-130	16-FEB-18		
Bismuth (B	Bi)-Dissolved		84.7		%		70-130	16-FEB-18		
Boron (B)-I	Dissolved		N/A	MS-B	%		-	16-FEB-18		

WSP Canada Inc. (Aurora)

Quality Control Report

Report Date: 23-FEB-18

Page 7 of 11

Workorder: L2057407

Client: 126 Hillock Drive Unit 2 Aurora ON L4G 0G9 Contact: JAKE WHITTAMORE Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-WT Water R3963327 Batch WG2717994-5 MS WG2717994-6 Cadmium (Cd)-Dissolved % 92.3 70-130 16-FEB-18 Calcium (Ca)-Dissolved N/A MS-B % 16-FEB-18 94.5 Chromium (Cr)-Dissolved % 70-130 16-FEB-18 Cobalt (Co)-Dissolved 79.9 % 16-FEB-18 70-130 Copper (Cu)-Dissolved % 84.5 70-130 16-FEB-18 Lead (Pb)-Dissolved 84.9 % 70-130 16-FEB-18 Magnesium (Mg)-Dissolved MS-B N/A % 16-FEB-18 Manganese (Mn)-Dissolved N/A % MS-B 16-FEB-18 Molybdenum (Mo)-Dissolved N/A MS-B % 16-FEB-18 Nickel (Ni)-Dissolved 80.7 % 70-130 16-FEB-18 Phosphorus (P)-Dissolved 98.1 % 70-130 16-FEB-18 Potassium (K)-Dissolved N/A MS-B % 16-FEB-18 Selenium (Se)-Dissolved 89.9 % 70-130 16-FEB-18 Silicon (Si)-Dissolved N/A MS-B % 16-FEB-18 -Silver (Ag)-Dissolved 88.8 % 70-130 16-FEB-18 Sodium (Na)-Dissolved N/A MS-B % 16-FEB-18 Strontium (Sr)-Dissolved N/A MS-B % 16-FEB-18 Sulfur (S)-Dissolved N/A MS-B % 16-FEB-18 -Thallium (TI)-Dissolved 88.1 % 70-130 16-FEB-18 Tin (Sn)-Dissolved 91.1 % 70-130 16-FEB-18 Titanium (Ti)-Dissolved 94.1 % 70-130 16-FEB-18 Tungsten (W)-Dissolved 85.9 % 70-130 16-FEB-18 Uranium (U)-Dissolved N/A MS-B % 16-FEB-18 -Vanadium (V)-Dissolved 94.5 % 16-FEB-18 70-130 Zirconium (Zr)-Dissolved 92.2 % 70-130 16-FEB-18 NH3-WT Water Batch R3962989 WG2717985-7 DUP L2057397-1 Ammonia, Total (as N) 0.248 0.254 mg/L 2.3 20 16-FEB-18 LCS WG2717985-6 Ammonia, Total (as N) 102.7 % 85-115 16-FEB-18 WG2717985-5 MB Ammonia, Total (as N) < 0.020 mg/L 0.02 16-FEB-18 WG2717985-8 MS L2057397-1

			Workorder:	L2057407	7 R	eport Date: 23-F	EB-18		Page 8 of 11
Client:	126 Hilloc	ada Inc. (Aurora) k Drive Unit 2 N L4G 0G9							
Contact:	JAKE WH	IITTAMORE							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-WT		Water							
Batch WG2717985 Ammonia, T			L2057397-1	104.8		%		75-125	16-FEB-18
NO2-IC-WT		Water							
Batch	R3967011	Water							
WG2718847 Nitrite (as N	-4 DUP		L2057075-2 0.014	0.014		mg/L	2.1	25	20-FEB-18
WG2718847 Nitrite (as N)		L2057428-2 <0.010	<0.010	RPD-NA	mg/L	N/A	25	20-FEB-18
WG2718847 Nitrite (as N)			99.6		%		70-130	20-FEB-18
WG2718847 Nitrite (as N)			100.1		%		70-130	20-FEB-18
WG2718847 Nitrite (as N)			<0.010		mg/L		0.01	20-FEB-18
WG2718847 Nitrite (as N)			<0.010		mg/L		0.01	20-FEB-18
WG2718847 Nitrite (as N			L2057075-2	94.8		%		70-130	20-FEB-18
WG2718847 Nitrite (as N			L2057428-2	95.1		%		70-130	20-FEB-18
NO3-IC-WT		Water							
Batch WG2718847 Nitrate (as N			L2057075-2 0.023	0.021		mg/L	7.5	25	20-FEB-18
WG2718847 Nitrate (as N	-8 DUP		L2057428-2	1.02		mg/L	0.1	25	20-FEB-18
WG2718847 Nitrate (as N	-2 LCS			100.6		%	0.1	70-130	20-FEB-18
WG2718847 Nitrate (as N	-7 LCS			100.9		%		70-130	20-FEB-18
WG2718847 Nitrate (as N				<0.020		mg/L		0.02	20-FEB-18
WG2718847 Nitrate (as N				<0.020		mg/L		0.02	20-FEB-18
WG2718847 Nitrate (as N			L2057075-2	99.1		%		70-130	20-FEB-18
WG2718847	-9 MS		L2057428-2						

		Workorder:	L2057407	7 Re	eport Date: 23-	FEB-18		Page 9 of 11
Client:	WSP Canada Inc. (Aurora) 126 Hillock Drive Unit 2 Aurora ON L4G 0G9							
Contact:	JAKE WHITTAMORE							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-IC-WT	Water							
Batch WG2718847-9 Nitrate (as N)		L2057428-2	103.0		%		70-130	20-FEB-18
PO4-DO-COL-W	T Water							
WG2717671-7 Orthophosph	ate-Dissolved (as P)	L2057363-2 <0.0030	<0.0030	RPD-NA	mg/L	N/A	30	16-FEB-18
	ate-Dissolved (as P)		104.4		%		70-130	16-FEB-18
WG2717671-5 Orthophosph	5 MB ate-Dissolved (as P)		<0.0030		mg/L		0.003	16-FEB-18
WG2717671-8 Orthophosph	B MS ate-Dissolved (as P)	L2057363-2	75.4		%		70-130	16-FEB-18
SO4-IC-N-WT	Water							
Batch WG2718847-4	R3967011 4 DUP	L2057075-2						
Sulfate (SO4)		46.9	46.4		mg/L	1.1	20	20-FEB-18
WG2718847-8 Sulfate (SO4)		L2057428-2 24.0	24.0		mg/L	0.2	20	20-FEB-18
WG2718847-2 Sulfate (SO4))		101.1		%		90-110	20-FEB-18
WG2718847-7 Sulfate (SO4)			101.5		%		90-110	20-FEB-18
WG2718847-1 Sulfate (SO4)			<0.30		mg/L		0.3	20-FEB-18
WG2718847-6 Sulfate (SO4)			<0.30		mg/L		0.3	20-FEB-18
WG2718847-5 Sulfate (SO4)		L2057075-2	101.1		%		75-125	20-FEB-18
WG2718847-9 Sulfate (SO4)		L2057428-2	103.4		%		75-125	20-FEB-18
SOLIDS-TDS-WT	r Water							
Batch WG2718917-3 Total Dissolv		L2056943-1 920	919		mg/L	0.1	20	20-FEB-18
WG2718917-2 Total Dissolv			96.9		%		85-115	20-FEB-18
WG2718917-1	1 MB							

		Workorder:	1 2057407	,	Report Date:	22 EED 10		Dage 10 of 11	
			WUIKUIUEI.	L2037407		Report Date.	23-FEB-10		Page 10 of 11
Client:		ada Inc. (Aurora)							
		k Drive Unit 2 N L4G 0G9							
Contact:		IITTAMORE							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TDS-W	Г	Water							
Batch	R3966889								
WG2718917-				40				10	
Total Dissolv	ed Solids			<10		mg/L		10	20-FEB-18
TURBIDITY-WT		Water							
Batch	R3962769								
WG2717608-3	3 DUP		L2056566-1						
Turbidity			16.3	16.0		NTU	1.9	15	16-FEB-18
WG2717608-2 Turbidity	2 LCS			104.0		%		85-115	16-FEB-18
WG2717608- Turbidity	1 MB			<0.10		NTU		0.1	16-FEB-18

Workorder: L2057407

Report Date: 23-FEB-18

Client:	WSP Canada Inc. (Aurora)
	126 Hillock Drive Unit 2
	Aurora ON L4G 0G9
Contact:	JAKE WHITTAMORE

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	Environmental		dy (COC) / / uest Form Free: 1 800 668			L205740)7-C					COC	Number: F	17 ^Y age		_	284	4		
Report To	www.alsglobal.com Contact and company name below will appe	as on the final coront		Report Format							-	Contac	t your AN	to con	Rem all		e (eurch			
1	LOSP		elect Report For																ay appr	<u> </u>
Company:						DD (DIGITAL)	- 21		ular (R		Standard	TALIF P	ceived by 3				marges ap	piy		
Contact:	Jake Whittamore	(C) Report with Repo			e Deys)	-	[P4-20 (P3-04				Busine	-		-		•		L_
Phone:	Company address below will appear on the final	report S	elect Distribution	ts to Criteria on Report - p n: Kall EMAIL	rovide details below i		2.2	3 day 2 day	-				ame Day .aborato						200%	Γ
Street:	126 Don Hillock	Dr. ##	mail 1 or Fax	iake-whi	Hamo'r	LUSD-COM		Date an	d Time i	Required 1	or all E&P	TATs:	- 1 ·			dd-mn	im-yy bl	himm	-	
City/Province:	Aurora ON.		mail 2					s that can	not be p	a bermohe	cording to	the servic	e level selec	ted, you w	All be con	Lacted.				
Postal Code:	LUG OG9		mail 3	r									Analys	_				<u> </u>		
	Same as Report To			Invoice Dis	tribution		-		Indi	ate Filtere	d (F), Pres	served (P)	or Filtered	<u> </u>		P) below			Т	4
	Copy of Invoice with Report X YES		Select Invoice Dis			FAX	FP	6		0			<u> </u>	<u> </u>	<u> </u>	<u></u>				detail
			mail 1 or Fax			FAA	ЩĽ			r —	-	┈╾╴┽╴		+	┢╍╍╍╇		-+	+		<u>a</u>
Company: Contact:	· · · · · · · · · · · · · · · · · · ·		imail 2	<u> </u>			1													further
Contact.	Project Information			il and Gas Required	Fielde (ellent u		12	ľ		1										2
ALS Account # /			FE/Cost Center:	TRACK TRACK TRACK AND A COMPANY	PO#	sej	1	,	\mathcal{M}											provide
						·	metal		۲.I											8.
	1-00471-00		fajor/Minor Code:	,	Routing Code:	<u> </u>	2		2							-				(please NERS
PO / AFE:			Requisitioner:				ار ا		ş.							·			9	Ĩ.
LSD:		L	ocation:		*		2	·	3										Ŧ	p N
ALS Lab Wor	k Order # (lab use only):	57407 81	LS Contact: M	ary-Lym Pike	Sampler: JE	₩	Dissolued	ړ	÷,	<u>H</u> 3									δ	Sample is hazardous (plea: NUMBER OF CONTAINERS
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time	Sample Type]⊘	200	S.	5									SAMPLES	Sample NUMBE
(lab use only)	(This description will a	appear on the report)		(dd-mmm-yy)	* (hh:mm)	Sample type	\Box	- E 14	<u>U</u>	<									¥.	
	MWI			14-02-18	10:30	Gw ···	X	X	X	X	· ·									- 4
	MWA			11	11:50		X	X	X	X										4
	GW Duplicate	· · · · · · · · · · · · · · · · · · ·		•••		V	X	X	7	X								++	-	ŤŸ
	on populate	•••				+		-~-		<u></u>				-				┼╌┩		
· ·····							+											+		
	· · · · · · · · · · · · · · · · · · ·						٠	*						_			·			
	· .		ŕ				-									× .				
	· · · ·			*																
									-+			1	· ·	-		_				
						<u>+-</u>				. ,					+ +		+	+	-	
	· · · · · · · · · · · · · · · · · · ·				·	· · · · · · · · · · · · · · · · · · ·						┝╺╺╋						+		
			, I	· · · · · · · · · · · · · · · · · · ·		<u> </u>	-	$ \rightarrow $			4	┟╴╺╺╇╸			╽. │			\downarrow		
																				· ·
												┝╼┾					_			
									-+	·····	-	╞╼┾								
		Special Instructions / Sp	pecify Criteria to		ing on the drop-d	own list below				·····	SAMPL			S REC	EIVED	(lab use	only)			1
-	g Water (DW) Samples ¹ (client use)	Special Instructions / Sp			ing on the drop-d	own list below	Froze				SAMPL		DITION A servation	_	EIVED Yes	(lab use	only)	No		
Are samples taken	n from a Regulated DW System?	Special Instructions / Sp		add on report by click	ing on the drop-d	own list below	Froze		-		7	SIF Ob		is .			only)	No No		
Are samples taken	n from a Regulated DW System?	Special Instructions /		add on report by click	ing on the drop-d	own list below	lce Pa				7	SIF Ob	servation	is .	Yes		only)			
Are samples taken	n from a Regulated DW System? ES 🕅 NO uman consumption/ use?	Special Instructions / Sp		add on report by click	ing on the drop-d		lce Pa	acks ng Initia	ted I	ce Cube	7	SIF Ob Custod	servation	is act	Yes Yes		OLER TEN	No	RES °C	
Are samples taken	n from a Regulated DW System?	Special Instructions / Sp		add on report by click	ing on the drop-d		lce Pa	acks ng Initia	ted I	ce Cube	s 🔲	SIF Ob Custod	servation	is .	Yes Yes			No	RES	
Are samples taken	The form a Regulated DW System? The form a Regulated DW System?	Special Instructions / Sp		add on report by click		· · · · · · · · · · · · · · · · · · ·	lce Pa	acks ng Initia	ted I	ce Cube	s 🔲	SIF Ob Custod	servation	is act	Yes Yes		OLER TEN		RES °C	
Are samples taken	The form a Regulated DW System? The form a Regulated DW System?	Time:		add on report by click tronic COC only)		· · · · · · · · · · · · · · · · · · ·	lce Pa	acks ng Initia IN	Inted	ce Cube	s 🔲	SIF Ob Custod	servatior y seal int	is act	Yes Yes		OLER TEN		RES [®] C	

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

_ _

٠

CLIMATE BASED WATER BUDGET

TABLE E-1 CLIMATIC WATER BUDGET: CLIMATE NORMAL 1981-2010 (UDORA CLIMATE STATION) HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY - BLOCK 8 PART OF LOT 31, CONCESSION 7 UXBRIDGE, ONTARIO

				Thornthwaite (1948)			
Month	Mean Temperature (°C)	Heat Index	Potential Evapo- transpiration (mm)	Daylight Correction Value	Adjusted Potential Evapo-transpiration (mm)	Total Precipitation (mm)	Surplus (mm)	Deficit (mm)
January	-7.0	0.0	0.0	0.7839	0.00	64.9	64.9	0.0
February	-6.6	0.0	0.0	0.8786	0.00	45.9	45.9	0.0
March	-1.3	0.0	0.0	0.9871	0.00	53.1	53.1	0.0
April	5.7	1.2	26.6	1.1200	29.76	67.9	38.1	0.0
May	12.2	3.9	59.4	1.2194	72.46	82.1	9.6	0.0
June	18.0	7.0	89.7	1.2800	114.78	106.6	0.0	8.2
July	19.9	8.1	99.7	1.2484	124.48	86.4	0.0	38.1
August	19.3	7.7	96.5	1.1613	112.10	73.9	0.0	38.2
September	15.1	5.3	74.5	1.0400	77.44	87.3	9.9	0.0
October	8.6	2.3	41.1	0.9194	37.74	74.9	37.2	0.0
November	2.0	0.2	8.8	0.8100	7.11	83.2	76.1	0.0
December	-4.0	0.0	0.0	0.7355	0.00	60.0	60.0	0.0
TOTALS		35.7			575.9	886.2	394.8	84.5

TOTAL WATER SURPLUS 310.3 mm

NOTES:

1) Water budget adjusted for latitude and daylight.

2) (°C) - Represents calculated mean of daily temperatures for the month.

3) Precipitation and Temperature data from the Georgetown WWTP Climate Station located at latitude 43°38'24.018" N, longitude 79°52'45.018" W, elevation 221.0 m.

4) Total Water Surplus (Thornthwaite, 1948) is calculated as total precipitation minus adjusted potential evapotranspiration.

5) Total Moisture Surplus (Thornthwaite and Mather, 1957) is calculated as total precipitation minus actual evapotranspiration.

TABLE E-2 CLIMATIC WATER BUDGET: CLIMATE NORMAL 1981-2010 (UDORA CLIMATE STATION) CLAY LOAM, URBAN LAWN (100 mm HOLDING CAPACITY) HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY - BLOCK 8 PART OF LOT 31, CONCESSION 7 UXBRIDGE, ONTARIO

-				Thornthwaite	(1948)						Tł	nornthwaite and	d Mather (1957)		
Month	Mean Temperature (°C)	Heat Index	Potential Evapo- transpiration (mm)	Daylight Correction Value	Adjusted Potential Evapo-transpiration (mm)	Total Precipitation (mm)	Surplus (mm)	Deficit (mm)	TP - PET (mm)	Accumulated Potential Water Loss (mm)	Soil Moisture (mm)	Change in Soil Moisture (mm) (delta S)	Actual Evapo- transpiration (mm)	Moisture Deficit (mm)	Unadjusted Moisture Surplus (mm)
January	-7.0	0.0	0.0	0.7839	0.00	64.9	64.9	0.0	64.9	0.0	100.0	0.0	0.0	0.0	64.9
February	-6.6	0.0	0.0	0.8786	0.00	45.9	45.9	0.0	45.9	0.0	100.0	0.0	0.0	0.0	45.9
March	-1.3	0.0	0.0	0.9871	0.00	53.1	53.1	0.0	53.1	0.0	100.0	0.0	0.0	0.0	53.1
April	5.7	1.2	26.6	1.1200	29.76	67.9	38.1	0.0	38.1	0.0	100.0	0.0	29.8	0.0	38.1
Мау	12.2	3.9	59.4	1.2194	72.46	82.1	9.6	0.0	9.6	0.0	100.0	0.0	72.5	0.0	9.6
June	18.0	7.0	89.7	1.2800	114.78	106.6	0.0	8.2	-8.2	-8.2	92.0	-8.0	114.6	0.2	0.0
July	19.9	8.1	99.7	1.2484	124.48	86.4	0.0	38.1	-38.1	-46.3	62.0	-30.0	116.4	8.1	0.0
August	19.3	7.7	96.5	1.1613	112.10	73.9	0.0	38.2	-38.2	-84.5	42.0	-20.0	93.9	18.2	0.0
September	15.1	5.3	74.5	1.0400	77.44	87.3	9.9	0.0	9.9	0.0	51.9	9.9	77.4	0.0	0.0
October	8.6	2.3	41.1	0.9194	37.74	74.9	37.2	0.0	37.2	0.0	89.0	37.2	37.7	0.0	0.0
November	2.0	0.2	8.8	0.8100	7.11	83.2	76.1	0.0	76.1	0.0	100.0	11.0	7.1	0.0	65.1
December	-4.0	0.0	0.0	0.7355	0.00	60.0	60.0	0.0	60.0	0.0	100.0	0.0	0.0	0.0	60.0
TOTALS		35.7			575.9	886.2	394.8	84.5	310.3	-84.5	1036.9	0.0	549.4	26.5	336.8

TOTAL WATER SURPLUS 310.3 mm

TOTAL MOISTURE SURPLUS 336.8 mm

NOTES:

1) Water budget adjusted for latitude and daylight.

2) (°C) - Represents calculated mean of daily temperatures for the month.

3) Precipitation and Temperature data from the Georgetown WWTP Climate Station located at latitude 43°38'24.018" N, longitude 79°52'45.018" W, elevation 221.0 m.

4) Total Water Surplus (Thornthwaite, 1948) is calculated as total precipitation minus adjusted potential evapotranspiration.

5) Total Moisture Surplus (Thornthwaite and Mather, 1957) is calculated as total precipitation minus actual evapotranspiration.

TABLE E-3 CLIMATIC WATER BUDGET: CLIMATE NORMAL 1981-2010 (UDORA CLIMATE STATION) CLAY LOAM, UNCULTIVATED (250 mm HOLDING CAPACITY) HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY - BLOCK 8 PART OF LOT 31, CONCESSION 7 UXBRIDGE, ONTARIO

				Thornthwaite							TI	nornthwaite and	d Mather (1957)		
Month	Mean Temperature (°C)	Heat Index	Potential Evapo- transpiration (mm)	Daylight Correction Value	Adjusted Potential Evapo-transpiration (mm)	Total Precipitation (mm)	Surplus (mm)	Deficit (mm)	TP - PET (mm)	Accumulated Potential Water Loss (mm)	Soil Moisture (mm)	Change in Soil Moisture (mm) (delta S)		Moisture Deficit (mm)	Unadjusted Moisture Surplus (mm)
January	-7.0	0.0	0.0	0.7839	0.00	64.9	64.9	0.0	64.9	0.0	250.0	0.0	0.0	0.0	64.9
February	-6.6	0.0	0.0	0.8786	0.00	45.9	45.9	0.0	45.9	0.0	250.0	0.0	0.0	0.0	45.9
March	-1.3	0.0	0.0	0.9871	0.00	53.1	53.1	0.0	53.1	0.0	250.0	0.0	0.0	0.0	53.1
April	5.7	1.2	26.6	1.1200	29.76	67.9	38.1	0.0	38.1	0.0	250.0	0.0	29.8	0.0	38.1
Мау	12.2	3.9	59.4	1.2194	72.46	82.1	9.6	0.0	9.6	0.0	250.0	0.0	72.5	0.0	9.6
June	18.0	7.0	89.7	1.2800	114.78	106.6	0.0	8.2	-8.2	-8.2	242.0	-8.0	114.6	0.2	0.0
July	19.9	8.1	99.7	1.2484	124.48	86.4	0.0	38.1	-38.1	-46.3	208.0	-34.0	120.4	4.1	0.0
August	19.3	7.7	96.5	1.1613	112.10	73.9	0.0	38.2	-38.2	-84.5	177.0	-31.0	104.9	7.2	0.0
September	15.1	5.3	74.5	1.0400	77.44	87.3	9.9	0.0	9.9	0.0	186.9	9.9	77.4	0.0	0.0
October	8.6	2.3	41.1	0.9194	37.74	74.9	37.2	0.0	37.2	0.0	224.0	37.2	37.7	0.0	0.0
November	2.0	0.2	8.8	0.8100	7.11	83.2	76.1	0.0	76.1	0.0	250.0	26.0	7.1	0.0	50.1
December	-4.0	0.0	0.0	0.7355	0.00	60.0	60.0	0.0	60.0	0.0	250.0	0.0	0.0	0.0	60.0
TOTALS		35.7			575.9	886.2	394.8	84.5	310.3	-84.5	2787.9	0.0	564.4	11.5	321.8

TOTAL WATER SURPLUS 310.3 mm

TOTAL MOISTURE SURPLUS 321.8 mm

NOTES:

1) Water budget adjusted for latitude and daylight.

2) (°C) - Represents calculated mean of daily temperatures for the month.

3) Precipitation and Temperature data from the Georgetown WWTP Climate Station located at latitude 43°38'24.018" N, longitude 79°52'45.018" W, elevation 221.0 m.

4) Total Water Surplus (Thornthwaite, 1948) is calculated as total precipitation minus adjusted potential evapotranspiration.

5) Total Moisture Surplus (Thornthwaite and Mather, 1957) is calculated as total precipitation minus actual evapotranspiration.

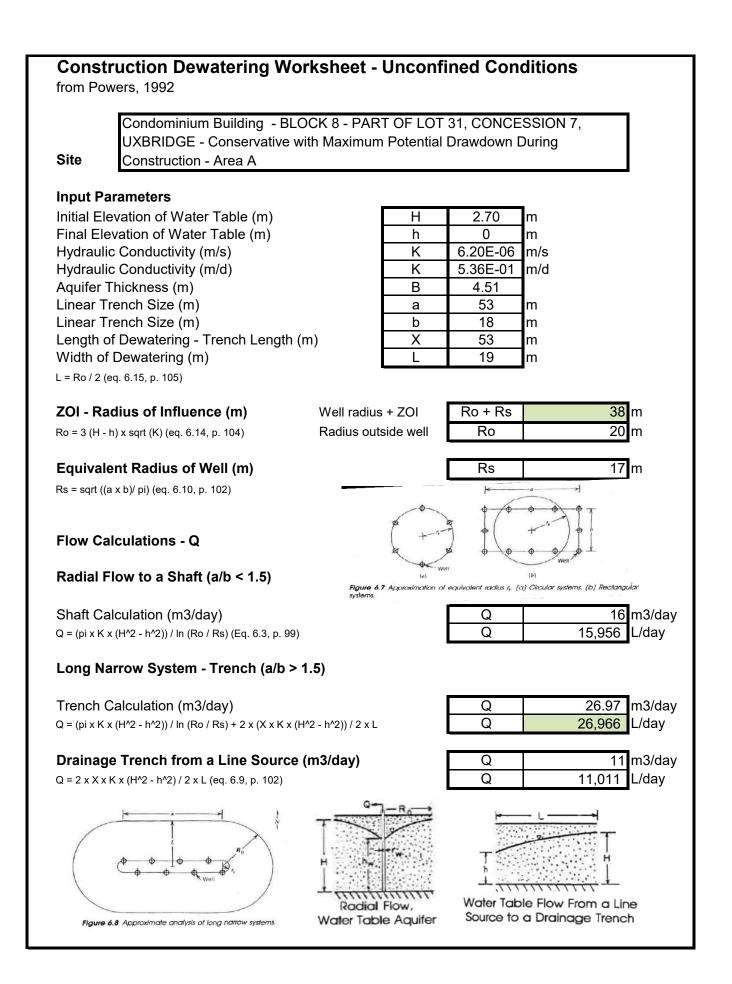
\\caaur1dat01.gcg.local\vol1\Data\Proj\18\181-00471-00\100 Hydrogeological\Tech\Water Balance\Block 8 only\VB - 181-00471-02 - Water Balance Tables_Block 8

WATER BUDGET CALCULATIONS – PRE-DEVELOPMENT

TABLE F-1 PRE-DEVELOPMENT WATER BUDGET (BY CATCHMENT) HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE STUDY - BLOCK 8 PART OF LOT 31, CONCESSION 7 UXBRIDGE, ONTARIO

Depine Depine Depine Depine<	Subcatchment	Development	Outlet	Area		MOE T	ABLE 2 Compor	nents		MOE	Adjusted MOE	Precipitation	Precipitation Total	Precipitation Surplus	Evapotranspiration	Rund	on	Net Su	ırplus	Infil	tration	Run	off*	Total Infiltration + Runoff
····································	Designation	Block	Outlet	(m ²)	Cove	r	Soil		Topography	Infiltration Factor		(mm/a)			(m ³ /a)	(mm/a)	(m ³ /a)							
		8	South property boundary	649.5					0.25				575.6	797.6	57.6	0	. ,	797.6	518.0	0.0	0.0		518.0	518.0
···· ····· ······ ······ ······ ······ ······ ······· ······· ········ ········· ············ ··············· ······················ ····································		8														-	-							
····································		-									-						-							
····································		8									-					-	-		-					
Char L Conduct (1100) U Lis S		8									_						0							
Chiral Control M M M M <		8									0		29.0			-	0							
····································		8														-								
Char Control Contro Control Contro Control Contro		8									-					-	-							
Second Second<		8														-								
Here Here <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											-					-	-							
BALE L Markee Markee BA Markee Markee BA A A BA BA BA BA BA <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		<u> </u>					-				_						-							
		<u> </u>									-					-	-							
····································		8																						
Ch-10 Ch-10 <th< td=""><td></td><td>8</td><td>South property boundary</td><td>494.7</td><td></td><td>0.15</td><td>Clay Loam</td><td>0.2</td><td>0.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		8	South property boundary	494.7		0.15	Clay Loam	0.2	0.25							-	-							
····································		8							_								0							
		8												321.8	341.9	-	0							
DADB Description Discription Discrin <thdiscrin< th=""> Discrin<!--</td--><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdiscrin<>		-														-								
Section Section <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-														-	0							
Share Share <th< td=""><td>Cat A -239</td><td>8</td><td>South property boundary</td><td>34.5</td><td>Uncultivated</td><td>0.15</td><td>Clay Loam</td><td>0.2</td><td>0.25</td><td>0.6</td><td>0.6</td><td>886.2</td><td>30.5</td><td>321.8</td><td>19.5</td><td>0</td><td>0</td><td>321.8</td><td>11.1</td><td>193.1</td><td>6.7</td><td>128.7</td><td>4.4</td><td>11.1</td></th<>	Cat A -239	8	South property boundary	34.5	Uncultivated	0.15	Clay Loam	0.2	0.25	0.6	0.6	886.2	30.5	321.8	19.5	0	0	321.8	11.1	193.1	6.7	128.7	4.4	11.1
Chi-C Selection (C) Sine		8							_							-	0							
Other Other <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-																						
Gripping	Cat A -243	8	South property boundary	1.2	Uncultivated	0.15	Clay Loam	0.2	0.25	0.6	0.6	886.2	1.0	321.8	0.7	-	-	321.8	0.4	193.1	0.2	128.7	0.1	0.4
image image <th< td=""><td></td><td>8 8</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		8 8							_															
School School<		8														-	-							
mark mark <th< td=""><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		8														-								
GAL L Subscription JL Partial JL Partia JL Partial		8														-	v							
GLAZ I. Subscription IP Note IP Subscription Subscripi Subscription Su		8		14.7	Uncultivated	0.15	Clay Loam	0.2	0.25							-	0				2.8			
Gale All submethyme		<u> </u>														-	-							
GALA I Sub propries Bit Bit </td <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		8					-	-									0							
nin nin<		<u> </u>														-	-							
n b = shore performante n b = shore performante n = n = n = n = n = n = n = n = n = n =		-														-								
cht cht soch genetikkender Gal Contenen		8							_						28.6		-							
GAA30 Schuperprinzier BA3 Babbes BA3		8							_															
GA ASI Bath Joord Statem Bath		8														-	-							
GAA36 6 Sockparphises 133 Linder 5.0 Carlo 6.0 Bio Bio </td <td>Cat A -362</td> <td>8</td> <td></td> <td>39.3</td> <td>Uncultivated</td> <td>0.15</td> <td>Clay Loam</td> <td>0.2</td> <td>0.25</td> <td></td> <td></td> <td></td> <td>34.8</td> <td></td> <td></td> <td>-</td> <td></td> <td>321.8</td> <td></td> <td>193.1</td> <td>7.6</td> <td>128.7</td> <td>5.1</td> <td></td>	Cat A -362	8		39.3	Uncultivated	0.15	Clay Loam	0.2	0.25				34.8			-		321.8		193.1	7.6	128.7	5.1	
GA3 Mail Mail <		8														-	0							
Grief Abit State State Dist		8														-	0							
Gri A 381 9.14 Undited 0.15 Off. and 0.15 0.10 10.5 0.10 10.10 <		8							_							-	0							
GA A 390 8.8 Soch spectry bundly, Soch Systepsystepsion 8.3 Understep 0.3 0.10		-					-										-							
Grad A371 8 South preprint bundler, 66 0.00 60 0.00 <t< td=""><td>Cat A -369</td><td>8</td><td>South property boundary</td><td>68.9</td><td>Uncultivated</td><td>0.15</td><td>Clay Loam</td><td>0.2</td><td>0.25</td><td>0.6</td><td>0.6</td><td>886.2</td><td>61.1</td><td>321.8</td><td>38.9</td><td>-</td><td>0</td><td>321.8</td><td>22.2</td><td>193.1</td><td>13.3</td><td>128.7</td><td>8.9</td><td>22.2</td></t<>	Cat A -369	8	South property boundary	68.9	Uncultivated	0.15	Clay Loam	0.2	0.25	0.6	0.6	886.2	61.1	321.8	38.9	-	0	321.8	22.2	193.1	13.3	128.7	8.9	22.2
GA 377 8 Montporty bouchy 6.0 Montporty 6.0 9.10 9.11 9.10 9		8															0							
GA 34 68 Such progri bionshy 69.2 0.50 69.5 89.2 61.3 97.1 60 7.5 <t< td=""><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		8														-	0							
GAI A375 8 Submisperity bunding 215.1 Unreliabed 0.15 Car Lam 0.2 0.21		8	South property boundary	1	Uncultivated		Clay Loam			0.6	0.6					0	0						8.6	
CH -376 8 Soch rpsyrtybandry 222.0 Undwardet 0.15 Cly Loss 0.6 986.2 97.0 91.8 17.5 0 0 0.18 17.6 18.1 17.6 18.1 17.6 18.1 17.6 18.1 17.6 18.1 17.6 18.1 17.6 18.1 17.6 18.1 17.6 18.1 17.6 18.1 17.6 18.1 <		8								0.6	0.6					0	0						8.9 27.7	
chr 8 Such progeny bunder 1.4 0.100 ked 0.5 0.100 ked 0.5 0.000 ked 0.5	Cat A -376	8	South property boundary	222.3	Uncultivated	0.15	Clay Loam	0.2	0.25	0.6	0.6	886.2	197.0	321.8	125.5	0	0	321.8	71.6	193.1	42.9	128.7	28.6	71.6
GRA -379 8 South properly boundary 9.5 Uncultivate 0.10 0.2 0.25 0.6 0.6 88-2 5.4 0.1 0.11 0.11 0.16 0.17 0.15 0.11 0.11		8																						
cit A:30 8 Such progery boundary 5.6 Uncultated 0.15 Cup Long 0.2 0.25 0.6 0.8 82.1 5.0 21.8 1.0 0.21.8 1.0 1.01 1.0 <t< td=""><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		8																						
GA South property boundary 2.5 Undivised 0.1 0.2 0.2 0.5 0.6 0.6 88.2 2.2 2.18 1.4 0 0 21.8 0.8 0.11 0.5 1.4 0.3 0.5 1.4 2.3 0.3 0.5 1.4 2.7 0.31 0.3 0.5 1.4 2.7 0.31 0.3			South property boundary	5.6	Uncultivated	0.15	Clay Loam	0.2	0.25															
cit A 383 8 South property boundary 8.4 Uncultivated 0.5 City Loam 0.2 0.25 0.66 0.66 886.2 7.4 21.8 4.7 0 0 31.8 2.7 13.1 1.1 12.8 1.1 2.7 Cit A 385 8 South property boundary 31.6 Uncultivated 0.5 City Loam 0.2 0.5 0.6 0.66 886.2 7.8 31.8 1.70 0.0 0.1 31.8 1.0 1.28 1.3 <		-																						
Cat A:385 8 South property boundary 31.6 Uncultivate 0.15 City Jam 0.2 0.25 0.6 0.6 382.8 7.00 0 0 32.8 19.0 19.1 10.1 12.87 4.1 19.2 Cat A:385 8 South property boundary 2.2 Uncultivate 0.15 City Jam 0.2 0.25 0.6 0.6 38.2 1.0 1.0 0.0 32.8 1.0 0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 32.8 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <	Cat A -383	8	South property boundary	8.4	Uncultivated	0.15	Clay Loam	0.2	0.25	0.6	0.6	886.2	7.4	321.8	4.7	0	0	321.8	2.7	193.1	1.6	128.7	1.1	2.7
Cat A-386 8 South property boundary 30.1 Uncultwated 0.15 Cay Loam 0.2 0.25 0.6 0.6 886.2 1.9 1.01 0 0 32.18 9.60 32.18 0.7 1.80 1.28 1.28 0.7 Cat A-386 8 South property boundary 35.8 Uncultwated 0.15 Cay Loam 0.22 0.25 0.6 0.6 886.2 3.21.8 1.02 0.0 32.18 1.07.7 19.31 7.05 12.8 7.0<		8																						
CatA-387 8 South property boundary 2.2 Uncluivated 0.15 City barm 0.2 0.2 0.6 0.66 985.2 1.9 21.8 1.0 0.0 21.8 1.07 193.1 0.0 128.7 0.1		8															-							
GAT A-389 8 South properly boundary 8.2 Uncultivate 0.15 City Loam 0.2 0.25 0.6 0.6 886.2 27.3 21.8 4.6 0 0 32.8 1.8 1.1 1.6 1.28.7 1.1 2.67 GAT A-391 8 South properly boundary 132.1 Uncultivate 0.15 City Loam 0.2 0.25 0.6 0.6 886.2 1.10 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0.0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0 32.8 7.45 0.0 0<	Cat A -387	8	South property boundary	2.2	Uncultivated	0.15	Clay Loam	0.2	0.25	0.6	0.6	886.2	1.9	321.8	1.2	0	0	321.8	0.7	193.1	0.4	128.7	0.3	0.7
GA - 390 8 South property boundary 967 Uncultivated 0.15 Cay Lam 0.2 0.25 0.6 0.66 886.2 12.0 32.18 12.0 0.0 32.18 12.8 12.8 12.8 12.1 12.1 12.7<		8 8																						
Cat A 430 8 South property boundary 116.3. Uncultivated 0.15 Cip Lam 0.2 0.25 0.6 0.6 88.62 196.6 231.8 125.7 0.0 0 321.8 374.3 193.1 224.6 128.7 148.7 147.7 Cat A 432 8 South property boundary 90.0 Uncultivated 0.15 Cip Lam 0.2 0.25 0.6 0.6 886.2 196.6 321.8 125.7 0.0 0.21.8 131.7 131.1 124.7 148.7		-																						
Cat A-31 8 South property boundary 221.8 Uncultivated 0.15 Cay Loam 0.2 0.25 0.66 0.66 886.2 196.6 321.8 125.2 0.6 0.21.8 125.2 0.6 0.21.8 125.2 0.6 0.51 121.8 126.7 121.8 123.8 123.		8	South property boundary	132.1	Uncultivated	0.15	Clay Loam	0.2	0.25	0.6	0.6	886.2	117.0	321.8	74.5	0		321.8	42.5	193.1	25.5	128.7	17.0	42.5
Cat A-32 8 South property boundary 900 Uncultivate 0.15 Clay Loam 0.2 0.25 0.66 0.66 886.2 79.7 321.8 50.8 0 321.8 29.0 193.1 17.4 128.7 11.6 29.0 Cat A-33 8 South property boundary 11.1 Uncultivate 0.15 Clay Loam 0.2 0.25 0.66 0.66 886.2 10.4 321.8 104.6 0 0 321.8 3.9 11.8 12.8 <		8																						
Cat A-34 8 South property boundary 12.1 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 1.07 321.8 6.8 0 0 321.8 3.9 193.1 2.3 12.8 3.9 Cat A-35 8 South property boundary 105.6 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 7.0 321.8 49.0 0 0 321.8 2.9 13.1 14.8 12.8 14.0 13.0 13.1 14.0 13.1 14.0 13.0 14.0 13.0 14.0 13.0 14.0 13.0 14.0 13.0 14.0 13.0 14.0 </td <td>Cat A -432</td> <td>8</td> <td></td> <td>90.0</td> <td></td> <td>0.15</td> <td></td> <td>0.2</td> <td>0.25</td> <td>0.6</td> <td>0.6</td> <td>886.2</td> <td>79.7</td> <td>321.8</td> <td>50.8</td> <td>0</td> <td>0</td> <td>321.8</td> <td>29.0</td> <td>193.1</td> <td>17.4</td> <td>128.7</td> <td>11.6</td> <td>29.0</td>	Cat A -432	8		90.0		0.15		0.2	0.25	0.6	0.6	886.2	79.7	321.8	50.8	0	0	321.8	29.0	193.1	17.4	128.7	11.6	29.0
Cat A 435 8 South property boundary 86.8 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 93.6 321.8 94.0 0 0 321.8 27.9 193.1 16.8 122.7 27.9 Cat A 436 7 South property boundary 16.6 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 93.6 321.8 59.6 0 321.8 34.0 193.1 0.4 128.7 13.6 34.0 34.1 146.1<		-																						
Cat A - 436 7 South property boundary 105.6 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 132.8 59.6 0 0 321.8 34.0 193.1 20.4 128.7 13.6 34.0 Cat A - 442 8 South property boundary 146.1 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 129.5 321.8 82.4 0 0 321.8 47.0 193.1 20.4 128.7 13.6 34.0 Cat A - 446 8 South property boundary 13.6 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 129.5 321.8 2.4 0 0 321.8 47.0 193.1 28.2 128.7 13.6 148.7																	-							
Cat A-446 8 South property boundary 4.3 Uncultived 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 3.8 321.8 2.4 0 0 321.8 1.4 193.1 0.8 128.7 0.6 1.4 Cat A-447 8 South property boundary 131.6 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 116.6 321.8 7.4.3 0 0 321.8 42.4 193.1 0.8 128.7 0.6 42.4 Cat A-448 8 South property boundary 4.0 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 316.6 321.8 7.4.3 0 0 321.8 42.4 193.1 0.8 128.7 1.5.9 1.3.0 Cat A-449 8 South property boundary 42.5 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 686.2 379.7 321.8 241.8 0 0 321.8 1.3.3 13.3 193.1	Cat A -436	7	South property boundary	105.6	Uncultivated	0.15	Clay Loam	0.2	0.25	0.6	0.6	886.2	93.6	321.8	59.6	0		321.8	34.0	193.1	20.4	128.7	13.6	34.0
Cat A - 447 8 South property boundary 131.6 Uncultived 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 116.6 321.8 74.3 0 0 321.8 42.4 193.1 25.4 128.7 16.9 42.4 Cat A - 448 8 South property boundary 4.0 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 3.6 321.8 2.3 0 0 321.8 1.3 193.1 0.8 128.7 0.5 0.5 1.3 Cat A - 449 8 South property boundary 4.0 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 3.6 321.8 2.41.8 0 0 321.8 1.3 131.0 128.7<		8																						
Cat A - 448 8 South property boundary 4.0 Uncultived 0.15 Clay Loam 0.2 0.25 0.6 886.2 3.6 321.8 2.3 0 0 321.8 1.3 193.1 0.8 128.7 0.5 1.3 Cat A - 449 8 South property boundary 42.5 Uncultived 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 379.7 321.8 241.8 0 0 321.8 137.9 193.1 0.8 128.7 128.7 137.9 Cat A - 450 8 South property boundary 2.3.5 Uncultived 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 379.7 321.8 241.8 0 0 321.8 137.9 137.9 138.7 128.7 <th< td=""><td>Cat A -447</td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.6</td><td>0.6</td><td>886.2</td><td>116.6</td><td>321.8</td><td>74.3</td><td>0</td><td></td><td>321.8</td><td>42.4</td><td>193.1</td><td>25.4</td><td>128.7</td><td>16.9</td><td>42.4</td></th<>	Cat A -447	8								0.6	0.6	886.2	116.6	321.8	74.3	0		321.8	42.4	193.1	25.4	128.7	16.9	42.4
Cat A -450 8 South property boundary 23.5 Uncultivated 0.15 Clay Loam 0.2 0.25 0.6 0.6 886.2 20.8 321.8 13.2 0 0 321.8 7.6 193.1 4.5 128.7 3.0 7.6 a-Development Catchment A Total (Block 8) South property boundary 13,708 13,708 0 0.5 0.6 0.6 886.2 12.148 399.2 6,676 0 399.2 5,472 168 2,216 33.2 5,472 a total (Block 8) a total		8	South property boundary	4.0	Uncultivated	0.15	Clay Loam	0.2	0.25															
P-Development Catchment A Total (Block 8) A		-																						
A Total (Block 8) South property boundary 13,/08	Pre-Development Catchme																							
Mail Development Block 8 13,708 13,708 13,708 10 13,708 10 <			South property boundary	13,708								886.2	12,148	399.2	6,676	U	0	399.2	5,472	162	2,216		3,256	5,472
	Total Development Block	8		13,708								886.2	12,148	399.2	6,676	0	0	399.2	5,472	162	2,216	238	3,256	5,472

G WATER BUDGET CALCULATIONS – POST DEVELOPMENT


TABLE G-1 POST-DEVELOPMENT WATER BUDGET (BY CATCHMENT)

PA	RT	OF L	οт	31,	CONC	ESSION	7
117		IDOE	0	NT A	DIO		

On-Site Subcatchment Designation																																	886	% mm 10% 89	
On-Site Subcatchment Designation																		Inp	outs									Output	ts				000	10 /6	7376 040
On-Site Subcatchment Designation			Total Area				Impervious	Assumed	Road/ O	ther	Pervious							Precipitation	n Surplus	Total	Evap	ootranspiration Total	Pervious .	Infil	tration			Landscap			Runoff her Rooftop				Total Outputs
	n Outlet	Development E	Block (m²)		npervious	Assumed E % of	Buildings	Parking/ Am		Iota	al Pervious		MOE TABLE 2 Component	ts	Infiltration	djusted Annual A	Average S	Surplus (Per	rvious) (Impervio		Pervious In	npervious Evapotran iration	Areas	filtration Tre	nches T	tal Infiltration	Pervious	ed Area E Redirecte		riveway/ Impe menities u	ervio Redirection t us Infiltration	o Total In	mpervious	Net Runoff	
				% of Total Area	(m²)	Impervious Area	(m²) l	Impervious Area	(m²) (i	m²) % of To Area		Cover	Soil	Topography		Factor (mm/yr)	(m³/yr) (n	nm/yr) (r	m³/yr) (m³/yr)	(m³/yr)	(m³/yr)	(m³/yr) (m³/yr)	(m³/yr) (r	ım/yr) (m ⁱ	³/yr) (m	n/yr) (m³/yr) (m³/yr)	(m3/yr)	(m³/yr) ((m³/yr) (m³	³ /yr) (m3/yr)	(mm/yr)	(m³/yr) ((mm/yr) (m³/y	rr) (mm/yr) (m³/yr)
Cat PA - 203 Cat PA - 207	Barton SWM Pond via On-Site Barton SWAR Pond via ADGPSite	8	649.5 134.7	0% 100%	0.0	0% 100%	0.0	0% 0%	0.0	0.0 100%	649 0	Lawn Building	0.05 Clay Loam 0 0 Clay Loam 0		0.5	0.5 886	576 119	337 0	219 0 0 107	576 119	357 0	0 357 12 12	109	0	0 :	58 109 0 0	109	0	0	0	0 0	0 798	0	168 109 798 107	886 576 886 119
Cat PA - 208 Cat PA - 209	Bar fdn/SWAAVPorsdvia RDGBSite Barfdn/SWAAVPORdviaRDGBSite	8	32.5	100%	32.5	100%	32.5	0%	0.0	0.0 0%	0	Building	0 Clay Loam 0	2 0.25	0.45	0 886	29	0	0 26	29	0	3 3	0	0	0	0 0	0	0	26	0	0 0	798	26	798 26	886 29
Cat PA - 210	Bartonswarversdvar068Site	8	32.7	100%	39.9	100%	39.9	0%	0.0	0.0 0%	0	Building Building	0 Clay Loam 0	2 0.25	0.45	0 886	29	0	0 32	29	0	4 4 3 3	0	0	0	0 0	0	0	26	0	0 0	798	26	798 26	886 29
Cat PA - 211 Cat PA - 212	BartonswineendvineOneSite BartonswineendvineOneSite	8	37.2 38.4	100%	37.2 38.4	100%	37.2 38.4	0%	0.0	0.0 0%	0	Building Building	0 Clay Loam 0 0 Clay Loam 0	2 0.25 2 0.25	0.45	0 886	33 34	0	0 30	33	0	3 3 3 3	0	0	0	0 0	0	0	30 31	0	0 0	798 798	30 31	798 30 798 31	886 33
Cat PA - 213 Cat PA - 231	Bar fdArSWAAVPorschidaRDG BSite Bar fdArSWAAVPOrschidaRDG BSite	8	23.9 494.7	100% 0%	23.9	0%	0.0	100%		0.0 0%	0	Driveway Lawn	0 Clay Loam 0 0.05 Clay Loam 0	2 0.25 2 0.25	0.45	0 886	21	0	0 19	21 438	0	2 2	0	0	0	0 0 58 83	0	0	0	19	0 0	798	19	798 19	886 21 886 438
Cat PA - 232	BarfdonSW94WensdviaaRD69Site	8	1.6	100%	1.6	100%	1.6	0%	0.0	0.0 0%	0	Building	0 Clay Loam 0	2 0.25	0.45	0 886	1	0	0 1	1	0	0 0	0	0	0	0 0	0	0	1	0	0 0	798	1	798 1	886 1
Cat PA - 235 Cat PA - 363	Bar fdA'SWARYOFG/VAROFB Site Bar fdA'SWARYOFG/VAROFB Site	8	605.7 29.6	0%	0.0 29.6	0%	0.0 29.6	0% 0%	0.0	0.0 100%	606	Lawn Building	0.05 Clay Loam 0 O Clay Loam 0	2 0.25 2 0.25	0.5	0.5 886	537 26	337 0	204 0 0 24	537	333 0	0 333 3 3	102	0	0 1	58 102 0 0	102	0	0 24	0	0 0	0 798	0 24	168 102 798 24	886 537 886 26
Cat PA - 364 Cat PA - 365	Bar fdArSWAAVPorschidaRDG BSite Bar fdArSWAAVPOrschidaRDG BSite	8	133.3 126.0	100% 100%	133.3 126.0	100%	133.3 126.0	0%	0.0	0.0 0%	0	Building Building	0 Clay Loam 0 0 Clay Loam 0	2 0.25 2 0.25	0.45	0 886	118	0	0 106	118 112	0	12 12	0	0	0	0 0	0	0	106	0	0 0	798	106	798 106 798 100	886 118 886 112
Cat PA - 366	BarfdonSW94WensdviaaRD69Site	8	130.1	100%	130.1	100%	130.1	0%	0.0	0.0 0%	0	Building	0 Clay Loam 0	2 0.25	0.45	0 886	115	0	0 100	115	0	12 12	0	0	0	0 0	0	0	100	0	0 0	798	100	798 104	886 115
Cat PA - 367 Cat PA - 368	Bar fdA'SWARYOFG/VAROFB Site Bar fdA'SWARYOFG/VAROFB Site	8	125.7 124.4	100%	125.7	100%	125.7 124.4	0%	0.0	0.0 0%	0	Building Building	0 Clay Loam 0 0 Clay Loam 0	2 0.25 2 0.25	0.45	0 886	111 110	0	0 100 0 99	111 110	0	11 11 11 11	0	0	0	0 0	0	0	100 99	0	0 0	798	100 99	798 100 798 99	886 111 886 110
Cat PA - 369 Cat PA - 370	Bar fdArSWAAVPorschidaRDG BSite Bar fdArSWAAVPOrschidaRDG BSite	8	68.9 45.3	100% 100%	68.9 45.3	0%	0.0	100% 100%	68.9 45.3	0.0 0%	0	Driveway Driveway	0 Clay Loam 0 0 Clay Loam 0	2 0.25 2 0.25	0.45	0 886	61 40	0	0 55	61 40	0	6 6 4 A	0	0	0	0 0	0	0	0	55 G	0 0	798 798	55 36	798 55 798 36	886 61 886 40
Cat PA - 371	Barforswarensv Narensv	8	68.9	100%	68.9	0%	0.0	100%	68.9	0.0 0%	0	Driveway	0 Clay Loam 0	2 0.25	0.45	0 886	61	0	0 55	61	0	6 6	0	0	0	0 0	0	0	0	55	0 0	798	55	798 55	886 61
Cat PA - 372 Cat PA - 373	Bartonswarversdvar068Site	8	66.9	100% 100%	70.6 66.9	0%	0.0	100% 100%	66.9	0.0 0%	0	Driveway Driveway	0 Clay Loam 0 0 Clay Loam 0		0.45	0 886 0 886	59	0	0 53	59	0	6 6	0	0	0	0 0	0	0	0	53	0 0	798 798	53	798 56 798 53	886 63 886 59
Cat PA - 374 Post-Development Catchment PA	Barton SWAR Porsovia PDBBSite Barton SWAP Port Via Con-Site	8	69.2	100%	69.2	0%	0.0	100%		0.0 0%		Driveway	0 Clay Loam 0	2 0.25	0.45	0 886	61	0	0 55	61	0 961	6 6	0	0	0	0 0	0	0	0	55	0 0	798	55	798 55	886 61
Total Cat PB - 204	Storm Sewers via RLCB Barton SWM Pond via On-Site	8	3,150	44% 100%	1,400 11.4	31% 0%	986	13% 100%		0 56% 0.0 0%		Driveway	0 Clay Loam 0	2 0.25	0.45	0 886	2,791	0	1,116	2,791	961 0	124 1,085	295	0	0 1	58 295	295	0	786	330	0 0	354 798	1,116 9	448 1,41 ⁻ 798 9	1 886 2,791 886 10
Cat PB - 205	Bartonswamentdvarbarsite	8	153.6	100%	11.4	0%	0.0	100%	11.4	0.0 0%	0	Road	0 Clay Loam 0 0 Clay Loam 0	2 0.25	0.45	0 886	136	0	0 122	10	0	14 14	0	0	0	0 0	0	0	0	122	0 0	798	122	798 122	886 136
Cat PB - 206 Cat PB - 214	Bar 63A/3WA4/PorsolvidaRD6 8Site Bar 63A/3WA4/PorsolvidaRD6 8Site	8	12.7 88.5	100%	12.7	0%	0.0	100%	0.0	0.0 0%	0 5 89	Sidewalk Lawn	0 Clay Loam 0 0.05 Clay Loam 0	2 0.25 2 0.25	0.45	0 886 0.5 886	11 78	0 337	0 10 30 0	11 78	0 49	1 1 0 49	0	0	0 :	0 0 58 15	0	0	0	10 0	0 0	798	10	798 10 168 15	886 11 886 78
Cat PB - 215 Cat PB - 216	Barfdon'SWARVPorsdviaaRDGRSite Barfdon'SWARVPorsdviaaRDGRSite	8	7.3 26.0	0% 0%	0.0	0%	0.0	0%	0.0	0.0 100%		Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886	7	337	2 0	7	4	0 4	1	0	0 1	58 1 58 4	1	0	0	0	0 0	0	0	168 1 168 4	886 7 886 23
Cat PB - 219	BartonswameraviaaRbGBSite	8	28.0	0%	0.0	0%	0.0	0%	0.0	0.0 100%	28	Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886	25	337	9 0	25	15	0 15	5	0	0 1	68 5	5	0	0	0	0 0	0	0	168 5	886 25
Cat PB - 220 Cat PB - 233	Bar 63A/3WA4/PorsolvidaRD6 8Site Bar 63A/3WA4/PorsolvidaRD6 8Site	8	28.1	100%	28.1	0%	0.0	100%	28.1	0.0 0%	0	Road Lawn	0 Clay Loam 0 0.05 Clay Loam 0	2 0.25 2 0.25	0.45	0 886 0.5 886	25	0 337	0 22	25	0	2 2 2 0 0	0	0	0 :	0 0 58 0	0	0	0	0	0 0	798	22	798 22 168 0	886 25 886 1
Cat PB - 236 Cat PB - 237	Barfdon'SWAAVPorsdviaaRDGRSite Barfdon'SWAAVPorsdviaaRDGRSite	8	29.2 21.3	100% 100%	29.2	0%	0.0	100%	29.2	0.0 0%	0	Driveway	0 Clay Loam 0	2 0.25	0.45	0 886	26	0	0 23	26	0	3 3	0	0	0	0 0	0	0	0	23	0 0	798 798	23	798 23	886 26 886 19
Cat PB - 238	BartonswameraviaaRbGBSite	8	34.2	100%	34.2	0%	0.0	100%	34.2	0.0 0%	0	Driveway	0 Clay Loam 0	2 0.25	0.45	0 886	30	0	0 27	30	0	3 3	0	0	0	0 0	0	0	0	27	0 0	798	27	798 27	886 30
Cat PB - 239 Cat PB - 240	Bar fdn SWAAPorsdvia RDGASite Bar fdn SWAAPorsdvia RDGASite	8	34.5 33.5	100%	34.5 33.5	0%	0.0	100%	34.5	0.0 0%	0	Driveway Driveway	0 Clay Loam 0 0 Clay Loam 0	2 0.25 2 0.25	0.45	0 886 0 886	31 30	0	0 27 0 27	31 30	0	3 3 3 3	0	0	0	0 0	0	0	0	27 0	0 0	798 798	27 27	798 27 798 27	886 31 886 30
Cat PB - 241 Cat PB - 242	BarfdonsWAdvorsdvidaRDGRSite BarfdonsWAdvorsdvidaRDGRSite	8	35.7	100% 80%	35.7	0%	0.0	100%	35.7	0.0 0%	0	Driveway	0 Clay Loam 0	2 0.25	0.45	0 886	32	0	0 28	32	0	3 3	0	0	0	0 0	0	0	0	28	0 0	798 638	28	798 28 638 1	886 32 886 1
Cat PB - 243	Barforswarendvarbasite Barforswarendvarbasite	8	1.2	80%	0.9	0%	0.0	100%	0.9	0.0 20%	0	Concrete	0 Clay Loam 0	2 0.25	0.45	0 886	1	0	0 1	1	0	0 0	0	0	0	0 0	0	0	0	1	0 0	638	1	638 1	886 1
Cat PB - 244 Cat PB - 245	Barton SWARVPorsolvia PDGPSite	8	2713.4 85.8	100% 100%	2713.4 85.8	0%	0.0	100% 100%	2713.4 85.8	0.0 0%	0	Sidewalk	0 Clay Loam 0 0 Clay Loam 0	2 0.25 2 0.25	0.45	0 886 0 886	2,405 76	0	0 2,164 0 68	2,405	0	240 240 8 8	0	0	0	0 0	0	0	0	68	0 0	798	2,164 68	798 2,164	4 886 2,405 886 76
Cat PB - 246 Cat PB - 247	Barfdon'SWAAVPorsdviaaRDGRSite Barfdon'SWAAVPorsdviaaRDGRSite	8	52.3 60.5	100%	52.3 60.5	0%	0.0	100%	52.3 60.5	0.0 0%	0	Sidewalk Sidewalk	0 Clay Loam 0 0 Clay Loam 0	2 0.25 2 0.25	0.45	0 886	46 54	0	0 42	46 54	0	5 5 5 5	0	0	0	0 0	0	0	0	42 48	0 0	798 798	42	798 42 798 48	886 46 886 54
Cat PB - 248 Cat PB - 249	Bartón SWAR Porce Ala Barton SWAR Porce Ala Barton SWAR Porce Ala Barton SWAR Porce Ala Barton Barto	8	20.2	100%	20.2	0%	0.0	100%	20.2	0.0 0%	0	Sidewalk	0 Clay Loam 0	2 0.25	0.45	0 886	18	0	0 16	18	0	2 2	0	0	0	0 0	0	0	0	16	0 0	798	16	798 16	886 18
Cat PB - 250	Barton SWARVPorsolvia PDGPSite	8	14.7	100%	14.7	0%	0.0	100%	14.7	0.0 0%	0	Sidewalk	0 Clay Loam 0	2 0.25	0.45	0 886	13	0	0 12	13	0	1 1	0	0	0	0 0	0	0	0	12	0 0	798	12	798 12	886 13
Cat PB - 251 Cat PB - 252	Bar 66A/SWA4/Porsolvia /RD68Site Bar 66A/SWA4/Porsolvia /RD68Site	8	3.9 14.6	100%	3.9 14.6	0%	0.0	100% 100%	3.9 14.6	0.0 0%	0	Sidewalk Sidewalk	0 Clay Loam 0 0 Clay Loam 0	2 0.25 2 0.25	0.45	0 886 0 886	3 13	0	0 3 0 12	3 13	0	0 0	0	0	0	0 0	0	0	0	3 12	0 0	798 798	3 12	798 3 798 12	886 3 886 13
Cat PB - 253 Cat PB - 254	Barforswineerovia-Poresite Barforswineerovia-Poresite	8	3.8 138.4	100% 100%	3.8	0%	0.0	100%	3.8	0.0 0%	0	Sidewalk	0 Clay Loam 0	2 0.25	0.45	0 886	3	0	0 3	3	0	0 0	0	0	0	0 0	0	0	0	3 0	0 0	798	3	798 3 798 110	886 3 886 123
Cat PB - 375	Barton SWARVPorsolvia PDGPSite	8	215.1	0%	0.0	0%	0.0	0%	0.0	0.0 100%		Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886	191	337	72 0	191	118	0 118	36	0	0 :	68 36	36	0	0	0	0 0	0	0	168 36	886 191
Cat PB - 376 Cat PB - 377	Bar 60A/SWA4/Porsolvia /RD68Site Bar 60A/SWA4/Porsolvia /RD68Site	8	222.3	0%	0.0	0%	0.0	0% 0%	0.0	0.0 100%		Lawn Lawn	0.05 Clay Loam 0 0.05 Clay Loam 0	2 0.25 2 0.25	0.5	0.5 886	197	337 337	75 0 1 0	197	122	0 122	37	0	0 1	58 37 58 0	37	0	0	0	0 0	0	0	168 37 168 0	886 197 886 2
Cat PB - 378 Cat PB - 379	Barfon SWAR Pondia PonBite Barfon SWAR Pondia PonBite	8	9,5	0%	0.0	0%	0.0	0%	0.0	0.0 100%		Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886	13	337 337	5 0	13	8	0 8	2	0	0 1	58 2 58 2	2	0	0	0	0 0	0	0	168 2 168 2	886 13 886 8
Cat PB - 380	Bar 60A/SWA4/Persolvia /RD68Site Bar 60A/SWA4/Persolvia /RD68Site	8	5.6	0%	0.0	0%	0.0	0%	0.0	0.0 100%	6	Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886	5	337	2 0	5	3	0 3	1	0	0 1	58 1	1	0	0	0	0 0	0	0	168 1	886 5
Cat PB - 381 Cat PB - 382	Bar 60 0/310/04/Porsolvid aRDGRSite	8	31.1 2.5	0%	0.0	0%	0.0	0% 0%	0.0	0.0 100%		Lawn Lawn	0.05 Clay Loam 0 0.05 Clay Loam 0	2 0.25 2 0.25	0.5	0.5 886	28	337 337	10 0 1 0	28	17	0 17 0 1	5	0	0 1	68 5 68 0	5	0	0	0 0	0 0	0	0	168 5 168 0	886 28 886 2
Cat PB - 383 Cat PB - 384	BarforswinworswinaOGBSite BarforswinaPorswinaPoGBSite	8	8.4	0%	0.0	0%	0.0	0%	0.0	0.0 100%	5 8 5 9	Lawn Lawn	0.05 Clay Loam 0 0.05 Clay Loam 0	2 0.25 2 0.25	0.5	0.5 886	7	337 337	3 0 3 0	7	5	0 5	1	0	0 1	58 1 58 1	1	0	0	0	0 0	0	0	168 1 168 1	886 7
Cat PB - 385 Cat PB - 386	Bartotor/SWAdvoorsdvidaRDGBSite Bartotor/SWAdvoorsdvidaRDGBSite	8	31.6 301.1	0%	0.0	0%	0.0	0%	0.0	0.0 100%	32	Lawn	0.05 Clay Loam 0 0.05 Clay Loam 0		0.5	0.5 886	28 267	337	11 0 101 0	28 267	17	0 17 0 165	5	0	0 :	58 5 58 51	5	0	0	0	0 0	0	0	168 5 168 51	886 28
Cat PB - 387	Bartitanswanwondwarouasite Bartitanswanwondwarouasite Bartitanswanwarowarowarouasite	8	2.2	0%	0.0	0%	0.0	0%	0.0	0.0 100%	5 2	Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886	207	337	1 0	2	1	0 1	0	0	0 :	51 58 0	0	0	0	0	0 0	0	0	168 0	886 2
Cat PB - 388 Cat PB - 389	Barfdin SWAAVPorsdvia PDGBSite	8	365.8 8.2	0% 0%	0.0	0%	0.0	0% 0%	0.0	0.0 100%	8	Lawn	0.05 Clay Loam 0 0.05 Clay Loam 0	2 0.25	0.5	0.5 886	324 7	337 337	123 0 3 0	324	201 5	0 201	62 1	0	0 1	58 62	62 1	0	0	0	0 0	0	0	168 62 168 1	886 324 886 7
Cat PB - 390 Cat PB - 391	BarfdanswarvorsdvaarDGBSite BarfdanswarvorsdvaarDGBSite	8	36.7 132.1	0% 0%	0.0	0% 0%	0.0	0% 0%		0.0 100%			0.05 Clay Loam 0 0.05 Clay Loam 0	2 0.25 2 0.25	0.5	0.5 886 0.5 886		337 337	12 0 44 0	33 117	20 73	0 20 0 73	6 22	0		68 6 68 22	6 22	0	0	0	0 0	0		168 6 168 22	
Cat PB - 351 Cat PB - 442 Cat PB - 446	BarfdarSWAAVPorsdviaADGASite BarfdarSWAAVPorsdviaADGASite	8	146.1	0%	0.0	0%	0.0	0%	0.0	0.0 100%	146	Lawn		2 0.25	0.5	0.5 886	129		49 0	129	80	0 80 0 2	25	0	0 3	58 25 58 1	25	0		0	0 0	0		168 25	886 129
Cat PB - 447	Barton SWAR Porsovia RDGBSite	8	131.6	0%	0.0	0%	0.0	0%	0.0	0.0 100%	132	Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886 0.5 886	117	337	1 0 44 0	117	2 72	0 72		0	0 1	58 22		0		0 0		0	0	168 22	886 117
Cat PB - 450 Post-Development Catchment	Bartdon'sWARVorsdvidaRDGBSite Off-SitternSittir Vialio8Vorfand	8	23.5				0.0	100%	23.5				0 Clay Loam 0	2 0.25	0.45		21	0			0		0		0		0			19		798			886 21
PBTotal Cat PC - 217	flow Barton SWM Pond via On-Site	8	5,360 639.4	66% 100%	3,530 639.4	0% 0%	0.0	66% 100%			1,831		0 Clay Loam 0	2 0.25	0.45	886 0 886	4,750 567	0	2,815 0 510	4,750 567	1,006	313 1,319 57 57	308 0		0 1 0		308			2,815 (510	0 0	798			3 886 4,750 886 567
Cat PC - 218	Barton Swith Pond via On-Site Barton Swith Pond via Pone Site Barton Swith Pond via Pone Site	8	246.6	0%	0.0	0%	0.0	0%	0.0	0.0 100%	5 247	Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886	219	337	83 0	219	135	0 135	42	0	0 3	58 42	42	0	0	0	0 0	0	0	168 42	886 219
Cat PC - 352 Cat PC - 353	BarfdArSWAAMORdviAaRbABSite	8	139.4 1682.0	100% 100%	139.4 1682.0	100% 100%	139.4 1682.0	0% 0%	0.0	0.0 0%	0		0 Clay Loam 0	2 0.25	0.45	0 886 0 886	1,491	0	0 111 0 1,342		0	12 12 149 149	0	0	0	0 0		0	1,342	0	0 0	798 798	1,342		2 886 1,491
Cat PC - 354 Cat PC - 355	BarfdarSWAdVerschidaRDGRSite BarfdarSWAdVerschidaRDGRSite	8	50.6 43.0	80% 80%	40.5 34.4	0% 0%	0.0	100% 100%		0.0 20%		Concrete Concrete	0 Clay Loam 0 0 Clay Loam 0		0.45	0 886 0 886			0 32 0 27	45 38	9	4 13 3 11				0 0 0 0	0	0	0	32 0	0 0	638 638		638 32 638 27	886 45 886 38
Cat PC - 356	Barfdon'sWirk/PonschiaRDGBSite Barfdon'sWirk/PonschiaRDGBSite	8	56.9	80%	45.5	0%	0.0	100%	45.5	0.0 20%	11	Concrete	0 Clay Loam 0	2 0.25	0.45	0 886	50	0	0 36	50	10	4 14	0	0	0	0 0	0	0	0	36	0 0	638	36	638 36	886 50
Cat PC - 357 Cat PC - 430	Bartonswamentdvarbarsite	8	109.3 1163.3	80% 100%	87.5 1163.3	0% 0%	0.0	100% 100%	1163.3	0.0 20%	0	Road		2 0.25	0.45	0 886		0	0 70 0 928	1,031	19 0	103 103		0	0	0 0		0	0	70 928	0 0	638 798	928	798 928	886 97 886 1,031
Cat PC - 431 Cat PC - 432	BarfdarSWAdVerschidaRDGBSite BarfdarSWAdVerschidaRDGBSite	8	221.8 90.0	0% 0%	0.0	0% 0%	0.0	0% 0%		0.0 100%			0.05 Clay Loam 0 0.05 Clay Loam 0		0.5	0.5 886 0.5 886			75 0 30 0	197 80	122 49	0 122 0 49				58 37 58 15		0		0	0 0	0		168 37 168 15	886 197 886 80
Cat PC - 433	Barfdon'sWirk/PonschiaRDGBSite Barfdon'sWirk/PonschiaRDGBSite	8	185.3	0%	0.0	0%	0.0	0%	0.0	0.0 100%	5 185	Lawn	0.05 Clay Loam C	2 0.25	0.5	0.5 886	164	337	62 0	164	102	0 102	31	0	0 :	58 31	31	0	0	0	0 0	0		168 15 168 31	886 164
Cat PC - 448 Cat PC - 449	BarfdArSWAAMORdviAaRDABSite	8	4.0 428.5	0% 0%	0.0	0% 0%	0.0	0% 0%		0.0 100%			0.05 Clay Loam 0 0.05 Clay Loam 0	2 0.25 2 0.25	0.5	0.5 886 0.5 886	4 380	337 337	1 0 144 0	4 380	2 235	0 2 0 235		0		58 1 58 72	1 72			0		0			886 4 886 380
Post-Development Catchment PCTotal	On-SiterStorm:Sewerse via BartonOverlandeFlowOn-Site		5,060	76%	3,832	36%	1,821	40%		0 24%							4,484		396 3,056		692	340 1,032				61 198	198			1,604 0					4 886 4,484
Cat PD - 362 Cat PD - 434	Barfðørswärverðriðaðvaðsite Barfðørswärverðriðaðvaðsite	8	39.3 12.1	100% 0%	39.3 0.0	0%	0.0	100% 0%	0.0	0.0 0%		Sidewalk Lawn	0 Clay Loam 0 0.05 Clay Loam 0		0.45	0 886 0.5 886	11	337	0 31 4 0	35	0	3 3 0 7				0 0 58 2	0	0			0 0	798		798 31 168 2	
Cat PD - 435 Post-Development Catchment PD	Storm Sewers via RLCB	8	86.8	0%	0.0		0.0	0%	0.0	0.0 100%	5 87	Lawn	0.05 Clay Loam 0	2 0.25	0.5	0.5 886	77		4 0 29 0	11 77	48	0 7 0 48			0 :	58 15				0		0			886 11 886 77
Total	flow		138	28%		0%		28%		0 72%							122		33 31	-		3 58				58 17		0		31 (886 122
Total Development Block 8	8		13,708	64%	8,801	20%	2,808	44%	5,993	0 36%	4,908					886	12,148	119 1	1,635 7,019	12,148	2,714	780 3,494	818	0	0 1	67 818	818	0	2,239	4,780	0 0	512	7,019	572 7,83	7 886 12,148

DEWATERING CALCULATIONS

Construction Dewatering Worksheet - Unconfined Conditions

Condominium Building - BLOCK 8 - PART OF LOT 31, CONCESSION 7, UXBRIDGE - Conservative with Maximum Potential Longterm Drawdown - Area

from Powers, 1992

Site

Input Parameters

Initial Elevation of Water Table (m) Final Elevation of Water Table (m) Hydraulic Conductivity (m/s) Hydraulic Conductivity (m/d) Aquifer Thickness (m) Linear Trench Size (m) Linear Trench Size (m) Length of Dewatering - Trench Length (m) Width of Dewatering (m) L = Ro/2 (eq. 6.15, p. 105)

		_
Н	1.70	m
h	0	m
К	6.20E-06	m/s
K	5.36E-01	m/d
В	4.51	
а	53	m
b	18	m
Х	53	m
Ĺ	15	m

ZOI - Radius of Influence (m)

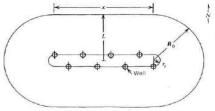
Ro = 3 (H - h) x sqrt (K) (eq. 6.14, p. 104)

Equivalent Radius of Well (m)

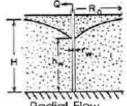
Rs = sqrt ((a x b)/ pi) (eq. 6.10, p. 102)

Flow Calculations - Q

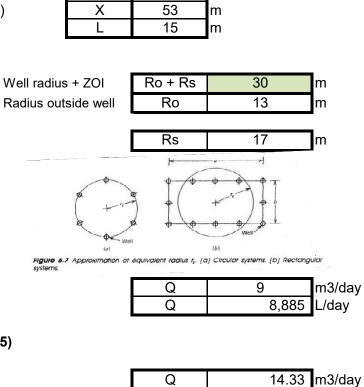
Radial Flow to a Shaft (a/b < 1.5)

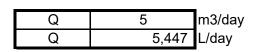

Shaft Calculation (m3/day) Q = (pi x K x (H^2 - h^2)) / ln (Ro / Rs) (Eq. 6.3, p. 99)

Long Narrow System - Trench (a/b > 1.5)

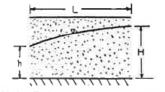

Trench Calculation (m3/day) Q = $(pi x K x (H^2 - h^2)) / ln (Ro / Rs) + 2 x (X x K x (H^2 - h^2)) / 2 x L$

Drainage Trench from a Line Source (m3/day)


 $Q = 2 \times X \times K \times (H^2 - h^2) / 2 \times L (eq. 6.9, p. 102)$



Radial Flow, Water Table Aquifer



Q

14,332

L/day

Water Table Flow From a Line Source to a Drainage Trench

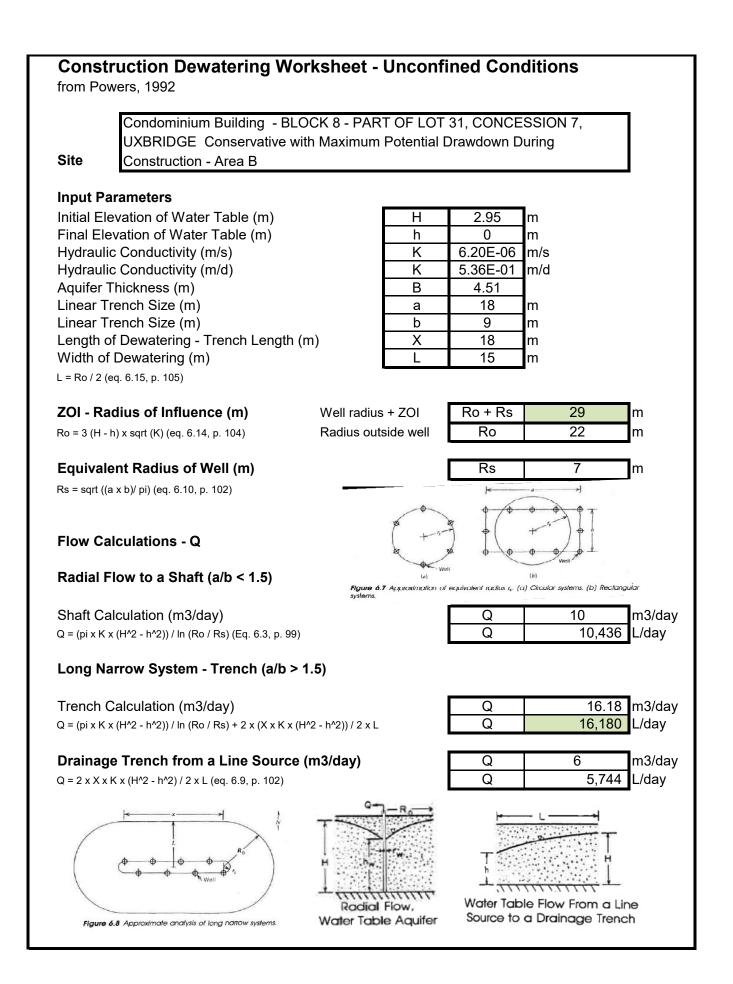
from Powers, 1992

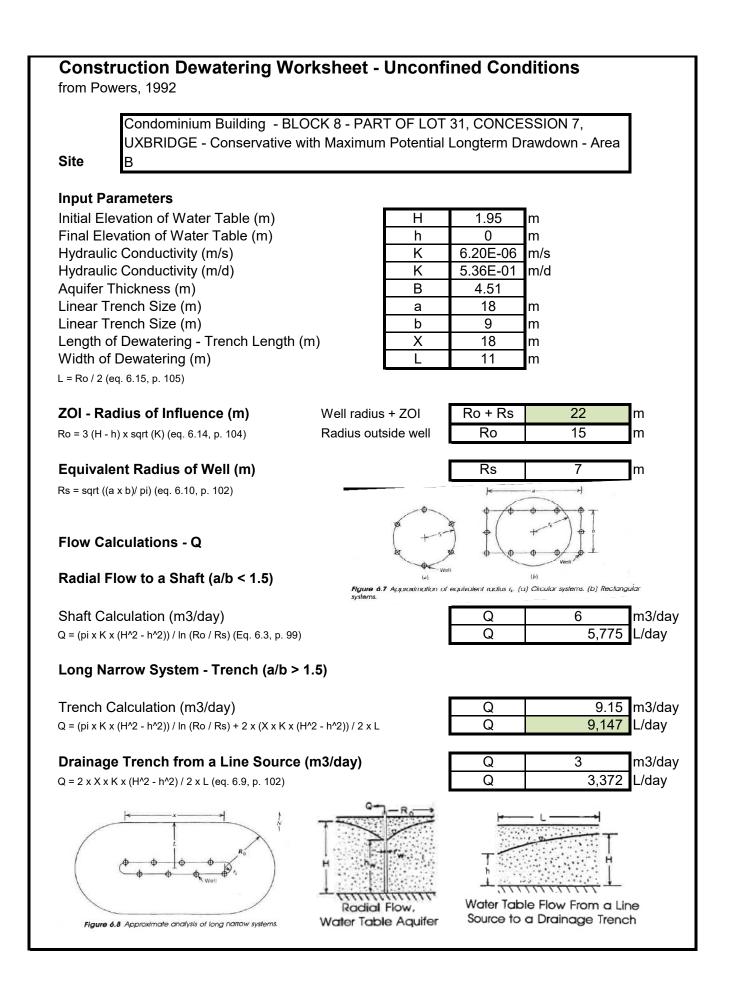
Condominium - BLOCK 8 - PART OF LOT 31, CONCESSION

Site

7, UXBRIDGE - Conservative with Maximum Potential Drawdown - Area A

Input Parameters


High K


Vertical Hydraulic Conductivity (m/s)	
Vertical Hydraulic Conductivity (m/d)	
Hydraulic gradient (m/m)	
Cross Sectional Area(m ²)	

	High K
K	6.20E-07 m/s
K	5.36E-02 m/day
i	0.1 m/m
А	954 m ²
-	

Seepage Flow Calculations - Q

Q	5	m3/day
Q	5,110	L/day

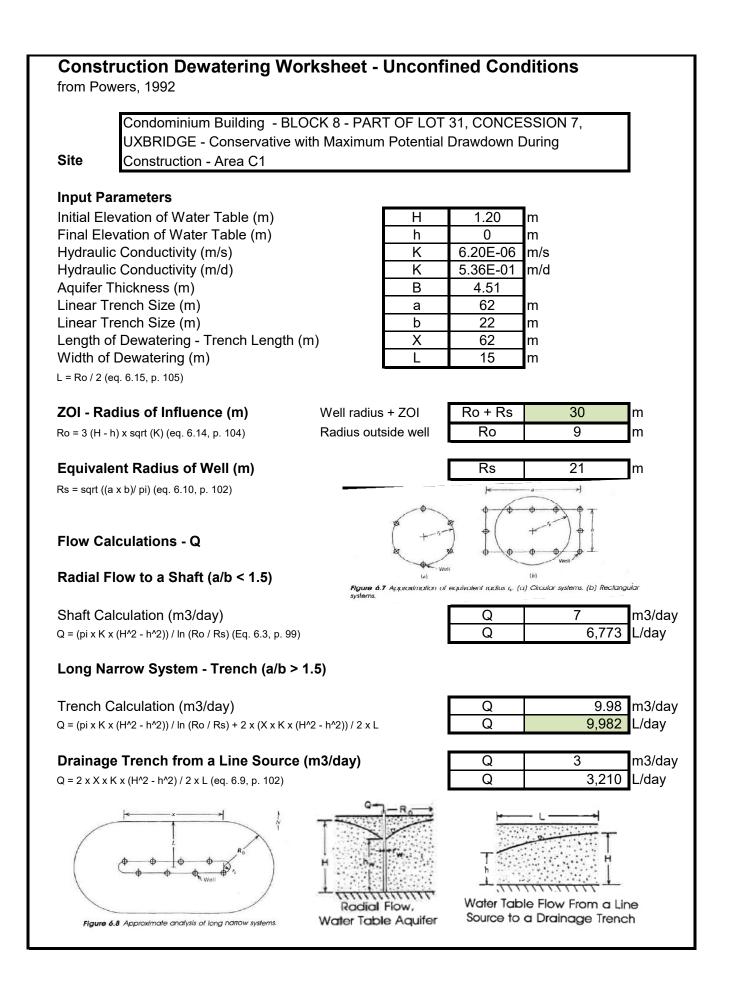
from Powers, 1992

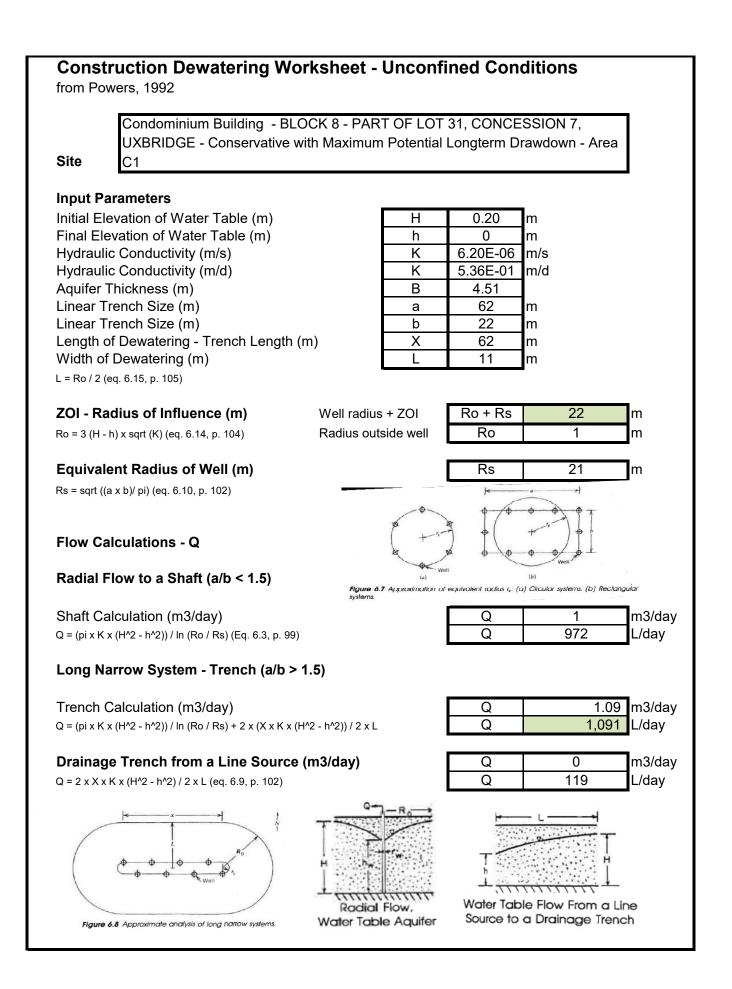
Condominium - BLOCK 8 - PART OF LOT 31, CONCESSION

Site

7, UXBRIDGE - Conservative with Maximum Potential Drawdown - Area B

Input Parameters


Hiah K


Vertical Hydraulic Conductivity (m/s)
Vertical Hydraulic Conductivity (m/d)
Hydraulic gradient (m/m)
Cross Sectional Area(m ²)

	High K
K	6.20E-07 m/s
K	5.36E-02 m/day
i	0.1 m/m
А	162 m ²

Seepage Flow Calculations - Q

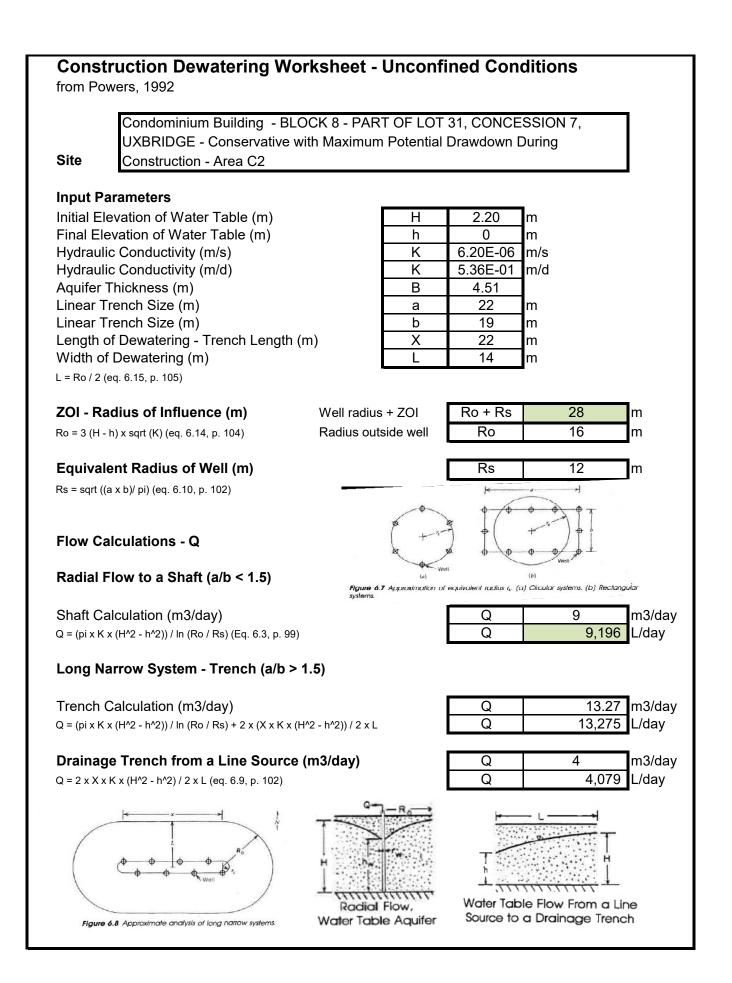
Q	1	m3/day
Q	868	L/day

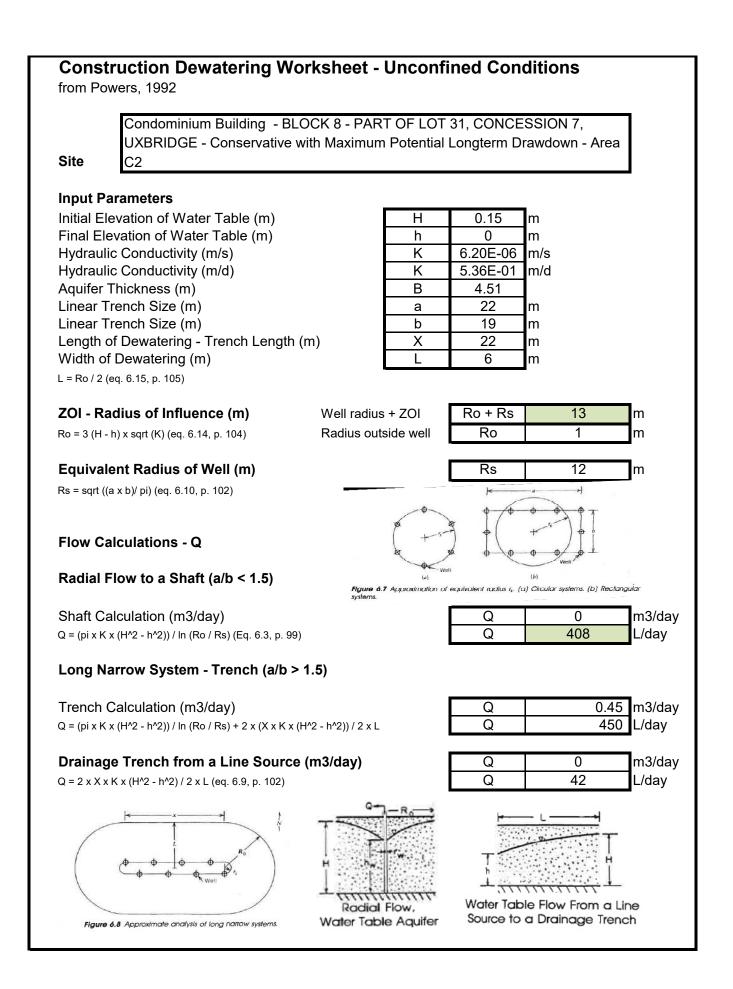
from Powers, 1992

Condominium - BLOCK 8 - PART OF LOT 31, CONCESSION

Site

7, UXBRIDGE -Conservative with Maximum Potential Drawdown - Area C1


Input Parameters


Vertical Hydraulic Conductivity (m/s) Vertical Hydraulic Conductivity (m/d) Hydraulic gradient (m/m) Cross Sectional Area(m²)

	High K	
K	6.20E-07	m/s
K	5.36E-02	m/day
i	0.1	m/m
А	1364	m ²

Seepage Flow Calculations - Q

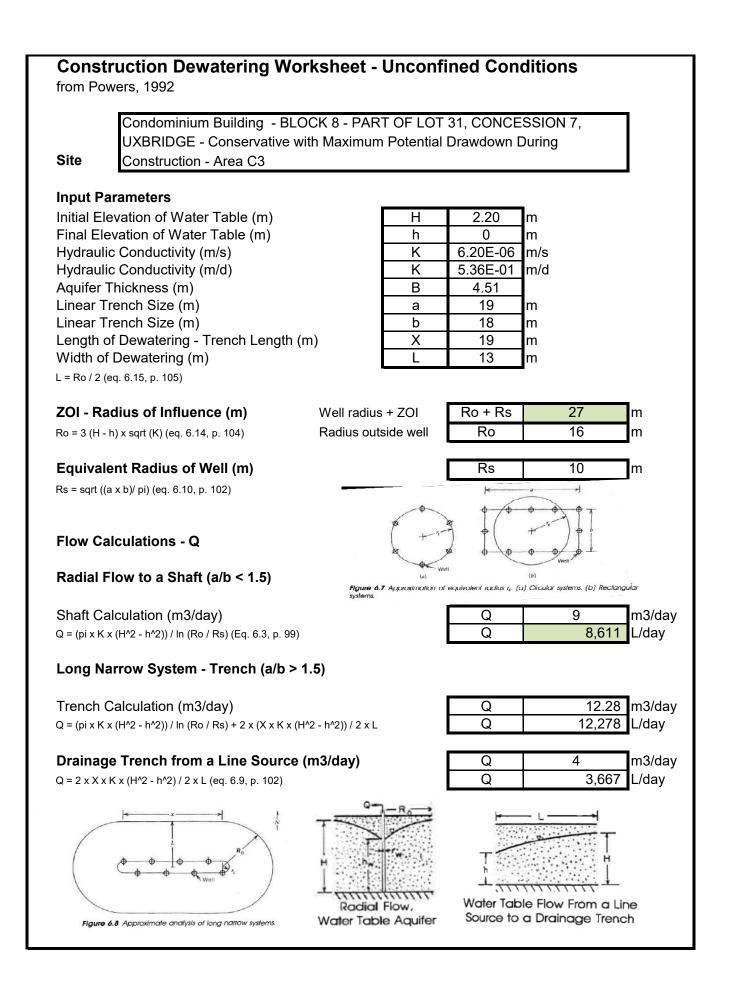
Q	7	m3/day
Q	7,307	L/day

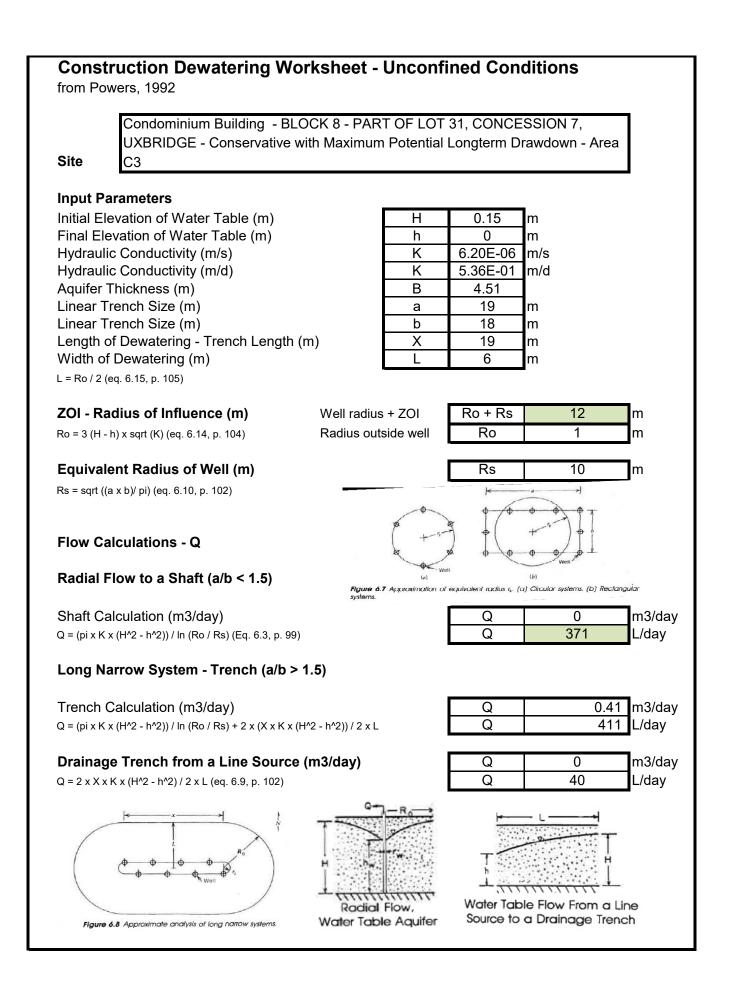
from Powers, 1992

Condominium - BLOCK 8 - PART OF LOT 31, CONCESSION

Site

7, UXBRIDGE - Conservative with Maximum Potential Drawdown - Area C2


Input Parameters


Vertical Hydraulic Conductivity (m/s) Vertical Hydraulic Conductivity (m/d) Hydraulic gradient (m/m) Cross Sectional Area(m²)

	High K
K	6.20E-07 m/s
K	5.36E-02 m/day
i	0.1 m/m
А	418 m ²

Seepage Flow Calculations - Q

Q	2	m3/day
Q	2,239	L/day

from Powers, 1992

Condominium - BLOCK 8 - PART OF LOT 31, CONCESSION

Site

7, UXBRIDGE - Conservative with Maximum Potential Drawdown - Area C3

Input Parameters

High K

Vertical Hydraulic Conductivity (m/s)	
Vertical Hydraulic Conductivity (m/d)	
Hydraulic gradient (m/m)	
Cross Sectional Area(m ²)	

	High K
K	6.20E-07 m/s
K	5.36E-02 m/day
i	0.1 m/m
А	342 m ²

Seepage Flow Calculations - Q

Q	2	m3/day
Q	1,832	L/day