

Udora Estates

Functional Servicing and Stormwater Management Report

January 2025

Submitted by:

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335

Table of Contents

Page

Table of Contents	i
List of Tables	iii
List of Figures	
Submission History	
1.0 Introduction	1
1.1 Purpose of the Functional Servicing Report	1
1.2 Study Area	1
1.3 Background Information	1
2.0 Stormwater Management	
2.1 Stormwater Runoff Control Criteria	3
2.2 Existing Drainage	4
2.2.1 Existing Site Characterization	
2.2.2 Existing Hydrologic Modelling	5
2.3 Best Management Practices	
2.3.1 Lot-Level Controls	6
2.3.2 Conveyance Controls	7
2.3.3 End-of-Pipe Controls	8
2.3.4 Selection of Best Management Practices	
2.4 Proposed Storm Drainage	9
2.4.1 Interim Condition	9
2.4.2 Ultimate Condition	
2.5 Proposed Stormwater Management Plan	
2.5.1 Quantity Control	10
2.5.2 Quality Control: TSS	
2.5.3 Quality Control: Phosphorus	10
2.5.4 Erosion Control	11
2.5.5 Water Budget	12
2.6 Interim Stormwater Management Pond	12
2.6.1 General Pond Design Criteria	12
2.6.2 Extended Detention	
2.6.3 Quantity Control	
2.7 Comparison of Existing Targets and Proposed Flows	14
2.8 Enhanced Grassed Swale	
2.8.1 Sizing	
2.8.2 General Infiltration and Filtration Trench Design Criteria	
2.9 Storm Servicing	17
2.10 Overland Flow	18

•••

≻

Functional Servicing and Stormwater Management Report Udora Estates, Township of Uxbridge

3.0	Sanitary Servicing	19
3.1	Existing Sanitary Sewer System	19
3.2	Proposed Sanitary Sewer System	19
3.3	Servicing Allocation	19
4.0	Water Supply and Distribution	20
4.1	Existing Water Distribution	20
	Proposed Water System	20
5.0		21
5.1	Existing Grading Conditions	21
5.2	Proposed Grading Concept	21
6.0	Rights-of-way and Sidewalks	23
7.0	Erosion and Sediment Control During Construction	24
8.0	Utility Considerations	25
8.1		25
8.2		25
8.3		25
9.0	Summary	26

Project No. 2328

≻

List of Tables

Table 2.1 Stormwater Runoff Control Criteria

Table 2.2: CN and Runoff Coefficient Summary

Table 2.3: Summary of Existing Flows at Ravenshoe Outlet

Table 2.4: Summary of Existing Flows at Regional Road 1 Outlet

Table 2.5: Recommended Stormwater BMP's

 Table 2.6: Phosphorus Budget Summary
 Image: Summar

Table 2.7: SWM Pond Storage Requirements

Table 2.8: SWM Pond Storage Requirements

 Table 2.9: Stormwater Management Pond Stage-Storage-Discharge Characteristics

Table 2.10: Comparison of Existing Targets and Proposed Flows to Ravenshoe Road

Table 2.11: Comparison of Existing Targets and Proposed Flows to Ravenshoe Road

 Table 2.12: Comparison of Existing Targets and Proposed Flows to Regional Road 1

Table 2.13: Comparison of Existing Targets and Proposed Flows to Regional Road 1

List of Figures

- Figure 1.1 Site Location Plan
- Figure 2.1 Existing Storm Drainage Plan
- Figure 2.2 Proposed Interim Storm Drainage Plan
- Figure 2.3 Proposed LID Plan
- Figure 2.4 Existing Phosphorus Budget
- Figure 2.5 Proposed Phosphorus Budget
- Figure 2.6 Preliminary SWM Facility
- Figure 5.1 Preliminary Grading Plan
- Figure 5.2 Preliminary Future Grading Plan
- Figure 6.1 23.0 m R.O.W. with Infiltration
- Figure 6.2 23.0 m R.O.W. with Filtration

List of Appendices

- Appendix A Draft Plan
- Appendix B Background Information
- Appendix C Hydrology Modelling
- Appendix D Phosphorus Budgets
- Appendix E Stormwater Management Pond Sizing Calculations
- Appendix F LID Sizing
- Appendix G Overland Conveyance Calculation
- Appendix H Utilities Correspondence

Submission History

Submission	Date	In Support Of	Distributed To
1 st	January 2025	Draft Plan Approval	Township of
			Uxbridge, Lake
			Simcoe Region
			Conservation
			Authority, 2695867
			Ontario Inc.

≻

1.0 Introduction

SCS Consulting Group Ltd. has been retained by 2695867 Ontario Inc. to prepare a Functional Servicing and Stormwater Management Report (FSSR) for a proposed development on part of Lots 3 Plan 40M-2318, located in the Township of Uxbridge.

1.1 Purpose of the Functional Servicing Report

The FSSR has been prepared in support of Draft Plan Approval for the proposed development. The Draft Plan of Subdivision is provided in **Appendix A**. The proposed development consists of the following land uses:

- low density residential,
- a temporary stormwater management block, and
- ➡ proposed roads.

The purpose of this report is to demonstrate that the development can be graded and serviced in accordance with the Town of Uxbridge, Lake Simcoe Region Conservation Authority (LSRCA), The Ontario Building Code, and the Ministry of Environment, Conservation and Parks (MECP) design criteria.

1.2 Study Area

The study area is approximately 3.0 ha in size and is bound by existing low density development to the north fronting Ravenshoe Road, low density development to the east fronting Regional Road 1, existing estate residential development to the south, and undeveloped land (owned by King Cole Ducks (SUB 2010 - 1)) to the west. The subject property has an unopened road right-of-way connecting Birdie Smith Court to Ontario street to the east and west. See **Figure 1.1** for reference. All of the existing development south of the site was designed and constructed in 2006.

The existing subject lands are comprised of mostly open space area with vegetated areas. The proposed development is located within the sub-watershed of Pefferlaw Brook in Township of Uxbridge.

1.3 Background Information

In preparation of the servicing and SWM strategies, the following design guidelines and standards were used:

- Township of Uxbridge Consolidated Linear Infrastructure Environmental Compliance Approval (CLI-ECA) Guideline (December 2024);
- Lake Simcoe Region Conservation Authority Technical Guidelines for Stormwater Management Submissions (April 2022);

Project No. 2328

- Regional Municipality of Durham Design and Construction Specifications for Regional Services (February 2017);
- Township of Uxbridge Design Criteria and Standard Detail Drawings for Subdivision Developments and Site Plans (November 2016);
- Township of Uxbridge Stormwater Management Master Plan (May 2016);
- Pefferlaw River Subwatershed Plan, LSRCA, 2012;
- Lake Simcoe Protection Plan (July 2009); and
- Ministry of Environment, Conservation and Parks (MECP) Stormwater Management Planning and Design Manual (March 2003);

The servicing and SWM strategies in this report are based on the following reports:

- Water Balance Evaluation, Part Lot 35, Concession 6, Township of Uxbridge
 Udora, Region of Durham, January 2025, Prepared by Gaman Consultants Inc.;
- On-Site Sewage System Sizing Study Udora Development, December 2024, Prepared by Envision Consultants Ltd.
- Functional Servicing & Grading Plan, November 2009, Prepared by Fabian Papa & Partners Inc.
- Birdie Smith Court Grading Plan, September 2002, Prepared by Cole Engineering; and
- Birdie Smith Court Plan and Profile, August 2002, Prepared by Cole Engineering;

Excerpts from the above listed documents are included in **Appendix B**.

A pre-consultation meeting with Township of Uxbridge was held on May 13, 2024 which confirmed the following:

- All residential housing shall be individually serviced with private drilled wells and sewage systems; and
- An LSRCA permit is not required.

2.0 Stormwater Management

2.1 Stormwater Runoff Control Criteria

The following stormwater runoff control criteria have been established based on the greatest requirements of each of the design guidelines and standards listed in **Section 1.3** and discussions with agencies and/or previous studies. The stormwater runoff criteria are summarized below in **Table 2.1**:

Criteria	Control Measure	
Quantity Control	Peak Flow: Control proposed peak flows to existing peak flows for the 2 through 100 year storm events. (Township of Uxbridge, LSRCA)	
	Volume Control: Proposed runoff volume from a 25 mm rainfall event over the total impervious area shall be captured and retained/treated on-site or in accordance with LSRCA's Flexible Treatment guidelines if full compliance with the 25 mm guideline is not possible. (LSRCA)	
Quality Control	MECP Enhanced Level Protection (80% TSS Removal). Total Suspended Solids: MECP Enhanced Level Protection (80% TSS Removal). (MECP, LSRCA, Town)	
Erosion Control	Detention of the 40 mm rainfall runoff for a minimum of 24 hours. (Town)	
Water Budget	The site is not located within a Wellhead Protection Area (WHPA) Q1/Q2 and is not a Significant Groundwater Recharge Area. Therefore, an evaluation of anticipated water balance changes between existing and proposed condition must be conducted, and a plan detailing how changes will be minimized must be provided.	
Phosphorus Budget	Best efforts approach to ensure no increase in phosphorous loadings per the LSPP (2009).	
	Per the Lake Simcoe Phosphorous Offsetting Policy (May 2023), control post-development levels and provide offsetting for any exceedance of pre-development levels. (LSRCA)	

 Table 2.1 Stormwater Runoff Control Criteria

2.2 Existing Drainage

As illustrated in the existing storm drainage plan (**Figure 2.1**), the site generally drains from south to north. The drainage boundaries were determined using a combination of the York Region Open Data (2016) and detailed survey completed by E.R. Garden limited in November 22, 2022 (refer to **Appendix B**).

Drainage from Catchment 101 (1.69 ha) drains from south to north, and Catchment 102 (0.34 ha) drains from south to northeast. External drainage from Catchment 103 (1.94 ha) located to the west of the property drains through the site from south to north. Drainage from Catchments 101 and 103 ultimately sheet drains north to the existing roadside ditches at Ravenshoe Road, where it is then conveyed west to the tributary of the Pefferlaw River approximately 1350 m west of Regional Road 1. Catchment 102 ultimately sheet drains northeast to the existing roadside ditches at Rayenshoe Road, where it is then conveyed west at Regional Road 1, where it is then conveyed to the tributary of the Pefferlaw River approximately 400 m north of Ravenshoe Road.

Refer to existing storm drainage plan Figure 2.1.

2.2.1 Existing Site Characterization

The soil classifications were identified using the Ontario Soil Survey Complex from OMAFRA and land uses visible in recent aerial photography and site reconnaissance. The mapping identifies that the soils within the site limits is Pontypool Sandy Loam. According to the Design Flood Estimation Design Chart H2-6A, the soils are considered as Hydrologic Soil Group AB. This is consistent with the Geotechnical investigation report, prepared by Soil Engineers Ltd., dated November 2022 (refer to **Appendix B**). The report notes the predominant soil type is silty sand till/sandy silt till, which is a Hydrologic Soil Group A or AB according to the MTO Drainage Management Manual (1997) Design Chart 1.08. The Soil Conservation Service Curve Numbers (CN) and runoff coefficients used for the Hydrologic Soil Group AB are shown in **Table 2.2**.

Land Use or Surface Classification	CN for Soil Group AB	Runoff Coefficient for Soil Group AB ¹
Pasture	61.5	0.10
Woodlot	48	0.08

Source: MTO Drainage Management Manual (1997) **Note:** 1 – Runoff Coefficients used are for flat topography

Per the Water Balance Evaluation completed by Gaman Consultants Inc., WSP completed assessment of the monitoring wells, which showed that the hydraulic conductivity onsite ranged from 2.6x10⁻⁷ to 1.6x10⁻⁶ m/s, which is equivalent to infiltration rates of 33.6 to 51.7 mm/hr (refer to **Appendix F**). In-situ infiltration testing will be required at the detailed design stage for the purpose of infiltration facility design.

2.2.2 Existing Hydrologic Modelling

Hydrologic modelling was undertaken using the Visual Otthymo Version 6.0 software (VO6) based on the 4-hour Chicago and, 6-hour, 12-hour, and 24-hour SCS Type II distribution methods. The study area is located within the Township of Uxbridge, therefore, the IDF rainfall information was obtained from the Township of Uxbridge Standard Drawing No. US-600 to determine the existing peak flows to outlet locations. The existing flows from the study area to the Ravenshoe Road outlet are summarized in **Table 2.3**.

Return	4–hour	6-hour SCS	12-hour SCS	24-hour SCS
Period	Chicago	Type II	Type II	Type II
Storm	(m³/s)	(m³/s)	(m³/s)	(m³/s)
2 Year	0.040	0.070	0.084	0.103
5 Year	0.098	0.148	0.171	0.203
10 Year	0.145	0.209	0.238	0.281
25 Year	0.218	0.286	0.322	0.377
100 Year	0.375	0.451	0.488	0.550

The existing flows from the study area to the Regional Road 1 outlet are summarized in **Table 2.4**.

Return Period Storm	4-hour Chicago (m ³ /s)	6-hour SCS Type II (m³/s)	12-hour SCS Type II (m ³ /s)	24-hour SCS Type II (m ³ /s)
2 Year	0.006	0.009	0.010	0.012
5 Year	0.014	0.018	0.020	0.023
10 Year	0.020	0.024	0.027	0.032
25 Year	0.030	0.033	0.036	0.042
100 Year	0.050	0.051	0.054	0.061

Table 2.4: Summary of Existing Flows at Regional Road 1 Outlet

A summary of modelling parameters and an existing VO6 schematic are provided in **Appendix C**.

Project No. 2328

2.3 Best Management Practices

In accordance with the Ministry of Environment Stormwater Management Planning and Design Manual (2003), a review of stormwater management best practices was completed using a treatment train approach, which evaluated lot-level, conveyance system and end-of-pipe alternatives.

The following study area characteristics were taken into consideration:

- The topography is generally higher in the south of the site, sloping downward to the north site boundaries at approximately 5%;
- Based on the Geotechnical investigation, study area soils consisted of silty sand till/sandy silt till soils;
- Single well response tests were completed and indicate that the native soils have a percolation rate ranging from 33.6 to 51.7 mm/hr;
- Within the installed site wells, groundwater was observed at depths ranging between 0.6 m to 9.5 m below existing grade;
- The proposed residential development is approximately 2.0 ha and consists of 7 estate residential lots, a SWM pond block, and a proposed road which is external to the site; and
- The study area drains south to north.

The following are examples of at-source, conveyance and end-of-pipe controls that were evaluated for use in the proposed development. While evaluating the following controls, cost, feasibility, groundwater and grading constraints were taken into consideration.

2.3.1 Lot-Level Controls

Lot-level controls are at-source measures that reduce runoff prior to stormwater entering the conveyance system. These controls are typically proposed on private properties. Incorporating controls that require minimal maintenance can be an effective method in the treatment train approach to SWM. The following lot-level controls have been evaluated for use in the proposed development:

Increased Topsoil Depth – An increase in the restored topsoil depth on lots can be used to promote lot-level infiltration and evapotranspiration. Increased topsoil depth will contribute to lot-level quality and water balance control. Therefore, a minimum depth of 0.3 m is proposed in all landscaped areas.

Passive Landscaping/Bio-Retention – Planting of gardens and other vegetation designed to minimize local runoff or use rainwater as a watering source can be used to reduce rainwater runoff by increasing evaporation, transpiration, and infiltration. By promoting infiltration through passive landscaping, water quality and quantity control is provided for the volume of water retained. Passive landscaping can provide significant

SWM benefits as part of the overall treatment train approach for the proposed development. This BMP is recommended and details can be provided at the detailed design stage.

Roof Runoff to Soak-away Pits – Directing roof runoff to subsurface soak-away pits can be used to promote infiltration. By promoting infiltration water quality and quantity control is provided for the volume of water retained. Infiltration of roof runoff can provide a significant SWM benefits as part of the overall treatment train approach for the proposed development. This BMP is not recommended as roof runoff is proposed to be treated by the enhanced grassed swales within the rights-of-way.

Roof overflow to Grassed Areas – Directing roof leaders to grassed areas will contribute to water quality and water balance control by encouraging stormwater retention. This BMP is recommended and details can be provided at the detailed design stage.

A summary of the suitability of potential lot-level controls for the proposed development is provided in **Table 2.5**.

2.3.2 Conveyance Controls

Conveyance controls provide treatment of stormwater during the transport of runoff from individual lots to the receiving watercourse or end-of-pipe facility and present opportunities to distribute stormwater management techniques throughout a development. The following conveyance controls have been evaluated for use in the proposed development:

Enhanced Grassed Swales – A grassed swale will promote infiltration, filtration, and evapotranspiration, contributing to water quality and quantity control. Grassed swales need an unimpeded and relatively wide stretch of landscaped area, such as within a wide boulevard with no driveways, to function properly. Grassed swales with an infiltration trench or filtration trench below are proposed within the rights-of-way. Further details are discussed in **Section 2.8**.

Exfiltration at Rear Lot Catchbasins – Where rear lot catchbasins are required due to grading constraints, a perforated pipe system could be incorporated into the rear lot catchbasin design to promote infiltration of 'clean' stormwater runoff. By promoting infiltration, water quality and quantity control is provided for the volume of water retained. Infiltration can provide significant SWM benefits as part of the overall treatment train approach for the proposed development. Rear lot catchbasins are not proposed on the subject property, therefore this BMP is not feasible.

A summary of the suitability of potential conveyance controls for the proposed development is provided in **Table 2.5**.

Project No. 2328

2.3.3 End-of-Pipe Controls

Stormwater management facilities at the end-of-pipe receive stormwater flows from a conveyance system and provide treatment of stormwater prior to discharging flows to the receiving outlet. While lot-level and conveyance system controls are valuable components of the overall SWM plan, on their own they are not sufficient to meet the quantity and quality control objectives for the proposed development. The following end-of-pipe controls have been evaluated for use in the proposed development:

Wet Ponds, Wetlands, Dry Ponds – Sized in accordance with the MECP criteria, these end-of-pipe facilities can provide water quality, quantity, and erosion control treatment. An end-of-pipe dry pond is proposed to provide water quantity, and erosion control treatment for the development. Refer to **Section 2.5** for further details.

Stormwater Detention Facility – To meet quantity erosion control targets, stormwater runoff storage and attenuation through the use of flow restrictors can be used to control stormwater release rates. To accommodate the reduced release rate, stormwater detention facilities are required to store stormwater runoff. Stormwater storage can be provided by oversized storm sewers and controlled with flow restrictors prior to discharging to the receiving outlet. This BMP is not proposed as a dry SWM pond is being provided.

Manufactured Treatment Device - A properly sized manufactured treatment device (MTD) can assist in providing MECP Enhanced (Level 1) treatment and can contribute to the treatment train approach for water quality control. This BMP is not proposed, as Enhanced (Level 1) treatment will be provided via the enhanced grassed swales with infiltration/filtration trenches.

2.3.4 Selection of Best Management Practices

Table 2.5 summarizes the suitability of the various stormwater management controlsidentified for the proposed development.

Stormwater Management Practice	Feasible (Yes/No)	Recommended (Yes/No)
Increased Topsoil Depth	Yes	Yes
Passive Landscaping/Bio-Retention	Yes	Yes
Roof Leader to Soak-away Pits	Yes	No
Roof overflow to Grassed Areas	Yes	Yes
Enhanced Grassed Swales	Yes	Yes

Table 2.5: Recommended Stormwater BMP's

Stormwater Management Practice	Feasible (Yes/No)	Recommended (Yes/No)
Exfiltration at Rear Lot Catchbasins	No	No
Stormwater Detention Facility	Yes	No
Wet Ponds, Wetlands, Dry Ponds	Yes	Yes
Manufactured Treatment Device	Yes	No

2.4 Proposed Storm Drainage

2.4.1 Interim Condition

The proposed storm drainage plan for the interim condition is shown on **Figure 2.2**. The proposed residential lots are relatively large to accommodate the required septic systems, and will therefore include significant amounts of previous areas. Impervious coverage for the residential lots was estimated based on the proposed concept plan (refer to **Appendix A**).

Runoff from the front draining lots and front yard of the proposed split draining lots in Catchment 201 (1.38 ha) is proposed to be conveyed to a proposed interim SWM facility (dry pond) via roadside enhanced grass swales. Ultimately, the interim dry SWM pond is proposed to outlet via a proposed storm sewer through the east side of the property located at 687 Ravenshoe Road which will outlet to the existing roadside ditch on the south side of Ravenshoe Road. Permission will be required from the owner of 687 Ravenshoe Road to construct the proposed storm sewer outlet within a 6 m wide easement.

Runoff from the rear yards of the proposed split draining lots in Catchment 202 (0.52 ha) is proposed to drain uncontrolled to the north, following the same drainage pattern as in the existing condition. Runoff from the proposed road in Catchment 203 is proposed to drain easterly to the Regional Road 1 ditch, which ultimately drains north, toward the Ravenshoe Road and Concession Road 7 intersection.

Runoff from Catchment 103 (1.93 ha comprised of the proposed extension of Birdie Smith court and an undeveloped lot) is proposed to drain north to the proposed interim SWM dry pond.

2.4.2 Ultimate Condition

In the ultimate condition, runoff from Catchment 201 (1.38 ha) and Catchment 103 (1.93 ha) is proposed to drain west to a proposed dry SWM pond on the King Cole Ducks property (SUB# 2010 - 1) via overland flow (refer to **Appendix B**). The temporary dry SWM pond is proposed to be decommissioned and replaced by an estate residential lot.

2.5 Proposed Stormwater Management Plan

2.5.1 Quantity Control

2.5.1.1 Peak Flow

The proposed interim end-of-pipe dry SWM pond will control proposed flows from the site to existing flow rates for the 2 to 100 year storm events. The preliminary design requirements of the interim dry pond is discussed further in **Section 2.6**.

2.5.1.2 Volume

The proposed development targets a volume control criteria to capture and treat or retain the runoff volume from the 25 mm rainfall event from new and/or fully reconstructed impervious areas. Proposed LIDs and BMPs have been sized to provide this storage volume where feasible. The locations of the proposed LID measures are shown on **Figure 2.3**. The preliminary design of these facilities is discussed further in **Section 2.7**.

2.5.2 Quality Control: TSS

Enhanced water quality control will be provided by a treatment train of Low Impact Development (LID) techniques which will include additional topsoil depth on all grassed areas, and enhanced grass swale. The proposed interim dry pond will provide additional opportunity for runoff to be filtered through the vegetation and settle within the dry pond.

The preliminary design requirements of the SWM infrastructure to provide the water quality and a detailed phosphorus budget are provided in following sections.

2.5.3 Quality Control: Phosphorus

Under the Lake Simcoe Protection Plan, a stormwater management plan must demonstrate how phosphorus loadings are minimized between existing and proposed. Furthermore, the Lake Simcoe Phosphorus Offsetting Policy (May 2023) states that:

"The phosphorous load from the development on the property will not exceed pre-development phosphorus loadings. In situations where the phosphorous load cannot be met or demonstrated in a post-development scenario to achieve the pre-development phosphorus loadings, the developer or proponent shall be required to provide phosphorus offsetting to the LSRCA"

The MECP database application Lake Simcoe Phosphorus Loading Development Tool (v2, 01-April-2012 update) was used to complete the phosphorus budget for the proposed

Project No. 2328

development. Due to the complex treatment train provided by the SWM measures outlined above a spreadsheet based on the MECP database application was developed to determine the proposed conditions phosphorus budget.

2.5.3.1 Existing Phosphorus Loadings

The existing land uses are shown on **Figure 2.4**. Based on the Phosphorus Loading Development Tool, the existing annual phosphorus loadings were calculated to be 0.07 kg/year. Refer to **Appendix D** for the phosphorus loading tool output.

2.5.3.2 Proposed Phosphorus Loadings

The proposed land uses for the proposed development are shown on **Figure 2.5**. The estate residential lots are considered low intensity development according to the MECP Phosphorus Tool. The proposed phosphorus loading with no best management practices (BMPs) was calculated to be 0.23 kg/yr. (refer to **Appendix D**).

The proposed phosphorus loading with BMPs was calculated to be 0.14 kg/yr. (refer to **Appendix E**). **Table 2.6** provides a summary of the phosphorus budget for the existing, condition, proposed condition with no BMP and proposed condition with BMPs.

Table 2.6: Phosphorus Budget Summary

Existing Phosphorus Loading (kg/yr.)	Proposed Phosphorus Loading without BMPs (kg/yr.)	Proposed Phosphorus Loading with BMPs (kg/yr.)
0.07	0.23	0.14

As per LSRCA's Phosphorus Offsetting Policy, the increase in phosphorus loading will be offset at a rate of \$35,000/kg/year, at a 2.5:1 ratio. The cost of the phosphorous offsetting will total \$7,481.10, which includes a 15% administration cost.

2.5.4 Erosion Control

The erosion control criteria is to provide a minimum of 24 hour extended detention of the runoff from a 40 mm rainfall event will be provided in the dry pond. The preliminary design requirements of the SWM dry pond is discussed further in a **Section 2.6**.

The dry SWM pond will provide extended detention of the greater of the 40 mm runoff volume, or the water quality storage volume. The extended detention volume is 155 m³ based on the 40 mm runoff volume (refer to **Appendix D**). Based on the preliminary design of the dry pond, the minimum orifice size of 75 mm diameter has been designed to detain the flows as long as feasible, up to 24 hours.

2.5.5 Water Budget

Where feasible, measures to minimize impacts on the water budget will be incorporated into the development design. As noted in the Water Balance Evaluation Report prepared by Gaman Consultants Inc., dated December 2024 (Refer to **Appendix B**), the estimated existing infiltration volume on the proposed development is approximately 3,223 m³/year. Without mitigation the proposed development infiltration volume is approximately 2,841 m³/year, with a recharge deficit of 382 m³/year.

As recommended in the Hydrogeological Study, low impact development measures, such as enhanced swale infiltration trench will be implemented, where feasible, to maintain or increase existing infiltration rates. It is anticipated that a proposed infiltration volume of approximately 3,321 m³ can be achieved through the proposed mitigation measures.

2.6 Interim Stormwater Management Pond

One interim dry SWM pond is proposed for the site, outletting to a proposed storm sewer that ultimately outlets to the existing Ravenshoe Road ditch. The interim dry pond will receive major and minor flows from the proposed enhanced grass swale. A low flow channel graded at a minimum of 1.0% from the inlets of the pond to the outlet will convey low flows to the outlet control structure.

2.6.1 General Pond Design Criteria

Preliminary pond grading is provided on **Figure 2.6**. The pond block size was established based on the following general criteria:

- A side slope of 4:1 from the pond bottom to top of the pond will be provided;
- A maximum depth of 3 m from the pond bottom to top of the pond will be provided; and
- A minimum 75 mm diameter orifice and 450 mm diameter outlet pipe will be provided.

2.6.2 Extended Detention

The extended detention volume will be sized based on the detention of the 40 mm - 4 hour Chicago rainfall event. The facility has been designed to provide the maximum detention time of the extended detention volume through the implementation of the minimum allowable orifice size.

The required extended detention volume for the dry SWM pond is 155 m³. This volume is greater than the 2003 MECP water quality storage requirement for dry pond, which is

Project No. 2328

44 m³. The peak release rate for the extended detention volume is approximately 0.022 m³/s, with a 75 mm diameter control orifice, and an extended detention time of approximately 2.1 hours.

The calculations for the extended detention requirements of the proposed interim SWM dry pond are provided in **Appendix D**.

2.6.3 Quantity Control

The proposed SWM dry pond will control proposed flows from the proposed development to existing flow rates for the 2 to 100 year storm events. Flows from the 2 through 100 year storm event will controlled by a 75 mm diameter orifice with an invert elevation of 247.24 m and a 2.4 m broad crested weir at an invert of 248.12 m (refer to **Appendix D**). Proposed hydrology modelling was completed using the VO6 model to determine the required pond volume. Refer to the File Safe Cloud Link provided in **Appendix C** to download the VO6 hydrology model files.

The 6-hour, 12-hour and 24-hour SCS Type II design storm and the 4-hour Chicago Storm distribution per Township of Uxbridge requirements were modelled for the proposed conditions hydrology model. A summary of the resulting storage requirements for the SWM pond is provided in **Tables 2.7** and **Table 2.8**.

Storm Distribution	4-Hour Chicago		6-Hour SCS Type II	
Return Period Storm	Discharge (m ³ /s)	Storage (m ³)	Discharge (m ³ /s)	Storage (m ³)
2 Year	0.017	33	0.018	51
5 Year	0.020	92	0.021	128
10 Year	0.022	148	0.041	170
25 Year	0.060	179	0.147	205
100 Year	0.196	217	0.373	251

Table 2.7: SWM Pond Storage Requirements

Storm Distribution	12-Hour SCS Type II		24-Hour SCS Type II	
Return Period Storm	Discharge (m ³ /s)	Storage (m ³)	Discharge (m ³ /s)	Storage (m ³)
2 Year	0.018	65	0.019	80
5 Year	0.022	155	0.036	168
10 Year	0.089	190	0.145	205
25 Year	0.217	222	0.280	235
100 Year	0.422	260	0.483	270

Table 2.8: SWM Pond Storage Requirements

The governing design storm is determined to be 24-hour SCS Type II. The stage-storagedischarge characteristics of dry SWM Pond for the governing design storm are provided below in **Table 2.9**.

Table 2.9: Stormwater Management Pond Stage-Storage-Discharge Characteristics

Return Period Storm	Stage (m)	Storage (m ³)	Discharge (m ³ /s)
2 Year	247.90	80	0.019
5 Year	248.14	168	0.036
10 Year	248.22	205	0.145
25 Year	248.29	235	0.280
100 Year	248.36	270	0.483

2.7 Comparison of Existing Targets and Proposed Flows

To the extent possible, the proposed development was designed to control proposed peak flows to the existing levels. **Table 2.10** and **Table 2.11** provide a comparison of existing and proposed flows at the Ravenshoe Road outlet.

Project No. 2328

Storm Distribution	4-Hour Chicago		6-Hour SCS Type II	
Return Period Storm	Existing Discharge	Proposed Discharge	Existing Discharge	Proposed Discharge
	(m³/s)	(m³/s)	(m³/s)	(m³/s)
2 Year	0.040	0.018	0.070	0.025
5 Year	0.098	0.030	0.148	0.035
10 Year	0.145	0.038	0.209	0.045
25 Year	0.218	0.065	0.286	0.151
100 Year	0.375	0.212	0.451	0.380

Table 2.10: Comparison of Existing Targets and Proposed Flows to Ravenshoe Road

Table 2.11: Comparison of Existing Targets and Proposed Flows to Ravenshoe Road

Storm Distribution	12-Hour SCS Type II		24-Hour SCS Type II	
Return Period Storm	Existing Discharge (m ³ /s)	Proposed Discharge (m ³ /s)	Existing Discharge (m ³ /s)	Proposed Discharge (m ³ /s)
	(111 / 3)			• • •
2 Year	0.084	0.027	0.103	0.029
5 Year	0.171	0.037	0.203	0.041
10 Year	0.238	0.093	0.281	0.148
25 Year	0.322	0.222	0.377	0.285
100 Year	0.488	0.451	0.550	0.518

Tables 2.12 and **Table 2.13** provide a comparison of existing and proposed flows at the Regional Road 1 outlet.

•••

>

Storm Distribution	4-Hour Chicago		6-Hour SCS Type II	
Return Period Storm	Existing Discharge (m ³ /s)	Proposed Discharge (m ³ /s)	Existing Discharge (m ³ /s)	Proposed Discharge (m ³ /s)
2.14	• • •			• • •
2 Year	0.006	0.003	0.009	0.004
5 Year	0.014	0.007	0.018	0.007
10 Year	0.020	0.009	0.024	0.010
25 Year	0.030	0.013	0.033	0.013
100 Year	0.050	0.021	0.051	0.020

Table 2.12: Comparison of Existing Targets and Proposed Flows to Regional Road 1

Table 2.13: Comparison of Existing Targets and Proposed Flows to Regional Road 1

Storm Distribution	12-Hour SCS Type II		24-Hour SCS Type II	
Return Period Storm	Existing Discharge	Proposed Discharge	Existing Discharge	Proposed Discharge
5000	(m³/s)	(m³/s)	(m³/s)	(m³/s)
2 Year	0.010	0.004	0.012	0.005
5 Year	0.020	0.008	0.023	0.009
10 Year	0.027	0.011	0.032	0.012
25 Year	0.036	0.014	0.042	0.016
100 Year	0.054	0.021	0.061	0.023

As shown in **Tables 2.10** to **Table 2.13**, the proposed flows are less than or equal to the existing flows for the 2 through 100 year storm events at the outlet locations.

•••

>

2.8 Enhanced Grassed Swale

Enhanced grassed swales are proposed within the road right-of-way (ROW). Drainage from the ROW, front draining lots, and front portion of the split draining lots will be conveyed to the enhanced grass swales via overland flow.

2.8.1 Sizing

Enhanced grassed swales with infiltration or filtration trenches below are proposed to provided on-site retention of 23.48 mm of runoff volume from new impervious surfaces. Based on the preliminary sizing, the total enhanced grass swale infiltration/filtration trench volume provided is 114 m³. Refer to **Appendix F** for sizing calculations.

2.8.2 General Infiltration and Filtration Trench Design Criteria

Preliminary LID plan is provided on **Figure 2.3**. The enhanced grass swales and infiltration/filtration trenches will be designed with the following general criteria:

- Infiltration rate is 33.6 to 51.7 mm/hour with a 3.5 safety factor (9.6 to 14.8 mm/hr);
- Enhanced grass swale trench to consist of 25 mm washed clear stone and sand filter wrapped in non-woven filter cloth;
- Minimum 1.0 m separation from high groundwater level to infiltration trench invert for infiltration purposes;
- Where 1.0 m separation from high groundwater to the invert of the stone trench is not possible, the enhanced grass swale is to consist of 25 mm washed clear stone and sand filter with a subdrain and wrapped in an impermeable liner; and
- A maximum drawdown time of 48 hours.

2.9 Storm Servicing

There is no existing municipal storm sewer system available to convey flow for the site. The drainage from the site and the existing residential lots adjacent to the site drains overland and is conveyed by existing ditches along Ravenshoe Road and Regional Road 1.

The minor and major system flow drainage for the site (up to the 100 year storm event) will generally be conveyed overland along the proposed road rights-of-way roadside ditches.

2.10 Overland Flow

Minor and major system flows (up to the 100 year storm event) will be conveyed by the roadside ditches to the interim dry SWM pond. Ditch capacity calculations are provided in **Appendix G** and show that the minor and major system flows can be safely conveyed within the proposed enhanced grass swales within the ROWs.

3.0 Sanitary Servicing

3.1 Existing Sanitary Sewer System

There are no existing municipal sanitary sewers or wastewater treatment plants available to service the site. The existing residential lots adjacent to the site are currently serviced by privately owned on-site sewage systems.

3.2 Proposed Sanitary Sewer System

The proposed sanitary treatment system for the site will consist of privately owned onsite sewage systems approved under the Ontario Building Code. As discussed in the On-Site Sewage System Sizing Study prepared by Envision Consultants ltd, dated December 2024 (refer to **Appendix B**), the proposed plan can be serviced with private sewage systems. The privately owned sewage systems and sizing will be described in greater detail at the detailed design stage.

3.3 Servicing Allocation

No sanitary servicing allocation will be required from the Region of Durham, or the Township of Uxbridge since the subject lands are proposed to be serviced by private septic systems.

4.0 Water Supply and Distribution

4.1 Existing Water Distribution

There are no existing municipal watermains or water treatment plants available to service the site. The existing residences adjacent to the site are currently serviced by private wells.

4.2 Proposed Water System

As discussed in the On-Site Sewage System Sizing Study prepared by Envision Consultants ltd, dated December 2024 (refer to **Appendix B**), the proposed water source for the site will consist of privately owned wells for each lot.

5.0 Grading

5.1 Existing Grading Conditions

The existing topography has slopes in the range of 2% to 12%. The ground surface elevations through the study area range from approximately 249.1 m in the northwest corner to approximately 259.0 m in the southeast corner.

5.2 Proposed Grading Concept

In general, the proposed development will be graded in a manner which will satisfy the following goals:

- Satisfy the Township of Uxbridge lot and road grading criteria including:
 - Minimum Road Grade: 0.5%
 - Maximum Road Grade: 5.0%
 - Minimum Lot Grade: 2%
 - Maximum Lot Grade: 12%
- Provide continuous road grades for overland flow conveyance;
- Minimize the need for retaining walls;
- Minimize the volume of earth to be moved and minimize cut/fill differential; and
- Achieve the stormwater management objectives required for the proposed development.

A preliminary grading plan is provided on **Figure 5.1**.

The road is proposed to connect with Birdie Smith Court to the south. The proposed grading at the connection follows the future centerline grading illustrated on the Plan and Profile Drawing, prepared by Cole Engineering, dated August 2002 (refer to **Appendix B**).

Since the majority of the site slopes between 2% to 12%, and the maximum road grade is 5%. 3:1 sloping onto the adjacent properties is required to compensate the differences between the existing and proposed grades (refer to **Figure 5.1**). Permission from owners of the adjacent properties will be required for the 3:1 sloping. Alternatively, retaining walls along the edges of the rights-of-way and along the south edge of Lot 1 will be required.

In the ultimate condition, once the proposed King Cole Ducks subdivision (subdivision# 2010 -1) to the west has been constructed, the interim dry SWM pond will be decommissioned and replaced by an estate residential lot. The ultimate grading design for the future road connection between the Subject Land and the King Cole Ducks property is illustrated on **Figure 5.2**.

At the detailed design stage, the preliminary grading shown on **Figure 5.1** and **5.2** will be subject to a more in-depth analysis in an attempt to balance the cut and fill volumes and minimize slopes and walls.

•••-

6.0 Rights-of-way and Sidewalks

The proposed 23.0 m right-of-way cross-sections are provided on **Figures 6.1** and **6.2**. The cross sections have been developed by modifying Township of Uxbridge Standard Detail Drawing US-201 to show the LID measures.

Since the right-of-way is classified as an estate residential street, sidewalks are not required per the Township of Uxbridge Standard Detail Drawing (refer to **Figures 6.1** and **6.2**).

7.0 Erosion and Sediment Control During Construction

During the detailed design stage, erosion and sediment control measures will be designed with a focus on erosion control practices (such as stabilization, track walking, staged earthworks, etc.) as well as sediment controls (such as fencing, mud mats, rock check dams and temporary sediment control ponds). These measures will be designed and constructed as per the "Technical Guidelines for Stormwater Management Submissions" document (LSRCA, 2022). A detailed erosion and sediment control plan will be prepared for review and approval by the Municipality and Conservation Authority prior to any proposed grading being undertaken. This plan will address phasing, inspection and monitoring aspects of erosion and sediment control. All reasonable measures will be taken to ensure sediment loading to the adjacent properties are minimized both during and following construction.

8.0 Utility Considerations

The utility companies (hydro, natural gas, and telecommunications) have been contacted to circulate the proposed draft plan of subdivision to confirm whether there is sufficient servicing capacity. Correspondence received thus far is included in **Appendix I**.

8.1 Hydro

Hydro One has confirmed that there is sufficient existing capacity to service the proposed development.

8.2 Gas

Enbridge confirmed that a gas main extension from HWY12 and Brock Concession Road 7 is required to service the proposed development.

8.3 Telecommunications and Cable

Vianet has confirmed that there is sufficient existing capacity to service the proposed development.

9.0 Summary

This Functional Servicing and Stormwater Management Report has been prepared in support of the Draft Plan of Subdivision and Zoning By-law Amendment applications for the proposed residential development in the Township of Uxbridge. This report outlines the means by which the proposed development can be graded and serviced in accordance with the Township of Uxbridge, Lake Simcoe Regional Conservation Authority (LSRCA), The Ontario Building Code, and the Ministry of Environment Conservation and Parks (MECP) design criteria.

General Information

- The existing land use is comprised of mostly barren open space with minor tree covered areas;
- The proposed development is located within the subwatershed of Pefferlaw Brook in Township of Uxbridge; and
- The proposed development consists of low density residential, an interim dry SWM pond and proposed roads.

Stormwater Management and Storm Servicing

- Quality Control: MECP enhanced quality protection (80% TSS Removal) can be provided through the use of enhanced grassed swale infiltration trenches and enhanced grassed swale filtration trenches;
- Erosion Control: The runoff volume from a 40 mm mm rainfall event will be detained over 2 hours by the interim dry pond;
- Quantity Control: Quantity control will be provided via the interim dry pond to control proposed flows from the site to existing flow rates for the 2 through 100-year storm events;
- Water Budget: Gaman Consultants Inc. has completed a water budget analysis to demonstrate that the proposed annual infiltration rates will not be less than existing rates;
- Phosphorus Budget: A phosphorus budget analysis was completed using the MECP phosphorus budget tool, which shows that the proposed phosphorus export with BMPs will be approximately 0.08 kr/yr more than existing conditions. Since the post-development phosphorus loading exceeds the pre-development phosphorus loading, the LSRCA's Phosphorus Offsetting fee of \$8,709.83 is required.
- Storm Servicing:
 - Minor and major system runoff from the site (up to the 100 year storm event) will be conveyed overland along the road rights-ofway.

Sanitary Servicing

 The proposed sanitary treatment system for the site will consist of privately owned on-site sewage systems approved under the Ontario Building Code.

Water Supply and Distribution

The proposed water source for the site will consist of privately owned wells.

Grading

- The proposed development grading has been developed to match to the existing surrounding grades, to the extent feasible, and to provide conveyance of stormwater runoff, including external drainage; and
- The site grading will be subject to further grading design at the detailed design stage.

Rights-of-Way and Sidewalks

- The Town standard 23.0 m rural estate right-of-way is proposed to be modified to incorporate infiltration/filtration trenches below the ditches.
- Since the right-of-way is classified as estate residential street, sidewalks are not required per the Township of Uxbridge Standard Detail Drawing.

Erosion and Sediment Control during Construction

An erosion and sediment control plan will be prepared at the detailed engineering stage, in accordance with the "Technical Guidelines for Stormwater Management Submissions" (LSRCA, 2022).

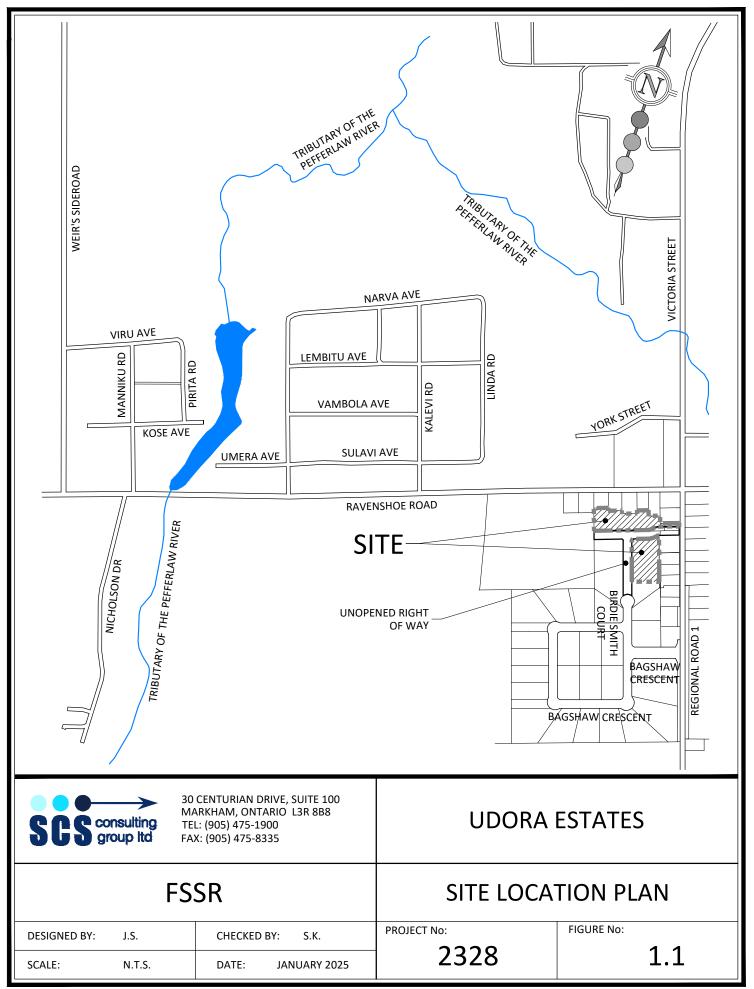
Utility Considerations

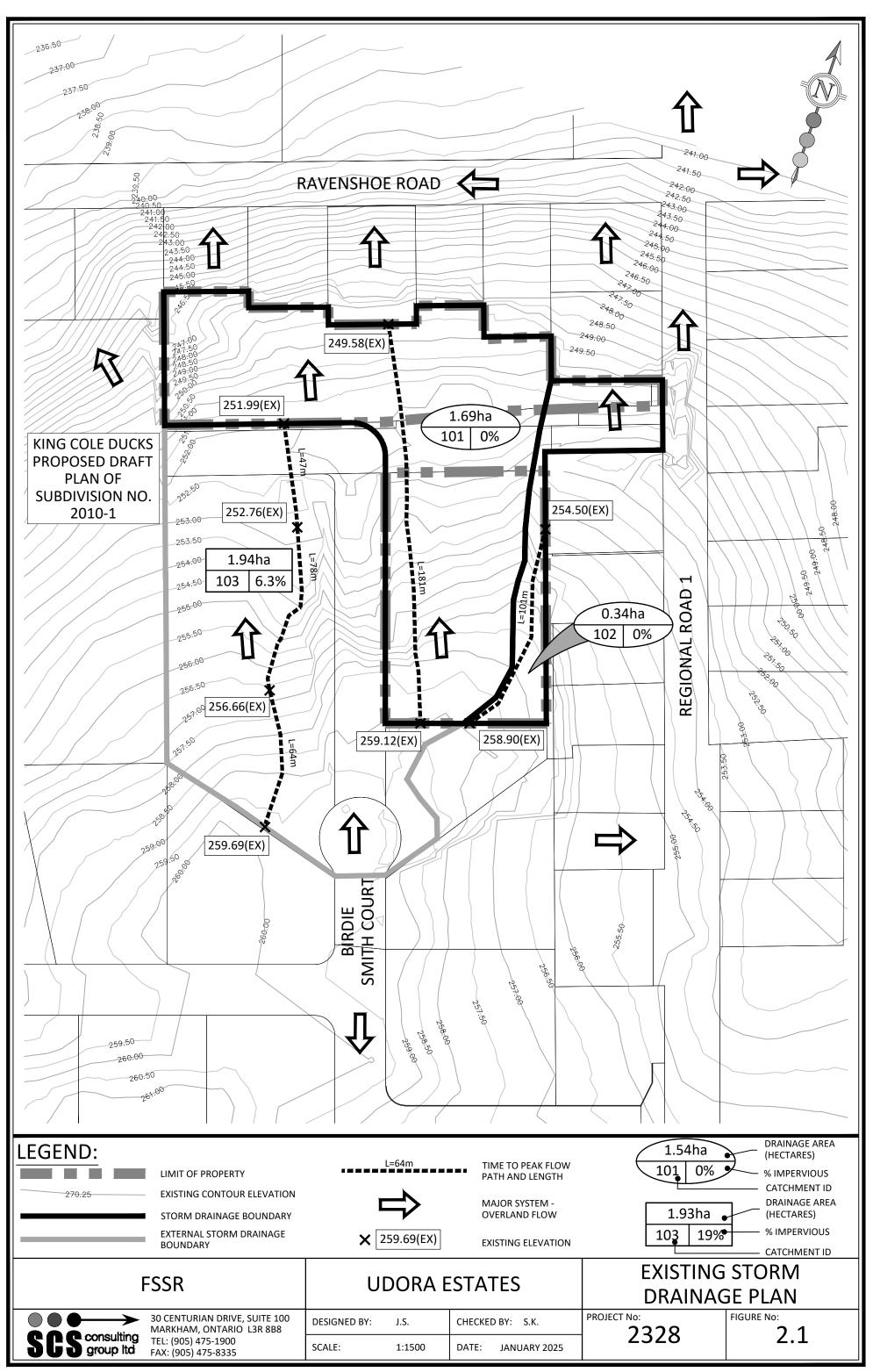
- Utility companies have been contacted to circulate the proposed draft plan of subdivision to confirm if there is sufficient servicing capacity.
- A gas main extension from HWY12 and Brock Concession Road to the site is required.
- Vianet has confirmed there is sufficient capacity.

Project No. 2328

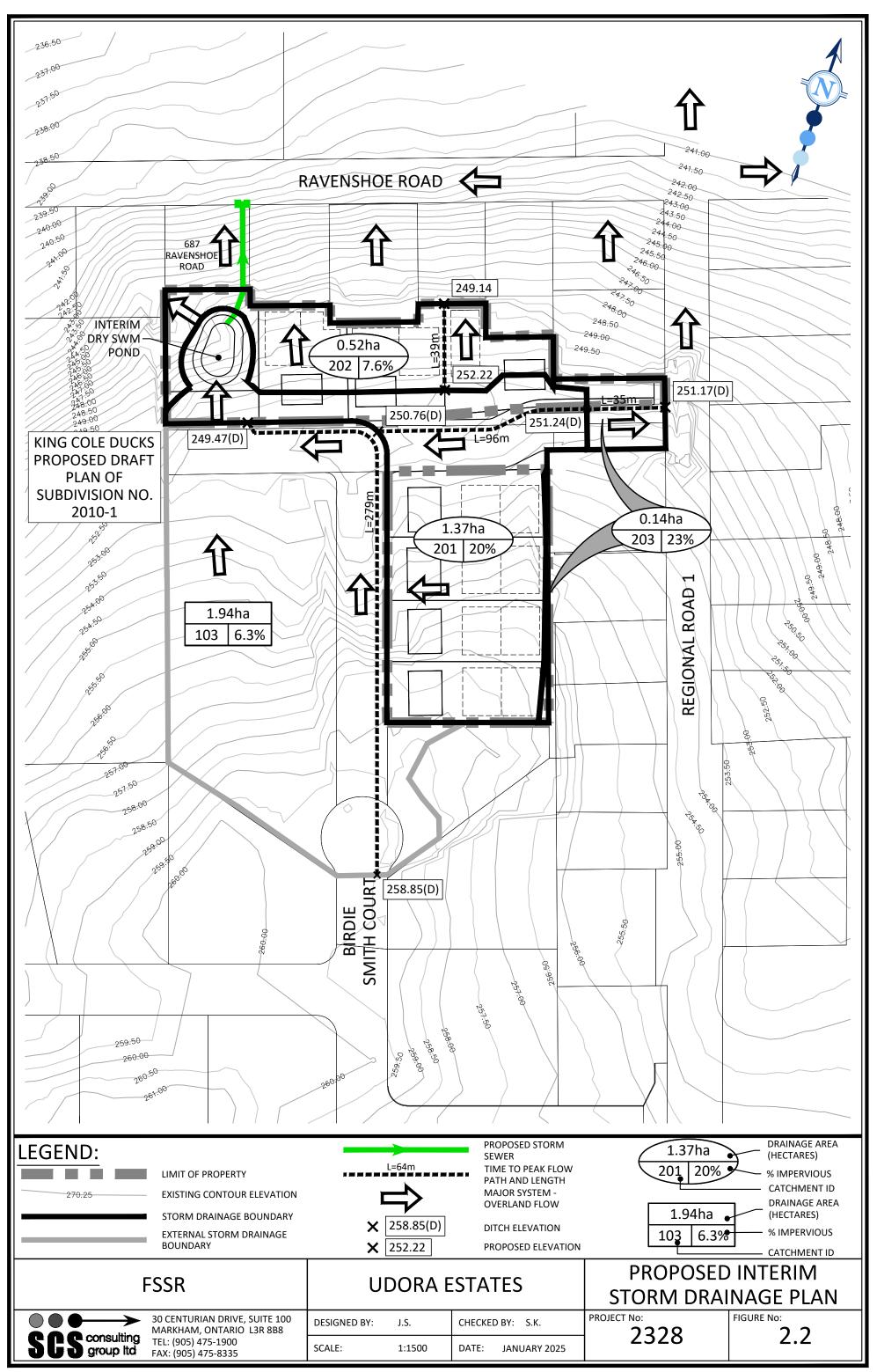
Respectfully Submitted:

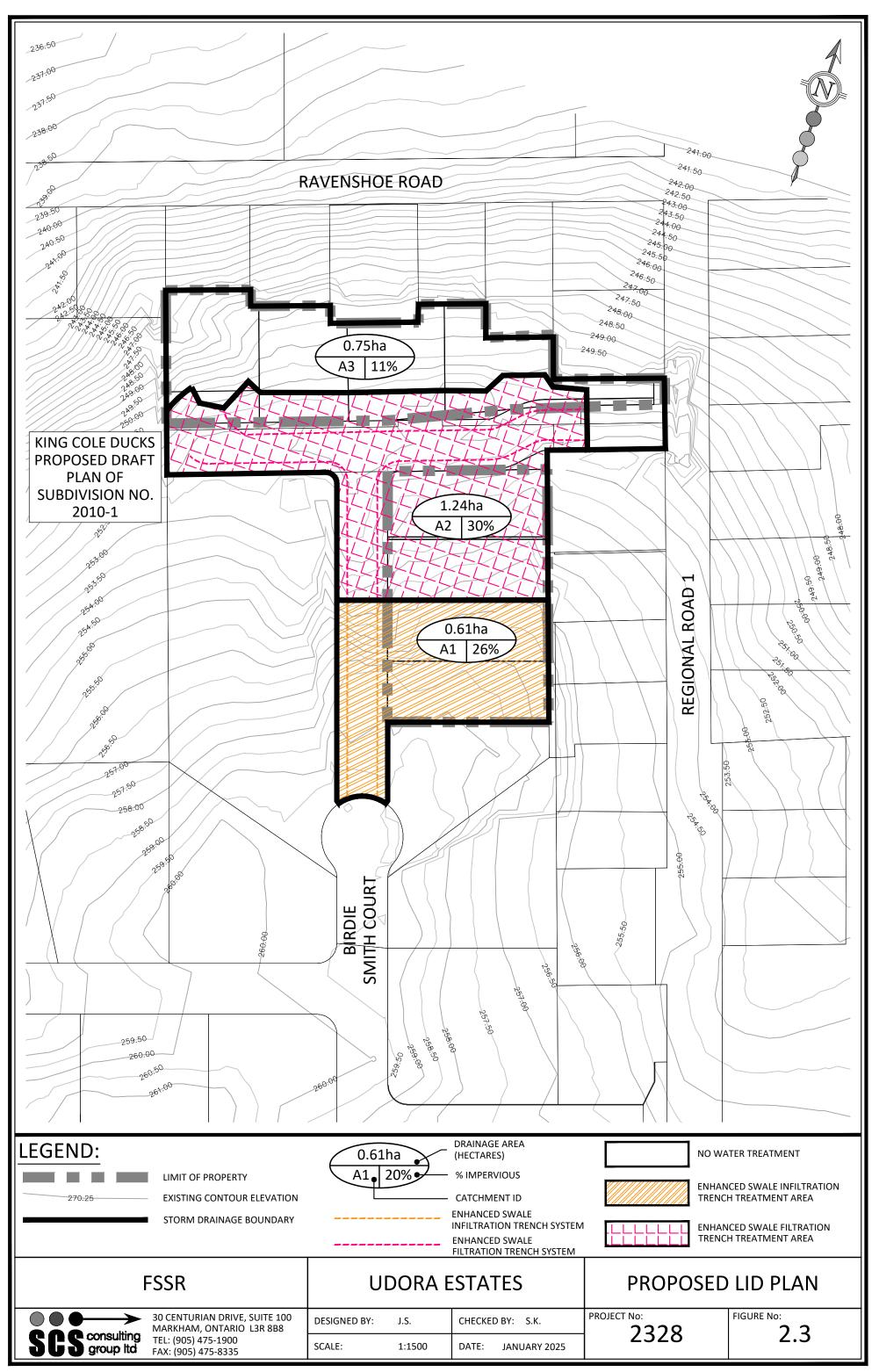
SCS Consulting Group Ltd.

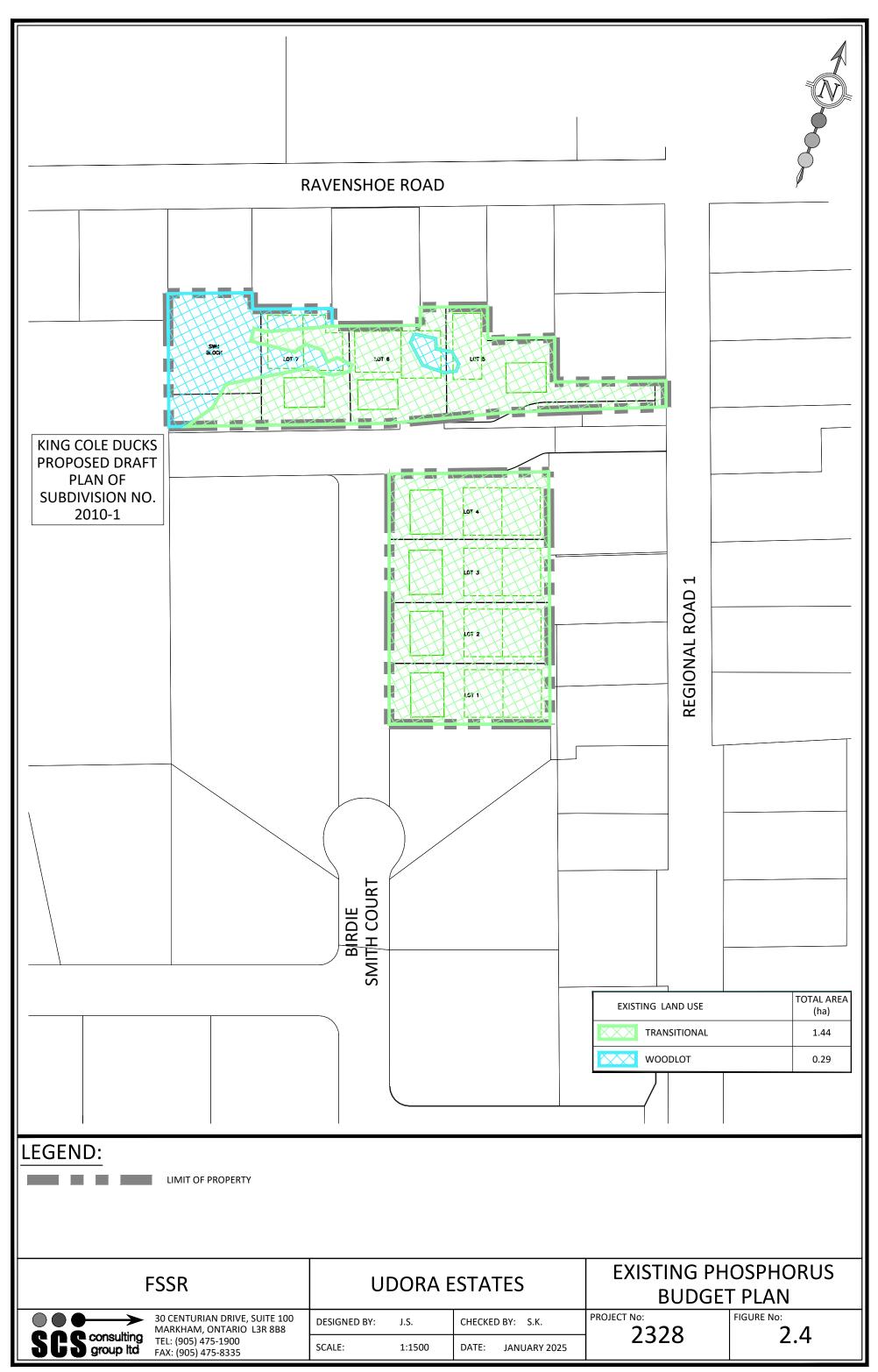

osse Song

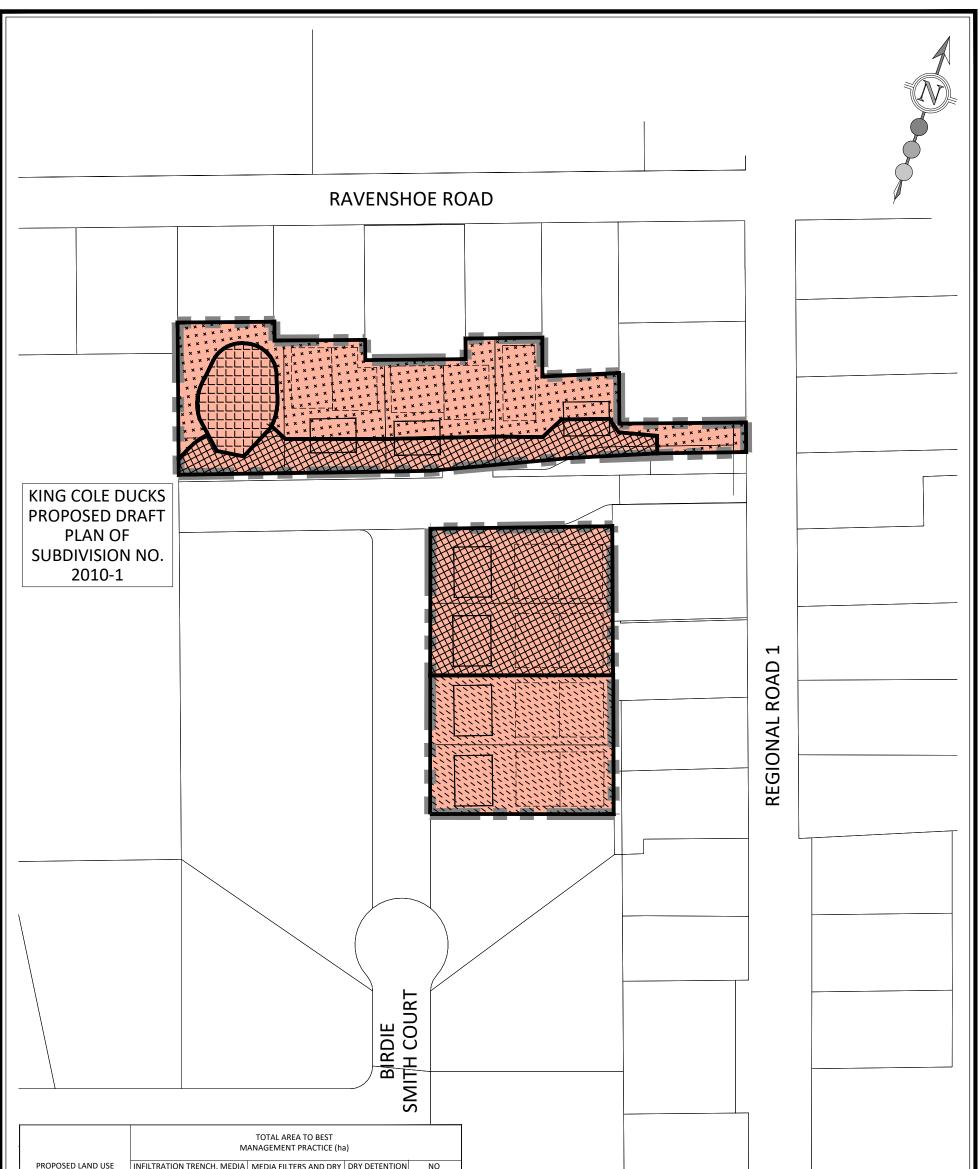

Jessie Song, E.I.T. jsong@scsconsultinggroup.com

Sarah Kurtz, P.Eng. Skurtz@scsconsultinggroup.com

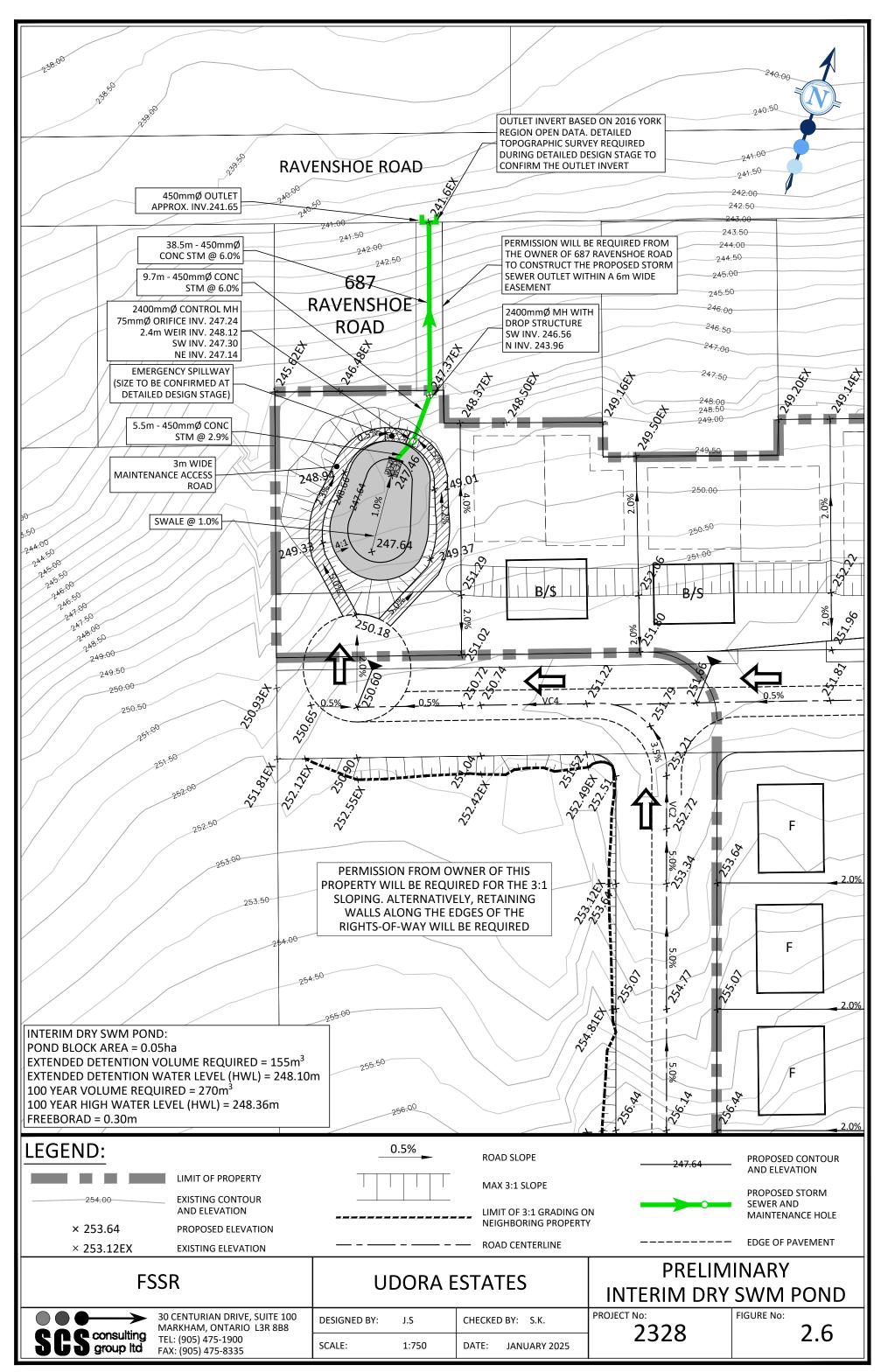

P:\2328 Udora Estates\Design\Reports\FSR\2328 - Udora - FSSR (subdivision).docx



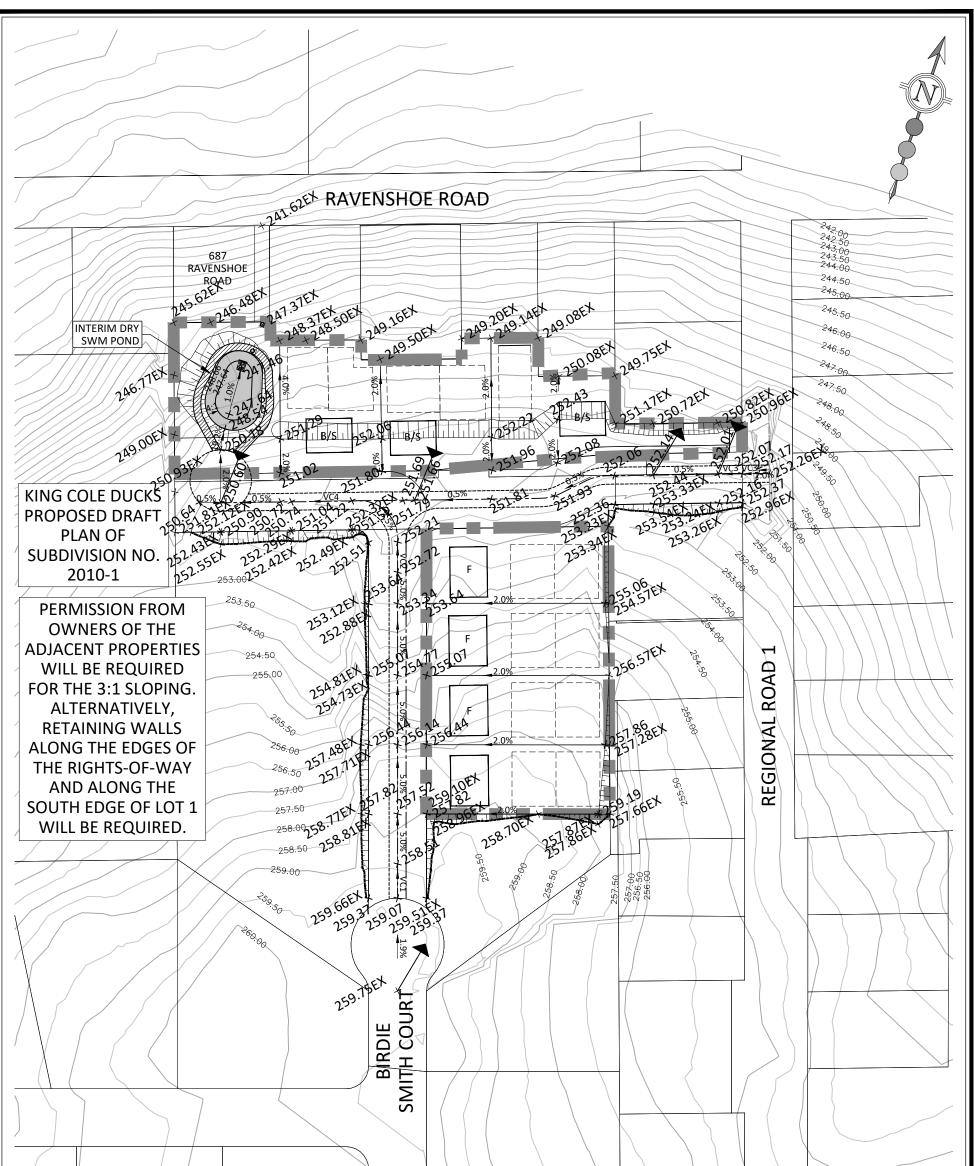

File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-STRM-EXST-2.1.dwg - Revised by <JZHANG> : Thu, Jan 09 2025 - 11:05am


File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-STRM-PROP-2.2.dwg - Revised by <JZHANG> : Wed, Jan 08 2025 - 4:43pm

File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-LID-PROP-2.3.dwg - Revised by <JZHANG> : Thu, Jan 09 2025 - 11:18am

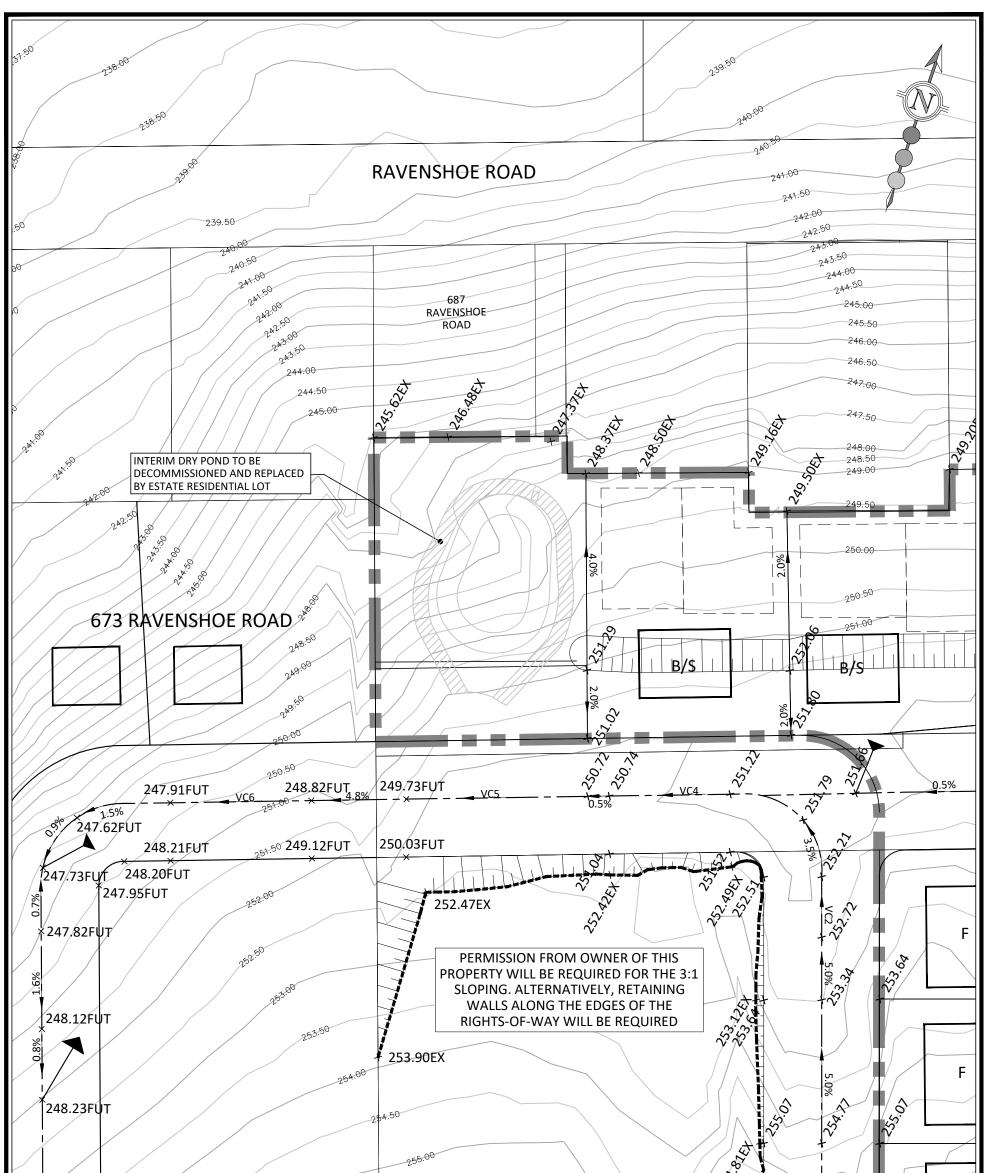


File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-PHSB-EXST-2.4.dwg - Revised by <JZHANG> : Tue, Jan 07 2025 - 4:06pm

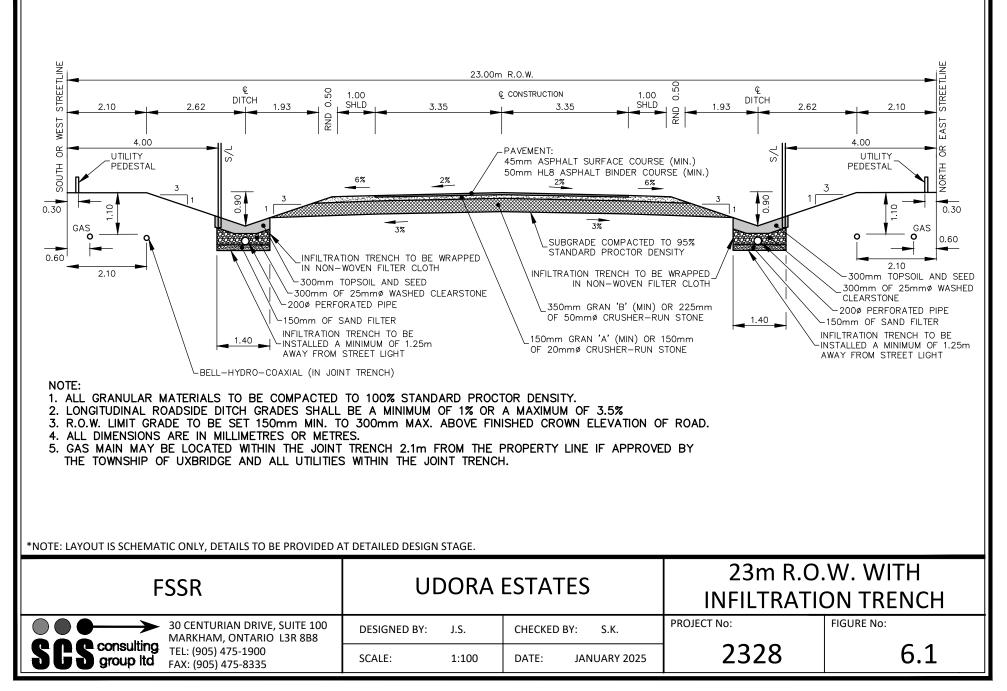


	NFILTRATION TRENCH, MEDIA FILTERS AND DRY DETENTION POND	MEDIA FILTERS AND DRY DETENTION POND	DRY DETENTION POND	NO TREATMENT			
LOW INTENSITY DEVELOPMENT (RESIDENTIAL)	0.40	0.65	0.11	0.57			
LEGEND:							
	LIMIT OF PRO	OPERTY					
	FSSR				Λ Εςτλτες	PROPOSED PI	HOSPHORUS
1.551		UDORA ESTATES			BUDGE	T PLAN	
	30 CENTURIAN D MARKHAM, ONT	ARIO L3R 8B8	DESIGNED BY	/: J.S.	CHECKED BY: S.K.	PROJECT No: 2328	FIGURE No:
SCS group I	TEL: (905) 475-19 C FAX: (905) 475-83		SCALE:	1:1500	DATE: JANUARY 2025	2320	2.5

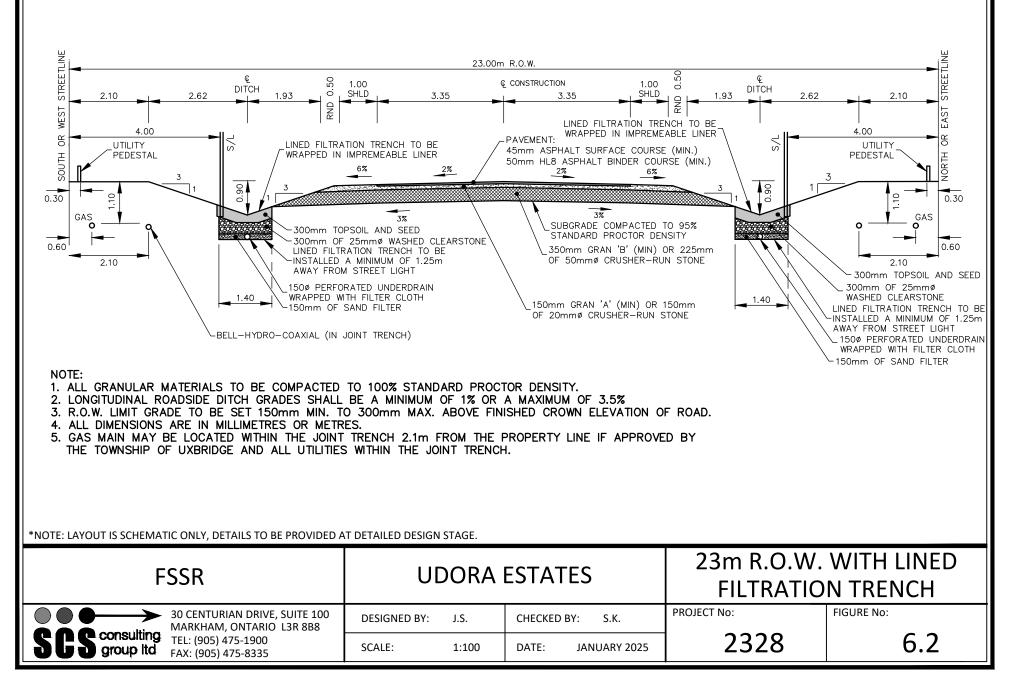
File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-PHSB-PROP-2.5.dwg - Revised by <JZHANG> : Thu, Jan 09 2025 - 11:24am



File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-SWMF-2.6.dwg - Revised by <JZHANG> : Thu, Jan 09 2025 - 11:25am

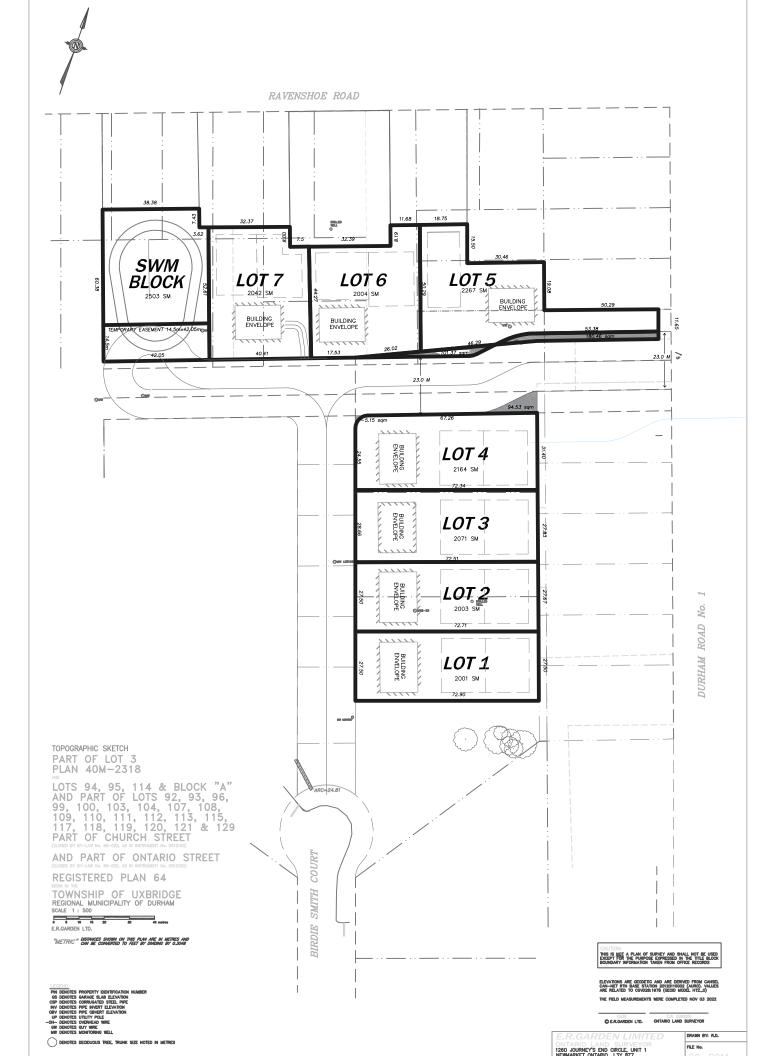

LEGEND:			0.5%	ROAD SLOPE	EDGE OF PAVEMENT
	LIMIT OF PROPERTY	\top		MAX 3:1 SLOPE	
254.00	EXISTING CONTOUR AN	D ELEVATION			
× 223.91	PROPOSED ELEVATION		الد	LIMIT OF 3:1 GRADING ON NEIGHBOURING PROPERTY	
× 224.35EX	EXISTING ELEVATION			ROAD CENTERLINE	
FSSR		UDORA ESTATES		PRELIM GRADIN	
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow$	30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8	DESIGNED BY: J.S.	CHECKED BY: S.K.	PROJECT No:	FIGURE No:
SCS group ltd	TEL: (905) 475-1900 FAX: (905) 475-8335	SCALE: 1:1500	DATE: JANUARY 2025	2328	5.1

File: P: \2328 Udora Estates \Drawings \FSP \Fig \Report Figures \2328P-GRAD-5.1.dwg - Revised by <JZHANG> : Thu, Jan 09 2025 - 11:27am



KING COLE DUCK PROPERTY (SUB 2010-1) GRADING PER DRAWING FSR-1, PREPARED BY FABIAN PAPA & PARTNERS INC., DATED NOVEMBER 2009 (SEE APPENDIX B)						
LEGEND:	0.5%	- ROAD SLOPE				
LIMIT OF PROPERTY						
EXISTING CONTOUR AND ELEVA	ATION	ON MAX 3:1 SLOPE				
× 248.21 PROPOSED ELEVATION	LIMIT OF 3:1 GRADING ON					
× 247.91EX EXISTING ELEVATION		NEIGHBORING PROPERTY				
× 249.12FUT FUTURE ELEVATION		——————————————————————————————————————	NE			
FSSR	UDORA E	ESTATES	PRELIM ULTIMATE GR			
30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8	DESIGNED BY: J.S	CHECKED BY: S.K.		FIGURE No:		
SCS group Itd TEL: (905) 475-1900 FAX: (905) 475-8335	SCALE: 1:750	DATE: JANUARY 2025	2328	5.2		

File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-GRAD-5.2.dwg - Revised by <JZHANG> : Thu, Jan 09 2025 - 11:28am


File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-ROW-6.1.dwg - Revised by <SOZDEMIR> : Mon, Dec 16 2024 - 5:22pm

File: P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2328P-ROW-6.2.dwg - Revised by <JZHANG> : Thu, Jan 09 2025 - 11:30am

Appendix A Draft Plan

Appendix B Background Information

Soil Engineers Ltd.

CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	GRAVENHURST	PETERBOROUGH	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL: (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 440-2040	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (905) 881-8335	FAX: (705) 684-8522	FAX: (905) 725-1315	FAX: (905) 542-2769

A REPORT TO J & J DEVELOPMENTS

A GEOTECHNICAL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT

NORTH OF BIRDIE SMITH COURT (PART OF LOT 35, CONCESSION 6)

TOWNSHIP OF UXBRIDGE (UDORA)

REFERENCE NO. 2209-S119

NOVEMBER 2022

DISTRIBUTION

Digital Copy- J & J Developments1 Copy- Soil Engineers Ltd. (Richmond Hill)1 Copy- Soil Engineers Ltd. (Oshawa)

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	SITE	E AND PROJECT DESCRIPTION	1
3.0	FIEI	D WORK	2
4.0	SUB	SURFACE CONDITIONS	
	4.1	Topsoil	2
	4.2	Sand Fill	
	4.3	Sandy Silt Till/Silty Sand Till	3
	4.4	Silty Sand/Sandy Silt	
	4.5	Sand	
5.0	GRC	OUNDWATER CONDITION	5
6.0		CUSSION AND RECOMMENDATIONS	
	6.1	Site Preparation	6
	6.2	Foundations	8
	6.3	Basement Construction	9
	6.4	Underground Services	9
	6.5	Backfilling in Trenches and Excavation Areas	10
	6.6	Pavement Design	
	6.7	Soil Parameters	11
	6.8	Excavation	12
7.0	LIM	ITATIONS OF REPORT	13

TABLES

Table 1 – Groundwater Levels in Monitoring Wells	5
Table 2 – Pavement Design	
Table 3 – Soil Parameters	
Table 4 – Classification of Soils for Excavation	12

ENCLOSURES

Borehole Logs	Figures 1 and 2
Grain Size Distribution Graphs	Figures 3 and 4
Borehole and Monitoring Well Location Plan	Drawing No. 1
Details of Permanent Perimeter Drainage System	Drawing No. 2
Previous Borehole Logs	Appendix A

1.0 **INTRODUCTION**

In accordance with the written authorization from Mr. John Cooper of J & J Developments, dated July 11, 2022, a geotechnical investigation was carried out on a parcel of vacant land at the north of Birdie Smith Court (Part of Lot 35, Concession 6) in the Township of Uxbridge (Udora).

Previous investigations were completed for the subject site and the following reports are provided for our review:

- Sewage Impact Assessment (D-5-4) and Water Supply Study (D-5-5) completed by WSP Canada Inc. dated June 21, 2019.
- Phase Two Environmental Site Assessment completed by WSP Canada Inc. dated December 21, 2016.

The purpose of the supplementary investigation is to reveal the subsurface conditions and to determine the engineering properties of the disclosed soils for the design and construction of a proposed residential development. The geotechnical findings and resulting recommendations are presented in this Report.

2.0 SITE AND PROJECT DESCRIPTION

The subject site, which is identified as "Part of Lot 35, Concession 6", is situated in a rural community of Udora within The Township of Uxbridge. The site is situated on the Newmarket Till, consisting of sandy silt to silty sand till.

The subject site is irregular in shape and encompasses a total area of approximately 2 hectares. It is situated to the north of Birdie Smith Court, to the southwest of Ravenshoe Road and Durham Road No. 1. It has a legal description of "Part of Registered Plan 64 and Part of Plan 40M-2318, Township of Uxbridge". At the time of investigation, the site was a vacant land covered with grass, brush and trees. The existing site gradient is relatively flat with minor undulations.

It is understood that the site will be developed into multiple residential dwellings with municipal roads and private services meeting the Town/Region standards. Details of the development, however, are not available for review at the time of report preparation.

3.0 FIELD WORK

The field work, consisting of two (2) boreholes extending to a depth of 6.4 m and 6.5 m below the prevailing ground surface, was carried out on August 24, 2022. The locations of both boreholes are shown on the Borehole Location Plan, Drawing No. 1. To differentiate the current boreholes from those of the previous investigations, the current boreholes are labelled in 100-series.

The boreholes were advanced at intervals to the sampling depths by a track-mounted machine using solid stem augers and equipped with split spoon sampler for soil sampling. Standard Penetration Tests, using the procedures described on the enclosed "List of Abbreviations and Terms", were performed at the sampling depths. The test results are recorded as the Standard Penetration Resistance (or 'N' values) of the subsoil. The relative density of the non-cohesive strata and the consistency of the cohesive strata are inferred from the 'N' values. Split-spoon samples were recovered for soil classification and laboratory testing. The field work was supervised and the findings were recorded by the Geotechnical Technician.

The ground elevation at each borehole and monitoring well location was determined using hand-held Global Navigation Satellite System (GNSS) survey equipment.

4.0 SUBSURFACE CONDITIONS

All boreholes were carried out on the open field, which revealed that beneath a layer of topsoil and a layer of sand fill in places, the site is generally underlain by silty sand till/sandy silt till deposits with layers of sands and silts within the depth of investigation.

Detailed descriptions of the encountered subsurface conditions are presented on the Borehole Logs, comprising Figures 1 and 2. Borehole Logs from previous investigations are also included in the Appendix A of this report. The engineering properties of the disclosed soils are discussed herein.

4.1 **Topsoil** (All Boreholes)

A layer of topsoil, approximately 10 to 60 cm in thickness, was contacted at the ground surface in all boreholes. Thicker topsoil may be encountered in treed areas or localized low-lying areas beyond the borehole locations.

4.2 **Sand Fill** (MW17-1 and MW17-3)

A layer of sand fill was contacted below the topsoil in MW17-1 and MW17-3. It extends to a depth of 1.2 m and 1.5 m below grade, respectively. The obtained 'N' values are 4, 8, 13 and 23 blows per 30 cm of penetration, showing the sand fill is compact at lower depth while being loose near the ground surface.

4.3 Sandy Silt Till/Silty Sand Till (All Boreholes)

The sandy silt till and/silty sand till deposits predominates the soil stratigraphy within the depth of investigation. They generally consist of a random mixture of soil particles ranging from clay to gravel, with sand and silt being the dominant fraction. Occasional layers of clayey silt and sand can be found interbedded within the till deposits. Grain size analysis was performed on 1 representative sample of sandy silt till, and the result is plotted on Figure 3.

The recorded 'N' values range from 7 to over 100 blows, with a median of 34 blows per 30 cm of penetration, indicating the till is loose to very dense, being generally dense in relative density. The low 'N' values were contacted near the ground surface, likely being disturbed by weathering process.

The natural water content values range from 8% to 25%, with a median of 9%, indicating the silt till is generally in moist conditions. High water content is contacted near ground surface, likely an indication of higher organic content due to rootlet penetration, topsoil and weathering.

The engineering properties of the till deposits are presented below:

- Highly frost susceptible and low water erodibility.
- In excavation, the till will generally be stable in relatively steep cut; however, prolonged exposure of an excavated slope may be prone to localized sloughing.

4.4 <u>Silty Sand/Sandy Silt</u> (Borehole 1, 3 and 102)

Native sandy silt deposit was encountered near the ground surface in Boreholes 1 and 3 while a layer of silty sand was contacted within the sandy silt till in Borehole 102. Grain size analysis was performed on 1 representative sample of the silty sand deposit and the result is plotted on Figure 4.

The recorded 'N' values range from 6 to 18, with a median of 10 blows per 30 cm of penetration, indicating the silty sand/sandy silt is lose to compact, generally compact in relative density.

The natural water content was determined for the silty sand samples in Borehole 102, which has a value of 17% and 21%, indicating the silty sand is wet. According to WSP, the sandy silt deposit found in Boreholes 1 and 3 is in moist condition.

The engineering properties of the silty sand/sandy silt deposits are presented below:

- High frost susceptibility and high water erodibility.
- Where the silty sand and sandy silt is wet, they are susceptible to impact disturbance, which may result in reduction in shear strength.
- In excavation, the sand and silt will slough readily and run with water seepage, if any, and will boil with a piezometric head of about 0.3 m.
- 4.5 Sand (Boreholes 2, MW2, MW3, MW17-1 and MW17-2)

Native sand deposit was contacted near the ground surface in Borehole 2, MW3 and MW17-2. A lower sand deposit was also contacted in MW2 and MW17-1. Based on the description in WSP's Borehole Logs, the sand is generally fine to coarse grained with a trace to some gravel.

The obtained 'N' values ranged from 6 to over 100, with a median of 36 blows per 30 cm of penetration. This indicates the relative density of the sand deposit is loose to very dense, being generally dense. The loose sand was contacted in MW17-2 near the ground surface, likely being disturbed or weakened from weathering as a trace to some organics were identified by WSP.

The engineering properties of the sand deposit are presented below:

- Low frost susceptibility and high water erodibility.
- In excavation, the sand will slough readily to its angle of repose and run with water seepage, if any, and will boil with a piezometric head of about 0.3 m.

5.0 GROUNDWATER CONDITION

The boreholes, namely Boreholes 1, 2, 3, 101 and 102, were checked for the presence of groundwater and the occurrence of cave-in upon completion of drilling. They were dry and open with no occurrence of cave-in.

Subsequently, the groundwater levels were recorded in the monitoring wells (MW1, MW2, MW3, MW17-1, MW17-2 and MW17-3) and the recorded data are included in Appendix A. The groundwater levels in monitoring wells are summarized in Table 1.

		Aug. 3, 2016		Aug. 10, 2016		Apr. 2, 2019		May 14, 2019	
MW No.	Ground El. (m)	Depth (m)	El. (m)	Depth (m)	El. (m)	Depth (m)	El. (m)	Depth (m)	El. (m)
MW1	252.7	10.3	242.4	-	-	-	-	-	-
MW2	253.5	13.2	240.3	13.6	239.9	-	-	-	-
MW3	259.8	7.0	252.8	7.2	252.6	-	-	-	-
MW17-1	250.2	-	-	-	-	0.4	249.8	0.2	250.0
MW17-2	251.8	-	-	-	-	1.4	250.4	0.6	250.2
MW17-3	250.8	-	-	-	-	1.6	249.2	0.7	250.1

 Table 1 – Groundwater Levels in Monitoring Wells

Based on the natural water content of the boreholes and the groundwater records, the recorded groundwater may represent the presence of localized water in the sand and silt seams/layers and is subject to seasonal fluctuations.

6.0 DISCUSSION AND RECOMMENDATIONS

All boreholes were carried out on the open field, which revealed that beneath a layer of topsoil and a layer of sand fill in places, the site is generally underlain by silty sand till/sandy silt till deposits with layers of sands and silts within the depth of investigation.

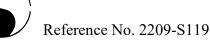
The groundwater levels were recorded at depths of between El. 252.8 m and 239.9 m in the monitoring wells. Based on the natural water content of the boreholes and the groundwater

records, the recorded groundwater may represent the presence of localized water in the sand and silt seams/layers and is subject to seasonal fluctuations.

It is understood that the site will be developed into multiple residential dwellings with municipal roads and private services meeting the Town/Region standards. Details of the development, however, are not available for review at the time of report preparation. The geotechnical findings warranting special consideration for the proposed development are presented below:

- 1. The topsoil should be removed prior to site grading. It can only be reused for landscaping purposes. Any surplus must be disposed off site.
- 2. In areas where earth fill is required to raise the site, the earth fill can be placed in an engineered manner for building foundations, underground services, slab-on-grade and pavement construction.
- 3. The proposed structures can be supported on conventional spread and strip footings founded on sound native soils or engineered fill at the designed bearing level. The footing subgrade must be inspected by either the geotechnical engineer, or the geotechnical technician under the supervision of the geotechnical engineer.
- 4. In conventional design, the foundation wall must be damp-proofed and provided with a perimeter subdrain at wall base, connected to a positive outlet.
- 5. A Class 'B' bedding, consisting of compacted 19-mm Crusher-Run Limestone (CRL), or equivalent, is recommended for construction of the underground services.

The recommendations appropriate for the project described in Section 2.0 are presented herein. One must be aware that the subsurface conditions may vary between boreholes. Should this become apparent during construction, the geotechnical engineer must be consulted to determine whether the following recommendations require revision.


6.1 Site Preparation

In areas where earth fill is required to raise the site, the earth fill should be placed in an engineered manner for building foundations, underground services, slab-on-grade and pavement construction. The engineering requirements for a certifiable fill are presented below:

1. Topsoil, vegetation and organic-containing material must be removed.

- 2. Any existing earth fill and/or weathered soils should be subexcavated, sorted free of topsoil/organic inclusions and any deleterious materials, before reusing for engineered fill construction. The exposed subgrade must be inspected and proof-rolled prior to any fill placement.
- 3. Inorganic soils must be used for engineered fill construction, and they must be uniformly compacted to at least 98% Standard Proctor dry density (SPDD) up to the proposed finished grade in lifts no more than 20 cm thick. The soil moisture must be properly controlled on the near the optimum. If the footings are to be built soon after the fill placement, the densification process for the engineered fill must be increased to 100% SPDD.
- 4. If imported fill is to be used, it should be inorganic soils, free of any deleterious material with environmental issue (contamination). Any potential imported earth fill from off site must be reviewed for geotechnical and environmental quality by the appropriate personnel as authorized by the developer or agency, before it is hauled to the site.
- 5. If the engineered fill is to be left over the winter months, adequate earth cover, or equivalent, must be provided for protection against frost action.
- 6. The engineered fill must not be placed during the period when freezing ambient temperatures occur either persistently or intermittently. This is to ensure that the fill is free of frozen soils, ice and snow.
- 7. The engineered fill must extend over the entire graded area, and the engineered fill envelope must be clearly and accurately defined in the field and precisely documented by qualified surveyors.
- 8. The edge of the engineered fill must be maintained at a gradient flatter than 3H:1V, so that it is suitable for safe operation of the compactor and the required compaction can be achieved.
- 9. The fill operation must be supervised and monitored on a full time basis by the geotechnical technician under the guidance of the geotechnical engineer.
- 10. The footing and underground services subgrade must be inspected by the geotechnical consulting firm that supervised the engineered fill placement. This is to ensure that the foundations are placed within the engineered fill envelope, and the integrity of the fill has not been compromised by interim construction, environmental degradation and/or disturbance by the footing excavation.
- 11. Any excavation carried out in certified engineered fill must be reported to the geotechnical consultant who supervised the fill placement in order to document the locations of excavation and/or to supervise reinstatement of the excavated areas to engineered fill status. If construction on the engineered fill does not commence within a

period of 2 years from the date of certification, the condition of the engineered fill must be assessed for recertification.

12. Despite stringent control in the placement of the engineered fill, variations in soil type and density may occur in the engineered fill. Therefore, the building foundation must be properly reinforced and designed by structural engineer for the project; an abrupt differential settlement of 15 mm should be considered in the design of the foundation.

6.2 **Foundations**

The proposed structures can be supported on conventional spread and strip footings founded on native soil or engineered fill. The recommended design bearing pressures for the design of conventional spread and strip footings at the Ultimate Limit State (ULS) and Serviceability Limit State (SLS) are provided below:

- Maximum Soil Bearing Pressure at SLS = 150 kPa
- Factored Ultimate Bearing Pressure at ULS = 250 kPa

The total and differential settlements of foundations designed with the recommended bearing pressures at SLS are estimated to be 25 mm and 20 mm, respectively.

During construction, the foundation subgrade should be inspected by either the geotechnical engineer or the senior geotechnical technician to ensure that the revealed conditions are compatible with the foundation design requirements.

Where water seepage is evident or the foundation subgrade is wet, the footings must be poured with concrete immediately after the subgrade inspection. Alternatively, a mud slab of 8 to 10 cm should be provided at the bearing surface.

Footings exposed to weathering or in unheated areas should have at least 1.5 m of earth cover for protection against frost action.

The building foundation must meet the requirements specified in the latest Ontario Building Code, and the proposed structures should be designed to resist an earthquake force using Site Classification 'D' (stiff soil).

6.3 Basement Construction

The basement walls should be designed to sustain the lateral earth pressure calculated using the soil parameters stated in Section 6.7. Any applicable surcharge loads adjacent to the proposed basement must also be considered.

In conventional design, perimeter subdrains and damp-proofing of the basement walls will be required, as shown on Drawing No. 2. The subdrains should be encased in a fabric filter to protect them against blockage by silting and connected to positive outlets. Where in-situ soil is used for foundation wall backfill, prefabricated drainage boards should be used along the basement walls.

The subgrade for conventional slab-on-grade construction should consist of sound native soil or properly compacted inorganic earth fill. In preparation of the subgrade, it should be inspected and assessed by proof-rolling prior to slab-on-grade construction.

The concrete slab should be constructed on granular bedding, consisting of 19-mm CRL, or equivalent, having a minimum thickness of 15 cm and compacted to 100% SPDD.

6.4 Underground Services

The subgrade for the underground services should consist of sound native soil or properly compacted inorganic earth fill. In areas where loose subgrade or soft spots are encountered, they should be subexcavated and replaced with bedding material, properly compacted to at least 98% SPDD.

A Class 'B' granular bedding, consisting of compacted 19-mm CRL, or equivalent, is recommended for construction of underground services.

Openings to subdrains and catch basins should be shielded with a fabric filter to prevent silting. The pipe joints connected into the manholes and catch basins should be leak-proof or wrapped with an appropriate waterproof membrane. This is to prevent migration of fines due to leakage, leading to weakening of subgrade support and settlement of underground services.

In order to prevent pipe floatation when the underground services trench is deluged with water, a soil cover of at least two times the diameter of the pipe should be in place at all times after completion of the pipe installation.

The service pipes and metal fittings should be protected against corrosion. In determining the mode of protection, an estimated electrical resistivity of the disclosed soil types can be used. The proposed anode weight must meet the minimum requirements as specified by Town Standard.

6.5 Backfilling in Trenches and Excavation Areas

The on-site inorganic soils are generally suitable for structural backfill. They should be sorted free of any organics or other deleterious material, if any prior to backfilling. Any oversized boulder (over 15 cm in size) should not be used for backfill.

The backfill in-service trenches or beside foundation walls should be compacted to at least 95% SPDD. In the zone within 1.0 m below the pavement or slab-on-grade, the backfill should be compacted to at least 98% SPDD, with the water content 2% to 3% drier than the optimum moisture content. The lift of each backfill layer should be limited to a thickness of 20 cm.

In normal construction practice, the problem areas of ground settlement largely occur adjacent to foundation walls, columns, manholes, catch basins and services crossings. In areas which are inaccessible to a heavy compactor, granular backfill should be used so that compaction can be achieved with light-duty vibratory compactor.

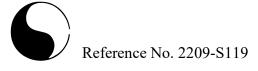
6.6 Pavement Design

The recommended pavement design for local road is presented in Table 2.

Course	Thickness (mm)	OPS Specifications
Asphalt Surface	40	HL3
Asphalt Binder	50	HL8
Granular Base	150	Granular 'A' or equivalent
Granular Sub-base	300	Granular 'B' or equivalent

Table 2 – Pavement Design

Prior to the placement of granular materials, the subgrade should be inspected and proofrolled. Any soft spot or wet subgrade identified should be sub-excavated and replaced by inorganic soil or granular materials, compacted to at least 98% SPDD, with the water content at 2% to 3% drier than the optimum moisture content. The lift of each backfill layer should be limited to a thickness of 20 cm. The granular base and sub-base should be compacted to 100% SPDD.


Along the perimeter where surface runoff may drain onto the pavement, an intercept subdrain system should be installed to prevent infiltrating precipitation from seeping into the granular bases. The subdrains should consist of filter wrapped weepers connected into the catch basins and backfilled with free-draining granular material.

6.7 Soil Parameters

The recommended soil parameters for the project design are given in Table 3.

Unit Weight and Bulk Factor	Bulk Unit Weight	Estimated l	Estimated Bulk Factor		
	<u>(kN/m³)</u>	Loose	Compacted		
Sandy Silt Till/Silty Sand Till	22.5	1.25	1.00		
Sand	20.5	1.20	0.98		
Silty Sand/Sandy Silt	21.0	1.20	1.00		
Lateral Earth Pressure Coefficients	Active Ka	At Rest K ₀	Passive K _p		
Sandy Silt Till/Silty Sand Till/Silty Sand/ Sandy Silt	0.33	0.50	3.00		
Sand	0.30	0.45	3.30		
Estimated Coefficients of Permeability (K)	and Percolation Time	<u>(T)</u>			
		K (cm/sec)	T (min/cm)		
Sandy Silt Till/Silty Sand Till		10-6	50		
Silty Sand/Sandy Silt		10-5	20		
Sand		10^{-3} to 10^{-4}	8 to 12		
Estimated California Bearing Ratio					
Sandy Silt Till/Silty Sand Till/Silty Sand/Sa	undy Silt	59	%		
Sand		10	%		

Table 3 – Soil Parameters

Estimated Electrical Resistivity					
Sandy Silt Till/Silty Sand Till/Silty Sand/Sandy Silt	4500 ohm.cm				
Sand	6000 ohm.cm				
Coefficients of Friction					
Between Concrete and Granular Base	0.50				
Between Concrete and Sound Native Soil	0.35				

6.8 Excavation

Excavation should be carried out in accordance with Ontario Regulation 213/91. The types of soils are classified in Table 4.

Material	Туре
Wet soils	4
Sand Fill/Compacted Earth Fill, Drained soils	3
Sandy Silt Till/Silty Sand Till	2

In excavation, any groundwater seepage is expected to be limited in quantity and can be removed by conventional pumping from sumps.

Prospective contractors may be asked to assess the in-situ subsurface conditions for soil cuts by digging test pits to the intended bottom of excavation. The test pits should be allowed to remain open for a few hours to assess the trenching conditions.

7.0 **LIMITATIONS OF REPORT**

This report was prepared by Soil Engineers Ltd. for the account of J & J Developments, and for review by the designated consultants, financial institutions and government agencies. The material in the report reflects the judgement of Jonathan Fung, B.A.Sc., and Kin Fung Li, P.Eng., in light of the information available to it at the time of preparation.

Use of this report is subject to the conditions and limitations of the contractual agreement. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, is the responsibility of such Third Party. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

SOIL ENGINEERS LTD.

Jonathan Fung, B.A.Sc.

Kin Fung Li, P.Eng. JF/KL

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

- Auger sample AS
- Chunk sample CS
- DO Drive open (split spoon)
- Denison type sample DS
- Foil sample FS
- Rock core (with size and percentage RC recovery)
- Slotted tube ST
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

PENETRATION RESISTANCE

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows for each foot of penetration of a 2-inch diameter, 90° point cone driven by a 140-pound hammer falling 30 inches. Plotted as '—•-'

Standard Penetration Resistance or 'N' Value:

The number of blows of a 140-pound hammer falling 30 inches required to advance a 2-inch O.D. drive open sampler one foot into undisturbed soil. Plotted as ' \bigcirc '

- WH Sampler advanced by static weight PH
- Sampler advanced by hydraulic pressure
- Sampler advanced by manual pressure PM
- No penetration NP

SOIL DESCRIPTION

Cohesionless Soils:

<u>'N' (blov</u>	vs/ft)	Relative Density
0 to	4	very loose
4 to	10	loose
10 to	30	compact
30 to	50	dense
over	50	very dense

Cohesive Soils:

Undrained Shear														
Strength	(ks	<u>sf)</u>	<u>'N' (</u>	blov	vs/ft)	<u>Consistency</u>								
less that	n	0.25	0	to	2	very soft								
0.25 t	0	0.50	2	to	4	soft								
0.50 t	0	1.0	4	to	8	firm								
1.0 t	0	2.0	8	to	16	stiff								
2.0 t	0	4.0	16	to	32	very stiff								
over		4.0	0	ver	32	hard								

Method of Determination of Undrained Shear Strength of Cohesive Soils:

- x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding
- \triangle Laboratory vane test
- Compression test in laboratory

For a saturated cohesive soil, the undrained shear strength is taken as one half of the undrained compressive strength

METRIC CONVERSION FACTORS

1 ft = 0.3048 metres11b = 0.454 kg

1 inch = 25.4 mm1 ksf = 47.88 kPa

Soil Engineers Ltd. CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

JOB NO.: 2209-S119

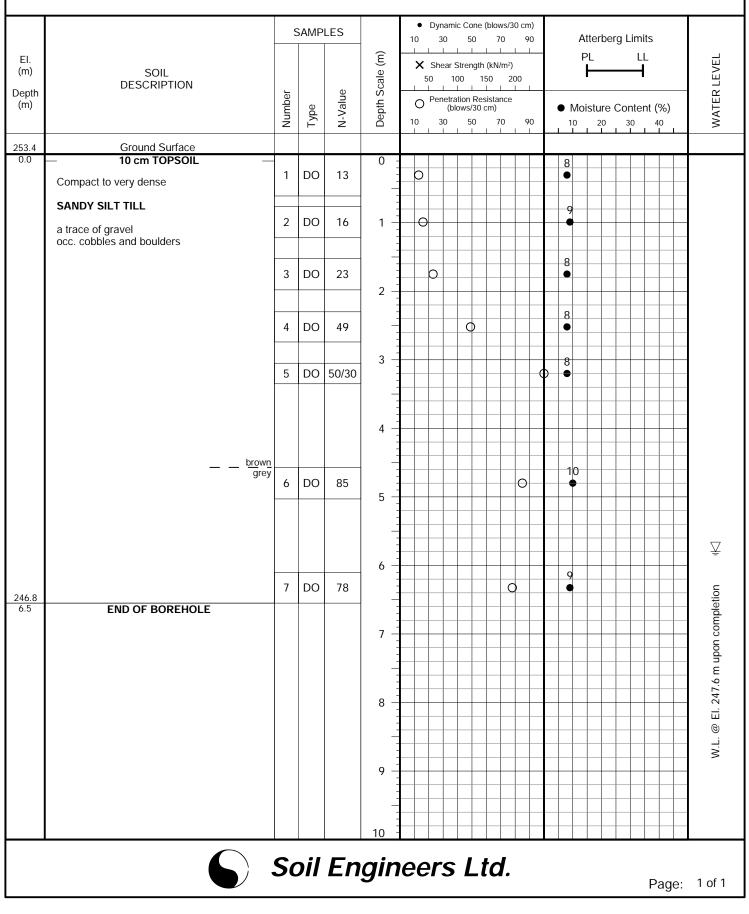

LOG OF BOREHOLE: BH-101

FIGURE NO.: 1

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: North of Birdie Smith Court, Township of Uxbridge (Udora) **DRILLING DATE:** October 5, 2022 (Part of Lot 35, Concession 6)

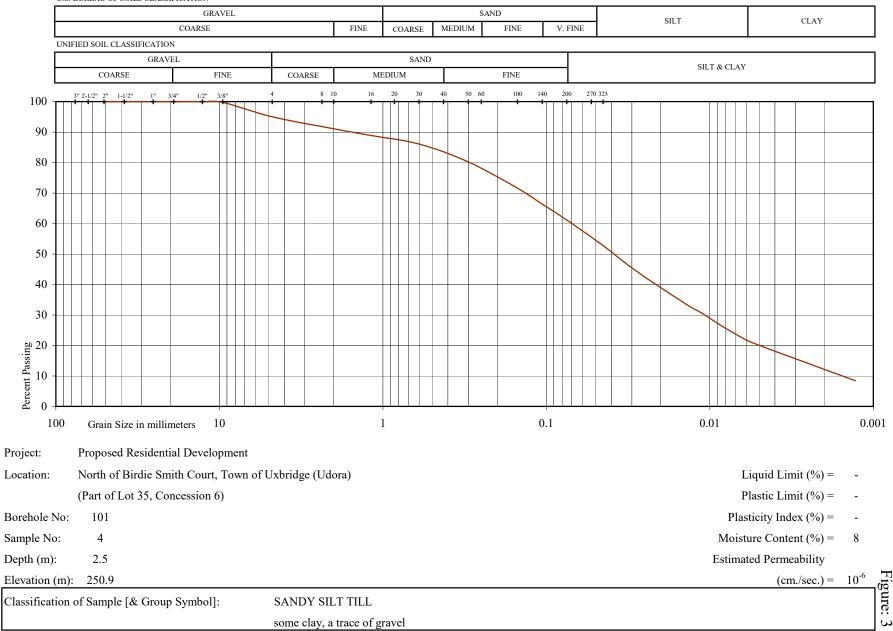
JOB NO.: 2209-S119

LOG OF BOREHOLE: BH-102

PROJECT DESCRIPTION: Proposed Residential Development

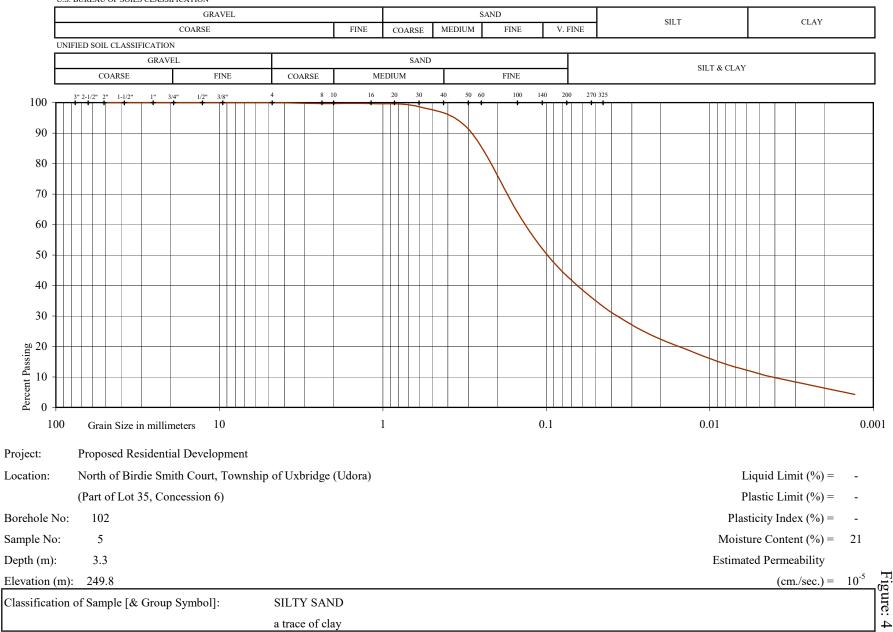
METHOD OF BORING: Flight-Auger

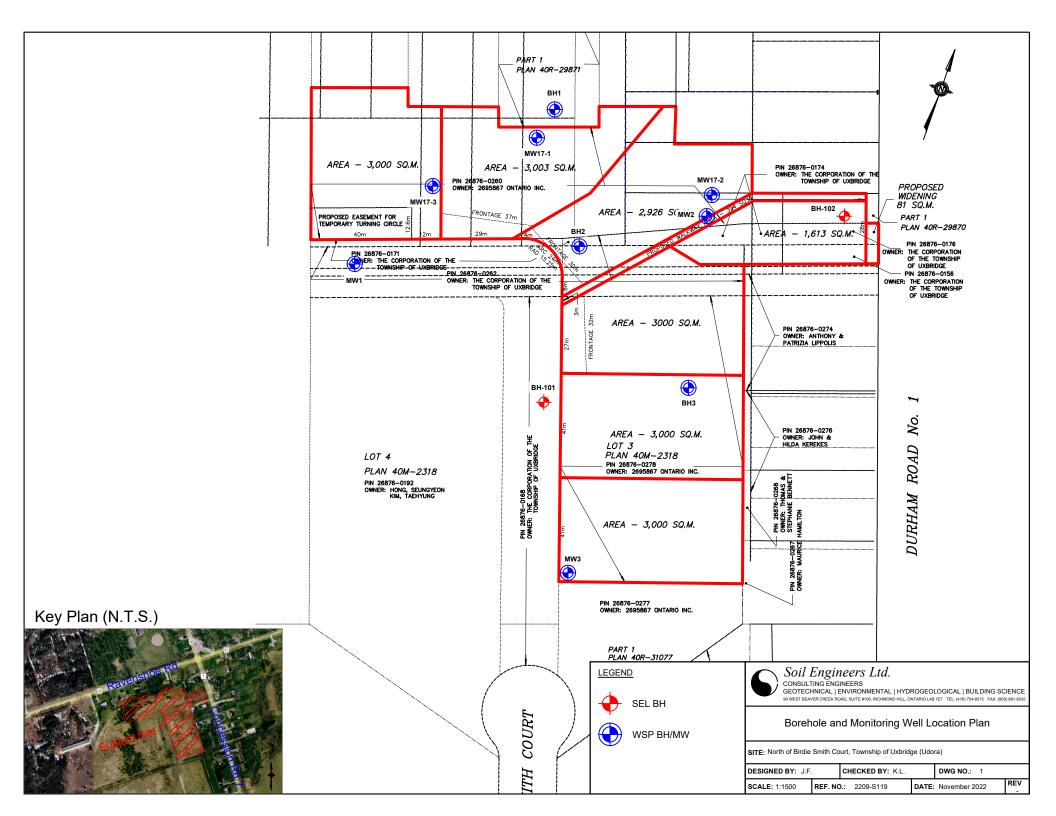
PROJECT LOCATION: North of Birdie Smith Court, Township of Uxbridge (Udora) **DRILLING DATE:** October 5, 2022 (Part of Lot 35, Concession 6)


		Ş	SAMP	LES	-	1	0	Dyna 30)	50		70		0			Atte	erb	erg	Lim	its		ſ		
El. (m)	SOIL				Depth Scale (m)	Shear Strength (kN/m ²) 50 100 150 200							·	PL LL								EVEL			
Depth (m)	DESCRIPTION	Number	e	N-Value	oth Sca							ance	1	L		M	ois	tur	e Ci	onte	ent (°	 %)	_	WATER LEVEL	
		Nur	Type	>-Z	Dep	1	0	30		50 I		70		0		10				30		0 	\downarrow	WA	
253.1 0.0	Ground Surface 40 cm TOPSOIL				0 -					_						_	_		0 -	_		 _	╇		
0.0		1	DO	7		0			+	+							+	+	25 •				-		
	Brown, compact									-												\square			
	SANDY SILT TILL	2	AS	24	1 -			0								9				-		\square			
	a trace of gravel occ. cobbles and boulders																					\square			
		3	DO	16			0									9									
251.0 2.1	Brown, loose to compactwet				2 -				-	+					-		1	_	+						
	SILTY SAND	4	DO	6	-	0											1								
	occ. clay layers				3 –													2	1						
		5	DO	17	-		0											4							
					-																				
249.0 4.1	Brown, dense to very dense				4 -																				
	SANDY SILT TILL				_																				
	a trace of gravel	6	DO	45	5 -	_			-(Э							14 •								
	occ. cobbles and boulders					_			_	-							-		_			$\left \right $	_		
					-																			Ţ	
					6 -				_	_							16	5	-		\square	\vdash	_	÷	
246.7 6.4	END OF BOREHOLE	7	DO	50/28	-	F			-	+						-	•		+		\square	\square	_	etion	
					-													-				\square		omple	
					7 -				-	+					_		-	-	-			\square		W.L. @ El. 247.3 m upon completion	
					-				-	+								-	-			\square	_	3 m u	
					8 -			_	-	+					_	_	-	-	-	-		\square		. 247.	
					-				1	+									+					@ E	
					-					+									+			\square		W.L	
					9 -				+	+	+	+			+	+	+	+	+			\square			
					-													+	+			F			
					10	t																			
		Sc	oil	En	gin	e	e	r	S	L	to	d.									P	aae	;;	1 of 1	1

2 FIGURE NO.:

GRAIN SIZE DISTRIBUTION


U.S. BUREAU OF SOILS CLASSIFICATION



GRAIN SIZE DISTRIBUTION

U.S. BUREAU OF SOILS CLASSIFICATION

This may be replaced by on-site material if prefabricated wall drains (Miradrain) extending from the finished grade to the bottom of the basement wall are used.

- 5. Do not backfill until the wall is supported by the basement floor slab and ground floor framing, or adquate bracing.
- 6. Dampproofing of the basement wall is required before backfilling

7. Impermeable backfill seal of compacted clay, clayey silt or equivalent. If the original soil in the vicinity is a free-draining sand, the seal may be omitted.

- 8. Moisture barrier: 20-mm clear stone or compacted OPSS Granular 'A', or equivalent. The thickness of this layer should be 150 mm (6") minimum.
- 9. Exterior Grade: slope away from basement wall on all the sides of the building.
- 10. Slab-On-Grade should not be structurally connected to walls or foundations.
- 11. Underfloor drains* should be placed in parallel rows at 6 to 8 m (20'-25') centre, on 100 mm (4") of pea gravel with 150 mm (6") of pea gravel on top and sides. The invert should be at least 300 mm (12") below the underside of the floor slab. The drains should be connected to positive sumps or outlets. Do not connect the underfloor drains to the perimeter drains.

^{*}Underfloor drains can be deleted where not required.

CONSULTING ENGINEERS GEOTECHNICAL | ENVIRONMENTAL | HYDROGEOLOGICAL | BUILDING SCIENCE 90 WEST BEAVER CREEX, SUITE ION, RICHMOND HILL, ONTARIO - TEL. (416) 754-8515 - FAX: (416) 754-8516

Details of Perimeter Drainage System

SITE North of Birdie Smith Court, Township of Uxbridge (Udora)

 DESIGNED BY
 K.L.
 CHECKED BY
 B.S.
 DWG NO.
 2

 SCALE
 N.T.S.
 REF. NO.
 2209-S119
 DATE
 November 2022
 REV

Soil Engineers Ltd.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREE	K ROAD, SUITE 100, RI	CHMOND HILL, ONTARI	O L4B 1E7 · TEL: (41)	6) 754-8515 · FAX:	(905) 881-8335
BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	GRAVENHURST	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL: (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (905) 881-8335	FAX: (705) 684-8522	FAX: (905) 542-2769

APPENDIX A

PREVIOUS BOREHOLE LOGS

REFERENCE NO. 2209-S119

				L	00	g of	BO	REH	OLI	ΞB	H1				W	SP
proj	ect	PART OF LOT 35 CONCESSIO	DN 6	3, U	DOR	A, ONTA	RIO						pr	oject	no.	161-09454-00
cli	ent	TONI RISI, CAPRIS INVESTME	ΕΝΤ	LT	D.	rig	j type	CME 7	5, track	-mou	nted		dat	e star	ted	2016/07/26
locat	ion	UDORA, ONTARIO				me	ethod	Solid st	em au	gers,	150 n	nm dia.	su	pervi	sor	EJP
posit	ion	E: 644849 N: 4901848 (17T, G	eod	etic)	с	oring	n/a		-				revie	wer	DAO
Ê	-	SUBSURFACE PROFILE			SA	MPLE		Penetration (Blows / 0.3	Test Value	s				s		Lab Data
Depth Scale (m)	Elev Depth (m) 245.0	STRATIGRAPHY GROUND SURFACE	Graphic Plot	Number	Type	SPT N-Value Core Recovery	Elevation Scale (mASL)	X Dynamic 10 Undrained S O Unconf	Cone 20 hear Strer ned Penetromete	3,0 4 ngth (kPa + Fiel er ∎ Lab	, d Vane		Content (%) Plasticity	PID Readings	Well Details	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- 0 - -	-	TOPSOIL: 200mm OF DARK BROWN TOPSOIL, SOME ORGANICS, MOIST SANDY SILT: BROWN SANDY SILT, SOME TO TRACE CLAY, LOOSE TO COMPACT,		1	SS	7	-							- 0 ppm		
- 1 -		MOIST		2	SS	6	- 244							- 0 ppm		at 1.5m, slight
- - -2				3	SS	18	- - 243 -							- 0 ppm		odour in soil sample to 2.1m SS3 chemistry: M&I
-	242.6 2.4	SILTY SAND TILL: BROWN SILTY SAND TILL, SOME GRAVEL, TRACE COBBLES, TRACE CLAY, MOIST, LOOSE TO DENSE		4	SS	22	-							- 0 ppm		
-3				\vdash			242 -									at 3.0m, slight odour in soil sample
-	241.3			5	SS	36	- - -			$\left \right\rangle$				- 0 ppm		to 3.7m

3.7 BOREHOLE TERMINATED AT 3.7m BELOW GROUND SURFACE IN SILTY SAND TILL.

END OF BOREHOLE

Borehole was dry and open upon completion.

pro	ect	PART OF LOT 35 CONCESSIO	N 6	5, U	DOR	A, ONTA	RIO		project r	n o. 	161-09454-00		
cl	ent	ent TONI RISI, CAPRIS INVESTMENT LTD. rig ty					type	CME 75, track-mounted	date start	ted	2016/07/26		
locat	ion	UDORA, ONTARIO				me	ethod	Solid stem augers, 150 mm dia.	supervis	sor	EJP		
posi	ion	E: 644893 N: 4901822 (17T, Ge	eode	etic)	C	oring	n/a	review	ver	DAO		
	-	SUBSURFACE PROFILE			SA	MPLE		Penetration Test Values (Blows / 0.3m)	(0)		Lab Data		
Depth Scale (m)	<u>Elev</u> Depth	STRATIGRAPHY	Graphic Plot	Number	Type	SPT N-Value	Elevation Scale (mASL)	X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa)	Kea K	Well Details	and Comments GRAIN SIZE		
	(m) 246.0	GROUND SURFACE	Grap	Ž	н	Core Recovery	Elev	O Unconfined + Field Vane PL MC ● Pocket Penetrometer ■ Lab Vane ↓ ○ ○ 40 80 120 160 10 20			DISTRIBUTION (%) (MIT) GR SA SI CL		
0 -	245.8 0.2	TOPSOIL: 500mm OF DARK BROWN TOPSOIL, SOME ORGANICS, MOIST	<u>\\ 1</u> /2	1	SS	33	-		- 0		UK SA SI UL		
-		BROWN MEDIUM GRAINED SAND, TRACE CLAY, LOOSE TO COMPACT, MOIST					-		ppm				
1 -	245.1 0.9	SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE CLAY, TRACE GRAVEL, MOIST, LOOSE	0	2	SS	15	245 -		- 0 ppm		SS2 chemistry: PAHs		
- - -2			¢	3	SS	13	- - 244 -		- 0 ppm		SS3 chemistry: PCBs		
-	243.1		•	4	SS	13	-		- 0 ppm		SS4 chemistry: M&I		
-3 - -	2.9 242.8 3.2 242.3 3.7	SAND: BROWN MEDIUM GRAINED SAND, SOME GRAVEL, LOOSE, MOIST SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE CLAY, TRACE GRAVEL, TRACE COBBLES, MOIST, LOOSE TO COMPACT	9	5	SS	12	243 - -		- 0 ppm		SS5 chemistry: CCME(F1-F4), BTEX, VOCS, PHCs		

BOREHOLE TERMINATED AT 3.7m BELOW GROUND SURFACE IN SANDY SILT TILL.

END OF BOREHOLE

Borehole was dry and open upon completion.

WSP

				L	00	g of	BO	REHOLE BH3			W	SP
pro	ect	PART OF LOT 35 CONCESSIO	DN 6	3, U	IDOR	A, ONTA	RIO			project	no.	161-09454-00
cli	ent	TONI RISI, CAPRIS INVESTM	ENT	LT	D.	rig	type	CME 75, track-mounted		date sta	rted	2016/07/26
locat	ion	UDORA, ONTARIO				me	ethod	Solid stem augers, 150 m	ım dia.	superv	isor	EJP
posit	ion	E: 644929 N: 4901793 (17T, G	eod	etic	;)	С	oring	n/a		revie	wer	DAO
Ê		SUBSURFACE PROFILE			SA	MPLE	Ð	Penetration Test Values (Blows / 0.3m)		st		Lab Data
Depth Scale (m)	Elev Depth (m)		Graphic Plot	Number	Type	SPT N-Value Core Recovery	Elevation Scale (mASL)	X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Water Content (9 & Plasticity	, PID Read	Well Details	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) DB COLOR OF
0 	248.0 247.8 0.2	GROUND SURFACE <u>TOPSOIL:</u> 600mm OF DARK BROWN TOPSOIL, SOME ORGANICS, MOIST <u>SANDY SILT:</u> BROWN SANDY SILT TILL, SOME TO TRACE CLAY, MOIST, LOOSE			SS	9	248 - - - - - - - - - -	40 60 120 100	10 20 30	– 0 ppm		GR SA SI CL
-1 - - - -2	245.7			3	SS SS SS	12	247 - - - - 246 - -			- 0 ppm - 0 ppm		SS2 chemistry: Pest.
- - -3	2.3	SANDY SILT TILL: BROWN SANDY SILT TILL, SOME CLAY, TRACE GRAVEL, MOIST, LOOSE	Ø	4	SS	19	- - 245 - -			– 0 ppm		SS4 chemistry: CCME(F1-F4), BTEX, VOCs, PHCs
-	244.3		0	5	SS	11	-			- 0 ppm		SS5 chemistry: PAHs

3.7 BOREHOLE TERMINATED AT 3.7m BELOW GROUND SURFACE IN SANDY SILT TILL.

END OF BOREHOLE

Borehole was dry and open upon completion.

cat	ion	TONI RISI, CAPRIS INVESTM UDORA, ONTARIO E: 644831 N: 4901800 (17T, G				m		CME 75, track-mounted Hollow stem augers, 215 mm dia. <i>n/a</i>	date started supervisor reviewer	EJP
Depth Scale (m)	Elev Depth (m) 252.7	SUBSURFACE PROFILE STRATIGRAPHY GROUND SURFACE	Graphic Plot	Number	Type	MPLE SPT N-Value Core Recovery	Elevation Scale (mASL)	Penetration Test Values (Blows / 0.3m) X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined 40 80 120 160 PL MC PL MC PL MC PL MC 10 20 10 20		Lab Data and Comments distribution (MIT) GR SA S
)	<u>252.6</u> 0.1	TOPSOIL: 300mm OF DARK BROWN TOPSOIL, SOME ORGANICS, MOIST SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO	¢	1	SS	10	- - -		- 0 ppm	GR 3A 3
		WET, COMPACT	0	2	SS	14	252 -		– 0 ppm	
			0 0	3	SS	10	251 -		- 0 ppm	SS3 chemistry: N
			Ó.	4	SS	11	250 -		- 0 ppm	SS4 chemistry: P
	249.2 3.5	SAND: BROWN COARSE GRAINED SAND,		5	ss	18	-		- 0 ppm	
	248.9 3.8		6	6	SS	19			- 0 ppm	
			<u> </u>	7	SS	90 / 225mm	- 248		– 0 ppm	
							- - 247 -			
				8	SS	50 / 50mm	246 -		- 0 ppm	

				L	00	G OF	BOI	REHOLE MW1	l	V	VSP
pro	ject	PART OF LOT 35 CONCESSIO	ON 6	6, L	IDOF	RA, ONTA	RIO		pr	oject no.	161-09454-00
		TONI RISI, CAPRIS INVESTM	ENT	LT	D.			CME 75, track-mounted			2016/07/25
				- 4! -				Hollow stem augers, 215		pervisor	
		E: 644831 N: 4901800 (17T, G SUBSURFACE PROFILE	eoa		-		oring	n/a Penetration Test Values (Blows / 0.3m)		reviewer	
Depth Scale (m)	Elev Depth (m)	STRATIGRAPHY (continued)	Graphic Plot	Number	Type	SPT N-Value Core Recovery	Elevation Scale (mASL)	(Blows / 0.3m) × Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Water Content (%) & Plasticity PL MC LL 10 20 30	PID Readings Well Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- - -8		SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, COMPACT (continued)		9	SS	96 / 200mm	245 -			– 0 ppm	
- - - - 9			0				244 -				
-			0	10	SS	87 / 225mm	- - - -			- 0 ppm	
- - 10 - -		at 10.7 m, light brown sandy silt till, some to trace clay,		40004000400040004000400040004000400040	SS	50 / 50mm	243 -			– 0	
- 11 - - - - - - 12		trace cobbles, compact, moist to wet to 15.3 m	9			301111				ppm	
4-00_gint logs_sept.gpj 1 1 1 1 12			0.000 000 000 000 000 000 000 000 000 0	12	SS	50 / 50mm	240 -			- 0	
library: genivar - library.gb report: gen log v1 fille: 161-09454-00_gint logs_sept.gp/			.	1 <u>3</u>	SS	50 / 100mm	- 239 - 			- 0 ppm	
library: genivar							238-				11. 12. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14

WSP LOG OF BOREHOLE MW1 project no. | 161-09454-00 project | PART OF LOT 35 CONCESSION 6, UDORA, ONTARIO rig type | CME 75, track-mounted client | TONI RISI, CAPRIS INVESTMENT LTD. date started | 2016/07/25 location | UDORA, ONTARIO method | Hollow stem augers, 215 mm dia. supervisor | EJP position | E: 644831 N: 4901800 (17T, Geodetic) coring n/a reviewer | DAO SUBSURFACE PROFILE SAMPLE Penetration Test Values (Blows / 0.3m) Lab Data Depth Scale (m) Readings Scale and Well Details Graphic Plot SPT X Dynamic Cone Water Content (%) Elevation Sco (mASL) Comments 30 40 10 20 Elev Depth (m) Number N-Value & Plasticity Type Undrained Shear Strength (kPa) STRATIGRAPHY GRAIN SIZE DISTRIBUTION (%) (MIT) O Unconfined + Field Vane ● Pocket Penetrometer Lab Vane MC Core E -**|** 30 Recovery 20 10 (continued) 40 80 120 160 GR SA SI CI 15 237 50 / 14 SS 15.3 BOREHOLE TERMINATED AT 15.3m 50mm BELOW GROUND SURFACE IN SANDY SILT TILL WATER LEVEL MONITORING Depth (m) 10<u>.</u>3 END OF BOREHOLE Date Elevation (m) Aug 3, 2016 242.4 Borehole was dry and open upon completion. 50 mm monitoring well installed. No. 10 screen installed.

				L	OG	G OF	BOF	REHO	LE M	W2	2		V	VSP
	-	PART OF LOT 35 CONCESS										pr	oject no.	161-09454-00
		TONI RISI, CAPRIS INVEST	1ENT	LT	D.			CME 75,					e started	
	-		~ .		`		-	Hollow st	em auger	s, 215	mm dia		pervisor	
, 	tion	E: 644966 N: 4901867 (17T, 0 SUBSURFACE PROFILE	eod	etic	,		oring		st Values				reviewer	
Depth Scale (m)	Elev Depth (m) 253.5	SUBSURFACE PROFILE	Graphic Plot			SPT N-Value Core Recovery	Elevation Scale (mASL)	Undrained She O Unconfined Pocket Per	ne 2030 ar Strength (kPa 1 + Fie netrometer ∎ La	d Vane	& P PL	Content (%) lasticity MC LL Q0 30	PID Readings Well	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
	253.3 0.2	TOPSOIL: 600mm OF DARK BROWN TOPSOIL, SOME ORGANICS, MOIST SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE OLAY, TRACE OR DUCT TO TRACE OR DUCT TO TRACE		1	SS	7	- - 253 -						- 0 ppm	
- -1 -		CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT	0	2	ss	10							– 0 ppm	
- - -2				3	SS	11	252						– 0 ppm	SS3 chemistry: M&I
-	251.2 2.3 250.6	CLAYEY SILT: BROWN CLAYEY SILT, SOME SAND, TRACE GRAVEL, MOIST, LOOSE TO COMPACT, WET		4	SS	9	- 251						– 0 ppm	2 21 56 21 SS4 chemistry: PAHs
-3 - -	2.9	SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT		5	SS	21							– 0 ppm	SS5 chemistry: CCME(F1-F4), BTEX, VOCs, PHCs
- 4 -			0	6	SS	54		-					- 0 ppm	SS6 chemistry: PCBs
- - - 5			0	7	SS	83	249-						- 0 ppm	
19454-00_gint logs_sept							- 248 – -							
gen log v1 fille: 161-C 				8	SS	50 / 75mm							- 0 ppm	
library: genivar - library.gb report: gen log v1 fille: 161-09454-00_gint logs_sept.gp] 							247							

WSP

ocat	ion	TONI RISI, CAPRIS INVESTM UDORA, ONTARIO E: 644966 N: 4901867 (17T, G				m		CME 75, track Hollow stem a <i>n/a</i>			ate started supervisor reviewer	2016/07/26 EJP DAO
Depth Scale (m)	<u>Elev</u> Depth (m)	SUBSURFACE PROFILE STRATIGRAPHY (continued)	Graphic Plot	Number	Type	MPLE SPT N-Value Core Recovery	Elevation Scale (mASL)	Undrained Shear Stren O Unconfined Pocket Penetrometer	3,0 4,0 ngth (kPa) ┿ Field Vane	Water Content (% & Plasticity PL MC LL 10 20 30	PID Readings Well Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (MIT) GR SA SI
3		SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT (continued)	9 9	9	SS	50 / 25mm	246 - - - - - - - - - - - - - - - - - - -				- 0 ppm	
)				10	SS	50 / 25mm					- 0 ppm	
1				11	SS	50 / 75mm	- 243 -				- 0 ppm	
2			0 0				- 242					
3		at 12.7 m, brown medium to coarse grained sand, some gravel, very dense, wet to 12.8 m	e e	12,	<u></u> SS	50 / 50mm	- 241 - - -				- 0 ppm	
4			9	13/	SS	50 / 25mm	- 240 -				- 0 ppm	
	239.2 14.3	SAND: BROWN MEDIUM TO COARSE GRAINED SAND, SOME GRAVEL,VERY DENSE, WET					- 239 -					at 14.3m, sligh odour in soil sa to 16.9m

(continued next page)

				L	00	G OF	BOF	REHOLE MW2	2		• V	/SP
pr	oject	PART OF LOT 35 CONCESSIO	DN 6	6, U	IDOF	RA, ONTA	RIO		F	orojec	t no.	161-09454-00
c	lient	TONI RISI, CAPRIS INVESTME	ΕΝΤ	LT	D.	riç	g type	CME 75, track-mounted	da	ate sta	rted	2016/07/26
loca	ation	UDORA, ONTARIO				m	ethod	Hollow stem augers, 21	ō mm dia. 🛛 s	superv	risor	EJP
pos	ition	E: 644966 N: 4901867 (17T, G	eod	ətic	;)	c	oring	n/a		revie	ewer	DAO
		SUBSURFACE PROFILE			SA	MPLE		Penetration Test Values		Ś		Lab Data
Depth Scale (m)	Elev Depth (m)	STRATIGRAPHY (continued)	Graphic Plot	Number	Type	SPT N-Value Core Recovery	Elevation Scale (mASL)	X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane 40 80 120 160	Water Content (%) & Plasticity PL MC LL IO 20 30	PID Readings	Well Details	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- 15 - - - - 16 - - - - - -	236.6	SAND: BROWN MEDIUM TO COARSE GRAINED SAND, SOME GRAVEL,VERY DENSE, WET (continued)		14	SS	50 / 50mm				- 0 ppm - 0		
	16.9	BOREHOLE TERMINATED AT 16.9m BELOW GROUND SURFACE IN SAND. END OF BOREHOLE Borehole was dry and open upon completion. 50 mm monitoring well installed. No. 10 screen installed.				<u>75mm</u>	I	WATER LEVEL MC Date Depth (n Aug 3, 2016 13.2 Aug 10, 2016 13.6		{ <u>ppm</u>	/	

Elev Depti (m) 259.6 0.2	epth STRATIGRAPHY	lot		~		oring		reviewer	
259.6	59.8 GROUND SURFACE	Graphic Plot	Number		MPLE SPT N-Value Core Recovery	Elevation Scale (mASL)	Penetration Test Values (Blows / 0.3m) × Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane • Pocket Penetrometer Lab Vane 40 80 120 160		Lab Data and Comments GRAIN SIZE DISTRIBUTION (MIT) GR SA SI
	59.6 0.2 100mm OF DARK BROWN TOPSOIL SOME ORGANICS, MOIST SAND: BROWN MEDIUM GRAINED SAND, SOME TO TRACE ORGANICS, SOM] • (SS	35	-		- 0 ppm	
<u>259.(</u> 0.8	59.0 COSE TO COMPACT COSE TO COMPACT SAND AND GRAVEL: BROWN SAND AND GRAVEL FILL, DRY, COMPACT SANDY SILT TILL:		·	SS	22	259		- 0 ppm	
<u>258.:</u> 1.5	BROWN SANDY SILT TILL, SOME T TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TC WET, LOOSE TO COMPACT SAND: BROWN MEDIUM TO COARSE GRAINED SAND, SOME GRAVEL, LOOSE TO COMPACT, DRY		3	SS	13			- 0 ppm	SS3 chemistry: M&
257.5			4	SS	19			– 0 ppm	
		0	5	SS	65	-		- 0 ppm	
		ø 0	6	SS	58	- 256 		- 0 ppm	14 40 34
		Ø	7	SS	62	255		- 0 ppm	
		0				- - 254			
	at 6,1 m, brown medium to coarse grained sand lens, trace gravel, wet to saturated to 6,3 m	9	8	SS	50 / 75mm			– 0 ppm	

cli ocat	ent ion	PART OF LOT 35 CONCESSI TONI RISI, CAPRIS INVESTM UDORA, ONTARIO E: 644953 N: 4901706 (17T, G	IENT	LT	D.	riç m	g type	CME 75, track Hollow stem a n/a			date started supervisor reviewer	EJP
Depth Scale (m)	Elev Depth (m)	SUBSURFACE PROFILE STRATIGRAPHY (continued)	Graphic Plot	Number	Type	MPLE SPT N-Value Core Recovery	Elevation Scale (mASL)	Undrained Shear Strer O Unconfined Pocket Penetrometer	3 <u>0 4</u> 0 ngth (kPa) ╋ Field Vane	Water Content (? & Plasticity PL MC LL I O 10 30	Water level (% on completion PID Readings Well Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (MIT) GR SA SI
3		SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT (continued) at 7.7 m, brown medium to coarse grained sand lens, trace silt, trace clay, saturated to 8.0 m	9	9	SS	58	252 -				- 0 ppm	
)			0				- 251 - -					
		at 9.1 m, brown medium to coarse grained sand lens, trace silt, trace clay, saturated to 9.4 m	0	10	SS	80 / 250mm					- 0 ppm	
0			<u>6</u>				250 -					
1		at 10.7 m, greyish brown medium to coarse grained sand lens, trace silt, trace clay, saturated to 10.8 m	0.000000000000000000000000000000000000	11	SS	100 / 225mm	249 -				- 0 ppm	
2			0				248 -					
3			0. 0	12	SS	70	- 247 -				- 0 ppm	
4				13	SS	90 / 175mm	246 -				- 0 ppm	
			0				. .					

WSP LOG OF BOREHOLE MW3 project | PART OF LOT 35 CONCESSION 6, UDORA, ONTARIO project no. | 161-09454-00 date started | 2016/07/25 client | TONI RISI, CAPRIS INVESTMENT LTD. rig type | CME 75, track-mounted location | UDORA, ONTARIO method | Hollow stem augers, 215 mm dia. supervisor | EJP position E: 644953 N: 4901706 (17T, Geodetic) coring n/a reviewer | DAO SUBSURFACE PROFILE SAMPLE Penetration Test Values (Blows / 0.3m) Ē Lab Data Readings Scale and Well Details Plot SPT X Dynamic Cone Water Content (%) Depth Scale Elevation Sco (mASL) Comments 30 40 10 20 Number N-Value & Plasticity Elev Depth (m) Type Graphic Undrained Shear Strength (kPa) STRATIGRAPHY GRAIN SIZE DISTRIBUTION (%) (MIT) O Unconfined + Field Vane ● Pocket Penetrometer Lab Vane мс DL Core Recovery 20 Г 10 (continued) 40 8.0 120 160 GR SA SI CI 15 <u>SANDY SILT TILL:</u> BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT Ā SS 14 74 0 (continued) ppn 244 244.0 15.9 BOREHOLE TERMINATED AT 15.8m BELOW GROUND SURFACE IN SANDY SILT TILL. WATER LEVEL MONITORING END OF BOREHOLE Elevation (m) Date Depth (m) Aug 3, 2016 Aug 10, 2016 7.0 252.8 252.6 Unstabilized water level at 15.5 m below ground surface; borehole was open upon completion.

50 mm monitoring well installed. No. 10 screen installed.

wsp

BOREHOLE NO. MW17-1

PAGE 1 of 1

PROJECT NAME: UDORA PHASE TWO ESA

CLIENT: CAPRIS INV. INC.

BOREHOLE TYPE: SPLIT SPOON / HOLLOW STEM AUGER

GROUND ELEVATION: 250.2 mASL

DATE COMPLETED: Sep 20, 2017

PROJECT NO.: 161-09454-00

SUPERVISOR: DAO / JW

REVIEWER: SJD

			S			ŝ	SAMPL	E			IE ATION	v	VATER		
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	PID/TOV (ppm)	"N" VA 10 20 SHEAR ST 50 100 	0 30 RENGTH 150 200 (MaX) Cu	CO	20 30	-	REMARKS
	0.4 —	SAND TOPSOIL:DARK BROWN SAND TOPSOIL, TRACE TO SOME SILT, TRACE ROOTLETS / ORCANICS, MOIST.			SS1	4		0	0.0	٩					
1.0	-	SAND FILL: ORANGY BROWN, SAND FILL, TRACE TO NO SILT, TRACE ROOTLETS, MOIST, LOOSE.			SS2	13		1	0.0						WATER LEVEL AT 0.82 mBGS ON SEPT. 20, 2017
	1.2 —	SILTY SAND TILL: GREYISH BROWN SILTY SAND TILL, TRACE GRAVEL, TRACE CLAY, MOIST TO WET, LOOSE.			· ·	-									
2.0	2.3 —				SS3	8		0	0.0						WATER LEVEL AT 2.04 mBGS ON SEPT. 22, 2017
3.0		SILTY SAND TILL: GREYISH BROWN SILTY SAND TILL, SOME COBBLES, TRACE TO SOME CLAY, MOIST TO WET, LOOSE TO DENSE. - 0.1 m OF COBBLES FROM 2.63 m TO 2.74 m			SS4	17		1	0.0						
					SS5	26		1	0.0		•				
4.0															
5.0	4.6 —	SAND AND GRAVEL: BROWN, SAND AND FINE GRAVEL, SOME COBBLES, VERY DENSE, SATURATED.			SS6	50 for 3"		0	0.0						
V1 GDT 10/31/17	-				SS7	50 for 2"		0	0.0						
	6.7 —	BOREHOLE TERMINATED AT 6.7 m IN SAND AND GRAVEL.				_									
0.5 000 000 000 000 000 000 000 000 000															
H (METRIC) 16															
WSP GEOTEC	-														

wsp

BOREHOLE NO. MW17-2

PAGE 1 of 1

PROJECT NAME: UDORA PHASE TWO ESA

CLIENT: CAPRIS INV. INC.

BOREHOLE TYPE: SPLIT SPOON / HOLLOW STEM AUGER

GROUND ELEVATION: 251.8 mASL

DATE COMPLETED: Sep 21, 2017

PROJECT NO.: 161-09454-00

SUPERVISOR: DAO / JW

REVIEWER: SJD

			S			ę	SAMPL	E			WATER	
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	PID/TOV (ppm)	"N" VALUE 10 20 30 SHEAR STRENGTH 50 100 150 200 → Intact (MaX) CU → Remoulded Cu	CONTENT %	REMARKS
	0.2 —	SAND TOPSOIL: SOME SILT, TRACE ORGANICS.	<u>×1/</u>									
		SAND: DARK BROWN, SAND, SOME SILT, TRACE TO SOME ORGANICS, MOIST, LOOSE.			SS1	5		0	0.0			
1.0	1.1 —	<u>SILTY SAND TILL:</u> BROWN, SILTY SAND TILL, TRACE CLAY, TRACE			SS2	9		0	0.0			
	1.5 —	GRAVEL, TRACE ORGANICS, MOIST, LOOSE.										
2.0	-	BROWN TO GREVISH BROWN, SILTY SAND TO SANDY SILT TILL, TRACE CLAY, TRACE GRAVEL, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT.			SS3	12		0	0.0			
3.0	-				SS4	12		1	0.0			WATER LEVEL AT 5.67 mBGS ON SEPT. 21, 2017
					SS5	11		1	0.0			
4.0	-				SS6	20		1	0.0			
5.0	4.6	SANDY SILT TILL: SANDY SILT TILL, VARVED CLAY LAYERS, SOME CLAY, TRACE COBBLES, TRACE GRAVEL, VERY DENSE			SS7	59		1	0.0	84_		
ENV_V1.GDT 10/31/17	6.1 —	SANDY SILT TILL: LIGHT BROWN TO GREY SANDY SILT TILL, TRACE TO SOME GRAVEL, TRACE COBBLES, MOIST, VERY			SS8	60 for 3"		0				WATER LEVEL AT 2.75 mBGS ON SEPT. 22, 2017
	_ 6.7	DENSE. BOREHOLE TERMINATED AT 6.7 m IN SANDY SILT TILL.										
WSP GEOTECH (METRIC) 161-09454-00 MW LOGS.GPJ WSP 66 67 68 68 69 69 69 69 69 69 60 60 60 60 60 60 60 60 60 60 60 60 60												
WSP GEOTECH (METRIC	-											

wsp

BOREHOLE NO. MW17-3

PAGE 1 of 1

PROJECT NAME: UDORA PHASE TWO ESA

CLIENT: CAPRIS INV. INC.

BOREHOLE TYPE: SPLIT SPOON / HOLLOW STEM AUGER

GROUND ELEVATION: 250.8 mASL

SUPERVISOR: DAO / JW

PROJECT NO.: 161-09454-00

DATE COMPLETED: Sep 20, 2017

REVIEWER: SJD

			S				S	SAMPL	E		PENE	ONE TRATIO	N	M	ATER	
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONI DETA		TYPE	N VALUE	% WATER	% RECOVERY	PID/TOV (ppm)	10 SHEAR	00 150 act (Ma×	GTH - 200	CON	20 30	REMARKS
	0.4	SAND TOPSOIL: BROWN, TRACE ROOTLETS, MOIST.	<u> </u>			SS1	8		0	0.0	•					
	-	SAND FILL: BROWN TO ORANGEY BROWN, SAND FILL, MOIST, LOOSE TO COMPACT.														
1.0						SS2	23		0	0.0						
2.0	1.5 —	<u>SILTY SAND TO SANDY SILT TILL:</u> GREYISH BROWN, SILTY SAND TO SANDY SILT TILL, TRACE CLAY, TRACE COBBLES, TRACE GRAVEL, MOIST TO SATURATED, COMPACT.				SS3	34		0	0.0						
3.0	3.1 —					SS4	19		1	0.0		/	/			WATER LEVEL AT 2.44 mBGS ON SEPT. 22, 2017 WATER LEVEL AT 2.7 mBGS ON SEPT. 20, 2017
		SANDY SILT TILL: GREYISH BROWN, SANDY SILT TILL, SOME COBBLES, TRACE CLAY, TRACE GRAVEL, VERY SATURATED.				SS5	10		0	0.0	4					
4.0	3.8 —	SILTY SAND TO SANDY SILT TILL: SILTY SAND TO SANDY SILT TILL, FINE GRAVEL, COMPACT TO DENSE, VERY SATURATED.				SS6	18		1	0.0			`			
201 10/31/17	4.6 —	BOREHOLE TERMINATED AT 4.6 m IN SILTY SAND TO SANDY SILT TILL.			1											
3S.GPJ WSP_ENV_V1.GDT																
161-09454-00 MW LOO																
WSP GEOTECH (METRIC) 161-09454-00 MW LOGS.GPJ WSP																
LSN 10.0																

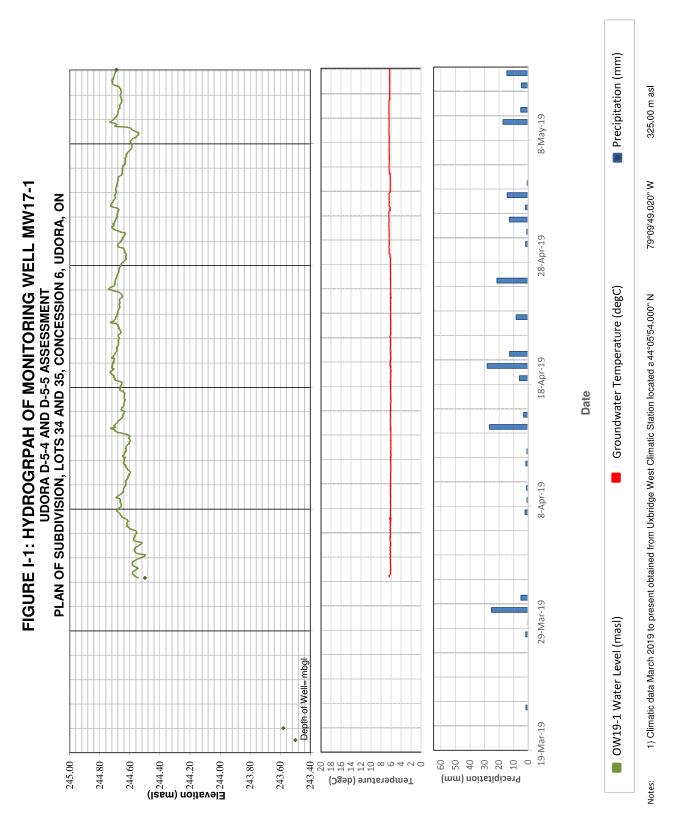
TABLE I-1: OBSERVED GROUNDWATER ELEVATIONSD-5-4 AND D-5-5 ASSESSMENT

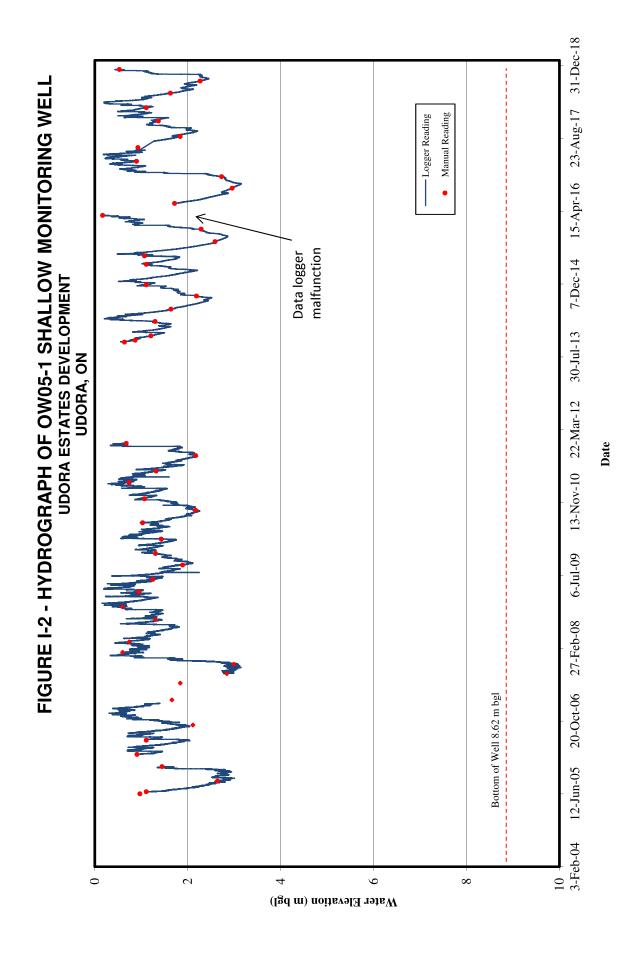
PROPOSED PLAN OF SUBDIVISION, PART OF LOTS 34 AND 35, CONCESSION 6, UDORA, ON

Monitor Designation		Ground Elevation	PVC Casing Stick-up	Measurement Date	De to W	pth /ater	Groundwater Elevation
	(mASL)	(mASL)	(m)		m bmp	m bgl	m ASL
				20-Mar-19	2.17	1.44	243.35
MW17-1	245.52	244.93	0.73	21-Mar-19	2.08	1.35	243.44
				2-Apr-19	1.16	0.43	244.36
				14-May-19	0.97	0.24	244.55
				20-Mar-19	2.76	1.97	244.77
MW17-2	247.52	246.27	0.79	21-Mar-19	2.69	1.90	244.83
	247.JZ	240.27	0.75	2-Apr-19	2.14	1.35	245.38
				14-May-19	1.40	0.61	246.12
				20-Mar-19	2.73	1.91	243.80
				21-Mar-19	2.72	1.90	243.81
MW17-3	246.53	244.333	0.82	2-Apr-19	2.40	1.58	244.13
				14-May-19	1.52	0.70	245.01
				20-Mar-19	-	-	-
TW1	245.25	243.65	0.71	21-Mar-19	11.84	11.13	233.41
				2-Apr-19	11.85	11.14	233.40
				14-May-19	10.56	9.85	234.69
				20-Mar-19	14.82	13.89	238.76
				21-Mar-19	15.82	14.89	237.76
TW19-1	253.58	252.21	0.93	28-Mar-19	14.10	13.17	239.48
				2-Apr-19	14.17	13.24	239.41
				14-May-19	12.38	11.45	241.20

Notes:

1) "m ASL" indicates metres above sea level.


2) "m" indicates metres.


3) "m bmp" indicates metres below measurement point, which is the top of pipe (referred to as T.O.P.)

4) "m bgl" indicates metres below ground level.

5) Monitoring wells are installed with MONUMENTt casings.

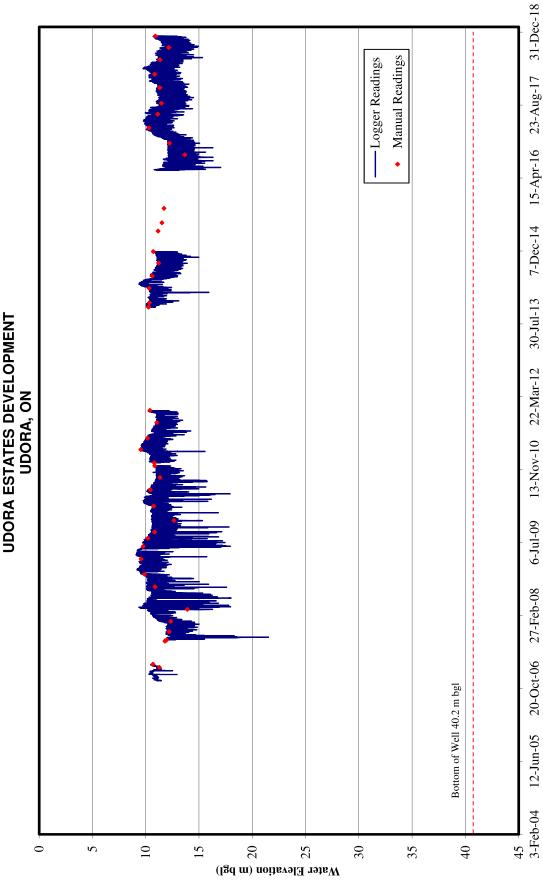


FIGURE I-2 - HYDROGRAPH OF LOT 14 WATER SUPPLY WELL UDORA ESTATES DEVELOPMENT

H:/Proj/18/12360-00/Tech/Phase 2/Report/D-5-4 and D-5-5 Report/Appendix I - Groundwater Level Monitoring/Table I-2 Lot 14 Hydrograph.xls,5/30/2019

Date

December 18, 2024

Project #: 22-0223

2695867 Ontario Inc. 71 Shannon Street Toronto, Ontario M6J 2E6

Sent via email: john@jandjdevelopments.ca

Attention: John Cooper

SUBJECT: ON-SITE SEWAGE SYSTEM SIZING STUDY - UDORA DEVELOPMENT

EnVision Consultants Ltd. (EnVision) was retained by 2695867 Ontario Inc. (the 'Client') to conduct a sewage system sizing study in accordance with the applicable regulations and guidelines of the Ontario Building Code (2012), and the Regional Municipality of Durham, to support the proposed 7-lot residential development on Part of Lots 34 and 35, Concession 6, Udora, Ontario (the 'Site'), see *Figure 1*.

It is understood that the requisite D-5-4 and D-5-5 studies for on-site sewage and water supply systems has been completed by others. The scope of this letter report is to determine if the proposed development lot fabric can support private sewage (septic) systems, drinking water wells, and building envelopes as per the Durham Region Lot Sizing Policy (*Drilled Wells and Lot Sizing Policies as Applied to Consents (Severances) and Draft Plans of Subdivision, 2010*).

As the Durham Region Lot Sizing Policy uses conceptual sewage flows, over ranges of soil percolation rates, it does not necessarily reflect the expected sewage system sizes for the planned subdivision dwellings. To better understand the actual sizing of the sewage system infrastructure at the site, and to explore the possibility for reduced leaching bed areas through alternative servicing methodologies; specifically advanced (Level IV) sewage treatment a detailed sewage servicing assessment has also been completed.

DESCRIPTION OF THE SITE

The Site is located in Durham Region, approximately 150 m southwest of the intersection of Durham Road 1 and Ravenshoe Road, in the community of Udora. The southern portion of the development lands connect with the northern extent of Birdie Smith Court. The legal description of the lands is Part of Lots 34 and 35, Concession 6, Udora, Ontario. In the recent past the site has remained vacant. The area immediately surrounding the site generally consists of rural residential properties, with extensive agricultural uses further to the east and south.

The proposed residential development, excluding roadway areas, is approximately 1.7 hectares (4.2 acres), while the average lot size for the proposed development is 0.21 ha, although lot sizes will vary. The plan also includes a 0.25 ha stormwater management block. It is understood that the dwellings will vary in size from 3 to 4 bedrooms, approximately 200 m² to 325 m² in floor area, with 3 to 4 bathrooms. Municipal services are not available at the site; therefore, the site will be serviced via private water supply and private on-site sewage system.

Based on the literature reviewed, and EnVision's knowledge of the study area, the site lies within the Peterborough Drumlin Field physiographic region as described by the Ontario Geological Survey (*Chapman and Putnam, 1984*). The Peterborough Drumlin Field is characterized by a rolling till plain containing approximately 3,000 drumlins, generally oriented in a northeast to southwest manner. Available mapping notes the nearest drumlin to be approximately 250 m southeast of the site.

The literature and mapping review describes the local surficial geology as sandy silt to silty sand till. Observations made from previous site investigations, completed by WSP Canada Inc., are consistent with the literature review as detailed later in this letter report.

The site is underlain by sedimentary bedrock belonging to the Lindsay Formation, which is primarily characterized by fine to coarse grained limestone. Drift thickness at the site is expected to be approximately 30 to 40 m in extent.

SITE INVESTIGATIONS

Historic field investigations were completed by WSP Canada Inc. as detailed in the *D-5-4 Assessment and Preliminary Water Balance Study (2018).* The historic site investigation work was completed in 2016 and 2017 and included the advancement of a total of four (4) boreholes and ten (10) test pits across the site. The shallow soils at the site generally consisted of a layer of topsoil followed by a deposit of sandy silt to silty sand till with trace clay and gravel, although in some areas a layer of sand fill was observed up to depths of 1.5 m below ground level (bgl).

WSP also completed additional soil investigations in 2019, advancing an additional ten (10) test pits to a depth of 2 m across the site. Ten (10) shallow soil samples were analyzed by WSP for particle size distribution, the results indicated that in seven (7) of the test pits, the soil percolation rate was 25 min/cm, one (1) test pit had a reported percolation rate of 45 min/cm while in one (1) test pit the percolation rate was reported as 15 min/cm and one (1) test pit reported as 10 min/cm. The particle size distribution curves have been attached to this report.

Based on the historic results EnVision has used a percolation rate of 25 min/cm this as the basis for our sewage system sizing assessment that follows.

DURHAM REGION LOT SIZING POLICY

To demonstrate that the proposed lot fabric of the subdivision (7 lots) will be capable of supporting single family dwellings with on-site sewage disposal systems, a conceptual layout has been completed. This conceptual plan assists in demonstrating that each lot on the property could be serviced in the future with an on-site sewage disposal system and a drinking water well. The conceptual layout has been provided as *Figure 2* which has been

completed in accordance with the Durham Region planning document titled *Drilled Wells and Lot Sizing Policies as Applied to Consents (Severances) and Draft Plans of Subdivision, 2010.*

As noted in the previous section, EnVision has inferred that the prevailing soil type at the site will be a sandy silt to a silty sand till with a percolation rate of approximately 25 min/cm. Based on the Durham Region Lot sizing policy the minimum area that should be dedicated to prime and reserve leaching bed areas for this soil type is 750 m² (375 m² prime area and a 375 m² reserve area), as displayed in the table below:

Soil Percolation Rate	Loading Rate (L/m2)	Daily Sewage Flow (L)	Sewage System Area (Combined Prime and Reserve) ((B/A)x2)
1 <t<20< td=""><td>10</td><td>3,000</td><td>600</td></t<20<>	10	3,000	600
20 <t<35< td=""><td>8</td><td>3,000</td><td>750</td></t<35<>	8	3,000	750
35 <t<50< td=""><td>6</td><td>3,000</td><td>1000</td></t<50<>	6	3,000	1000
50 <t< td=""><td>4</td><td>3,000</td><td>1500</td></t<>	4	3,000	1500

 Table 1
 Conceptual Sewage System Area Estimates (Durham Region Policy)

The conceptual layout (*Figure 2*) uses a generic house footprint, a drilled well, and a generic sewage disposal system layout that was based on the Durham Region Lot Sizing Policy. The generic house footprint for each lot was demonstrated as a 20 m by 15 m rectangular block, which would contain the residence as well as the garage. The 300 m² footprint was inferred to be representative of the extent of the building envelopes to be constructed at the development.

The building footprints were shown to have a minimum 7 m setback from the front and rear property lines, as well as a minimum 3 m side yard setback. Driveways were demonstrated to be 6 m wide and generally perpendicular to the house footprint.

A drilled well was also shown on each lot. Each well has a 15 m protected radius illustrated; sewage system distribution piping and septic tanks cannot be located within this area.

The conceptual layout demonstrates that adequate area is available on each lot to meet the Durham Region Lot Sizing Policy. During the detailed design and approval process, these sewage systems may be somewhat smaller or larger depending on the exact house details, soil percolation rates, and if advanced sewage treatment systems are used.

A further assessment of the likely sewage system sizes is provided in the section below.

DETAILED SEWAGE SERVICING ASSESSMENT

In order to provide more specific guidance as to the probable size of the septic systems servicing the subdivision properties, EnVision has undertaken a detailed sewage system assessment below.

The theoretical total daily design sewage flow for the dwellings within the development has been based on conceptual house plan information provided by the Client and the requirements of the Ontario Building Code (2012); specifically, Table 8.2.1.3.A. The theoretical sewage flow for the dwellings was determined as outlined in the table below.

	LOWER LIMIT OF EXPECTED FLOW		UPPER LIMIT OF EXPECTED FLOW	
Description of Unit	Number of Units	Total Flow (L/day)	Number of Units	Total Flow (L/day)
1) Bedrooms	3	1,600	4	2,000
2) Ground Floor Area	200	0	325	1,300
3) Fixture Units	25	250	31	550
Total (Row 1 Plus Higher of Rows 2 or 3)		1,850		3,300

Table 2 Theoretical Sewage Flow Calculations

It is noted that detailed house plans are not available at this time. To approximate the sewage flow contribution from the fixture units, EnVision has assumed that each bathroom would be a full bathroom group, and each dwelling would also have a dishwasher, kitchen sink, food preparation sink, laundry machine, and laundry sink.

Based on the above calculated sewage flow values, the daily design sewage flow for each resident is estimated to vary between 1,850 L/day to 3,300 L/day. It should be noted that the theoretical flows calculated are conservative and overestimate the actual daily sewage flow, however they have been calculated using the applicable regulations.

SCENARIO 1 – PRIMARY SEWAGE TREATMENT

Due to the predominate soil type at the site and the size of the proposed dwellings, it is likely that the Primary sewage treatment scenario may be applicable to design sewage flows less than 3,000 L/day. At this flow rate, single pod filter bed sewage disposal systems could be used. Filter bed systems are not typically advantageous at flow rate of greater than 3,000 L/day due to the requirement for a second filter pod (effective area) spaced a minimum 5 m apart.

In this scenario, sewage would be treated in a conventional manner whereby all blackwater and greywater from the dwellings would exit the house in a combined fashion and enter a septic tank. Sewage would then exit the septic tank and typically enter a pumping chamber. From the pumping chamber sewage would be pumped, on demand, to the filter bed sewage disposal system.

Filter beds are comprised of a stone layer, housing the distribution piping network, situated on top of a specified sand layer (the Filter Sand). Where a filter bed is installed on soil having a percolation rate of greater than 15 min/cm, imported sand fill shall be used to create a 15 m mantle area. The imported sand fill shall be a minimum of 250 mm deep at all locations within the leaching bed area and extend a minimum of 15 metres beyond the distribution pipe in the direction of horizontal shallow groundwater flow. The minimum area of the filter bed, constructed on native soil with a percolation rate of 25 min/cm, is calculated using the formula:

 $A = \frac{Q}{8}$

where:

A = the area of contact (sand area) (m^2) Q = the total daily design sanitary sewage flow (L)

Based on the above formula and the minimum and maximum expected sewage flows noted in *Table 2*, the minimum size of the leaching beds is calculated in *Table 3* below:

Table 3 Minimum Sewage System Contact Area

DESIGN SCENARIO	MINIMUM CONTACT AREA (LOWER FLOW LIMIT)	MINIMUM CONTACT AREA (UPPER FLOW LIMIT (3,000 L/DAY))		
Leaching Bed Sizing	231 m ²	375 m ²		

An effective area, comprised of septic stone meeting the gradation criteria set forth in Table 8.7.3.3., Division B, of the *Ontario Building Code*, overtop of the filter sand, is required to accommodate the distribution piping. The stone layer shall be rectangular in shape with the long dimension parallel to site contours and be protected by a permeable geo-textile (or equivalent). The minimum effective area (for sewage flows less than 3,000 L/day) is calculated based on:

$$A = \frac{Q}{75}$$

where:

A = the stone and pipe loading on the surface of the filter medium (m^2) Q = the total daily design sewage flow (L)

Based on the above formula and the minimum and maximum expected sewage flows noted in *Table 2*, the minimum size of the effective area is calculated in *Table 4* below:

Table 4Minimum Sewage System Stone Area

DESIGN SCENARIO	MINIMUM EFFECTIVE AREA (LOWER FLOW LIMIT)	MINIMUM EFFECTIVE AREA (UPPER FLOW LIMIT (3,000 L/DAY))		
Effective Area Sizing	25 m ²	40 m ²		

Although the theoretical minimum values in the previous tables provide the lower extent of how large a sewage system must be, the minimum constructable size can be marginally different due to factors such as the requirements for an imported sand mantle, sloping requirements, piping network design, etc.

Based on EnVision's design experience, we infer the likely minimum filter bed size for the lower flow scenario to be approximately 286 m² (13 m x 22 m), while the likely minimum filter bed size for the upper flow scenario (3,000 L/day) would be 380 m² (16.5 m x 23 m).

SCENARIO 2 – ADVANCED (LEVEL IV) SEWAGE TREATMENT

In an effort to reduce the overall area required, the Client may choose to install advanced (Level IV) sewage treatment systems prior to ultimate sewage disposal.

In this scenario the sewage would undergo primary treatment in the septic tank and then would be supplemented by further treatment with an advanced sewage treatment system. The advanced treatment unit would polish the sewage effluent to Level IV standards (10 mg/L TSS, 10 mg/L CBOD₅) through aerobic processes and/or physical filtration. The treated sewage effluent would be pumped, on demand, to a partially raised *Type A* dispersal bed.

Using a *Type A* sewage disposal system, in conjunction with an advanced treatment unit, there is capacity to hydraulically load the contact soils at a greater rate than conventional systems due to the reduced strength of the sewage being discharged. This allows for a reduction in the total area required for the installation.

Type A leaching beds are comprised of a stone layer, housing the distribution piping network, situated on top of a sand layer. As per the Ontario Building Code, where a *Type A* bed is installed on soil having a percolation rate of greater than 15 min/cm, imported sand fill shall be used in its construction. The imported sand fill should have a corresponding percolation rate between 6 and 10 min/cm and contain less than 5% fines (silt and clay). The imported sand fill shall be a minimum of 300 mm deep at all locations within the leaching bed area and extend a minimum of 15 metres beyond the distribution pipe in the direction of horizontal shallow groundwater flow. The minimum area of the *Type A* bed is calculated using the formula:

$$A = \frac{QT}{400}$$

where:

A = the area of contact (sand area) (m²) Q = the total daily design sanitary sewage flow (L) T = the percolation rate of the native soil to a maximum of 50 (min/cm)

Based on the above formula, the minimum and maximum expected sewage flows noted in *Table 2*, and a native soil percolation rate of 25 min/cm, the minimum size of the leaching beds is calculated in *Table 5* below:

Table 5 Minimum Sewage System Contact Area

DESIGN SCENARIO	MINIMUM CONTACT AREA (LOWER FLOW LIMIT)	MINIMUM CONTACT AREA (UPPER FLOW LIMIT)
Leaching Bed Sizing	116 m ²	207 m ²

A stone layer, comprised of septic stone meeting the gradation criteria set forth in Table 8.7.3.3., Division B, of the Ontario Building Code, shall be installed to accommodate the distribution piping to obtain even distribution of the treated sewage effluent. The stone layer shall have a minimum thickness of 200 mm, be rectangular in shape with the long dimension parallel to site contours and be protected by a permeable geo-textile (or equivalent). The minimum stone area is calculated based on:

$$A = \frac{Q}{50 \text{ or } 75}$$

where:

A = the area of contact between the base of the stone layer and the underlying soils (m^2) Q = the total daily design sewage flow (L)

The denominator of the equation is chosen based on the design flow rate. For flows less than 3,000 L/day the denominator is 75; otherwise, it is 50.

Based on the above formula, the minimum and maximum expected sewage flows noted in *Table 2*, the minimum size of the stone and pipe area is calculated in *Table 6* below:

Table 6Minimum Sewage System Stone Area

DESIGN SCENARIO	MINIMUM STONE AREA (LOWER FLOW LIMIT)	MINIMUM STONE AREA (UPPER FLOW LIMIT)	
Stone and Pipe Area	25 m ²	66 m ²	

Although the theoretical minimum values in the previous tables provide the lower extent of how large a sewage system must be for the advanced sewage treatment scenario, the minimum constructable size can be different due to factors such as the requirements for an imported sand mantle, sloping requirements, piping network design, etc. Based on EnVision's design experience, we infer the likely minimum Type A bed size for the lower flow scenario to be approximately 286 m² (13 m x 22 m), while the likely minimum Type A bed size for the upper flow scenario would be 368 m² (16 m x 23 m).

SUMMARY OF DETAILED SEWAGE SERVICING SCENARIOS

As displayed in the scenarios above, the impact to the on-site sewage system sizes by incorporating advanced (Level IV) sewage treatment is nominal, primarily due to the sandy till nature of the soil type at the site. The requirement for a 15 m imported sand mantle necessitates larger than minimum basal contact area in the advanced treatment scenario, such that the additional capital and operating costs of advanced treatment would not be preferable.

Advanced system treatment may be preferable for the largest expected houses in the development (i.e. flows greater than 3,000 L/day) or if isolated areas of siltier soils are found in untested areas.

Advanced sewage treatment would be required should nitrate reduction be required as part of the development approval process.

CLOSING

Based on the information throughout this letter report, EnVision presents the following key findings:

- Adequate area is available on each lot to meet the Durham Region Lot Sizing Policy for the proposed 7 lot development.
- Detailed sewage servicing was evaluated under two different lot level scenarios; primary treatment discharging to filter beds and Level IV treatment discharging to Type A leaching beds.
- Based on the conceptual house details provided by the Client, and the soil information previously
 analyzed by WSP Canada Inc., the leaching beds will likely vary in size from about 286 m² to 375 m² in
 area.
- Advanced (Level IV) sewage treatment provides minimal reduction in sewage system design sizing for flows less than 3,000 L/day. Advanced sewage treatment may be preferable for flows >3,000 L/day or if nitrate reduction is required as part of the development approval process.

We trust that this information will be sufficient for the purposes of a sewage system sizing study. Please contact the undersigned at (905) 868-4032 or mvarty@envisionconsultants.ca to discuss the information contained within this letter report.

MC Dancell

Paisley McDowell, P.Eng.

Project Engineer – Rural Servicing pmcdowell@envisionconsultants.ca

Yours sincerely,

EnVision Consultants Ltd

Michael Varty, P.Eng. PMP Director – Rural Servicing mvarty@envisionconsultants.ca

INCLUSIONS:

Figures


Figure 1 Site Plan

Figure 2 Conceptual Sewage System Sizing – Durham Lot Sizing Policy

Attachments

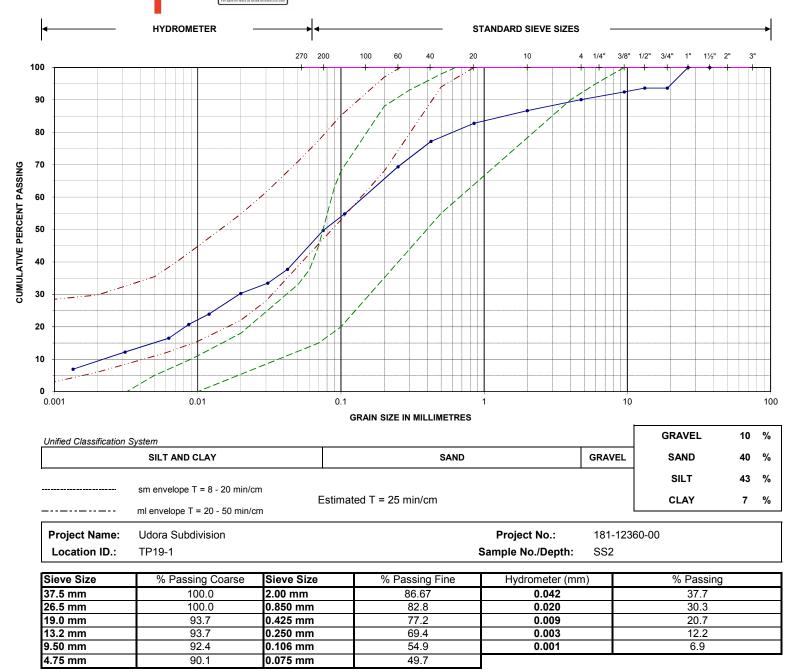
WSP Particle Size Distribution Curves

	LE	G	E	Ν	I

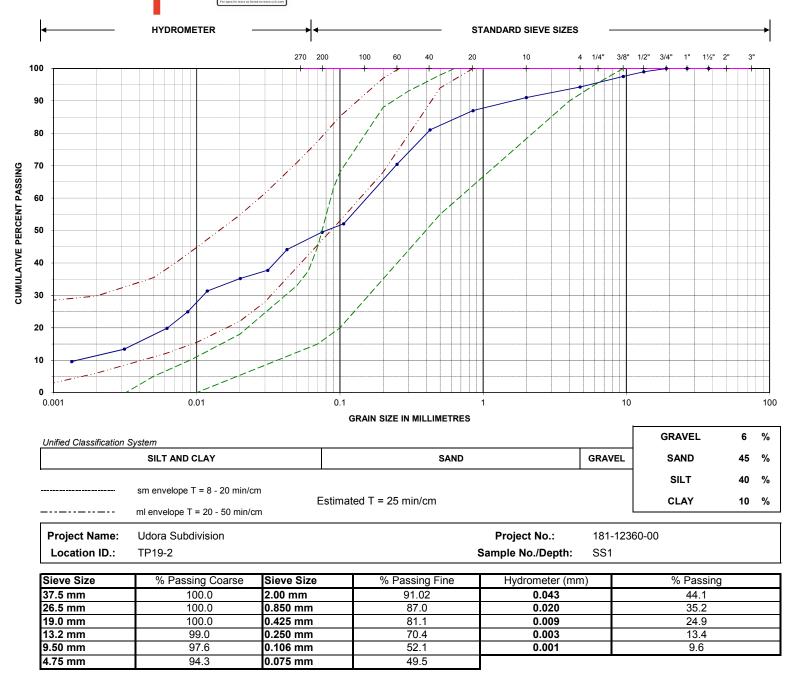
2695867 Ontario Inc.

Reviewed by

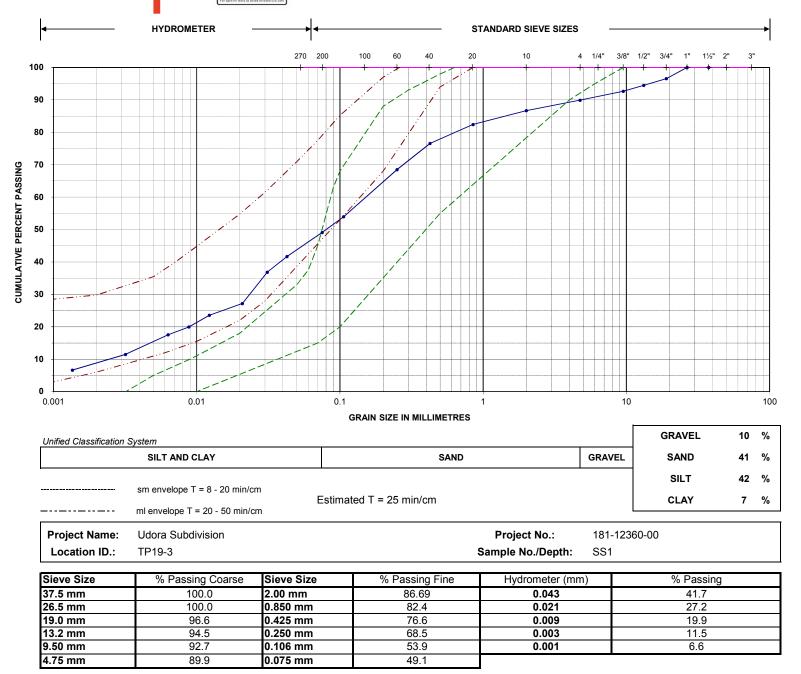
MV

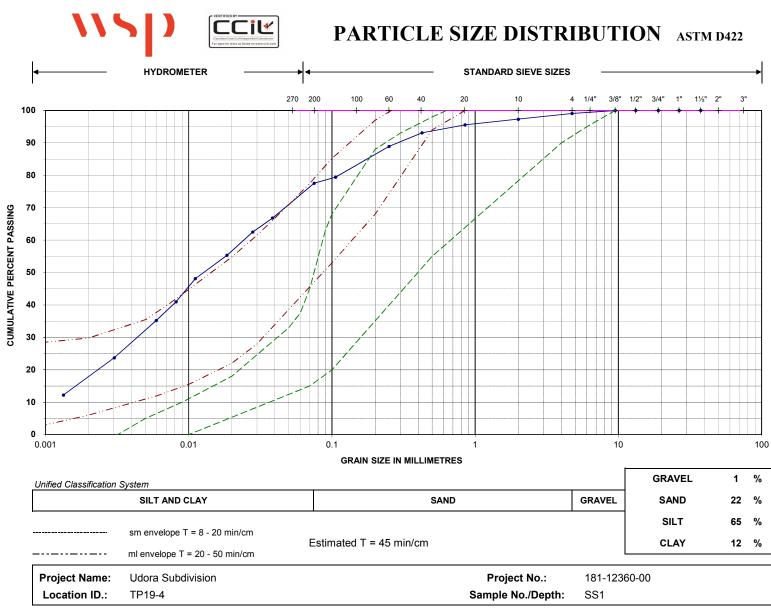

0 10 20

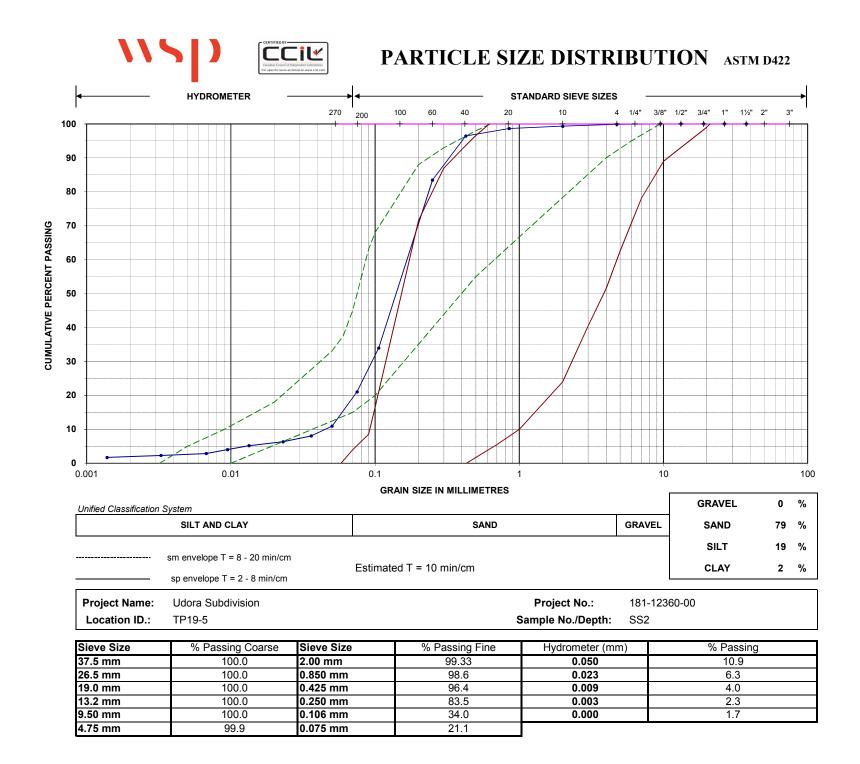
3

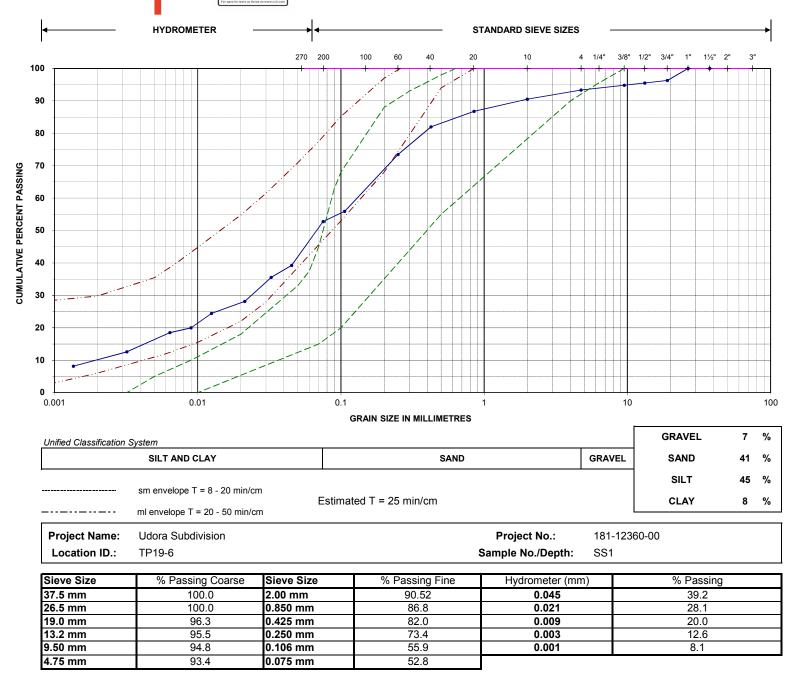

V	LEGEND:				
	н	Conceptual Building	Envelope		
	Р	Conceptual Prime Leaching Bed (375 sq. m)			
	R	Conceptual Reserve Leaching Bed (375 sq. m)			
	w	Proposed Drinking Water Well with a 15m Protected Radius			
	•	Existing Well to be a Regulation 903	abandoned in Acco	ordance with	
	TP19-5	Approximate Test p Percolation Rate (T-			
	DW = Di	riveway			
	TITLE:				
		Conceptual	Servicing Plan		
	PROJECT :				
	On-Site	Sewage System Sizir	ng Study -		
		Udora Development			
	CLIENT :		PREPARED BY:	DATE:	
)m	2695867 Ontar	rio Inc.	MV	December 2024	
	PROJECT NO:		CHECKED BY:	FIGURE NO:	
	22-0223		PLM	2	

ATTACHMENT A

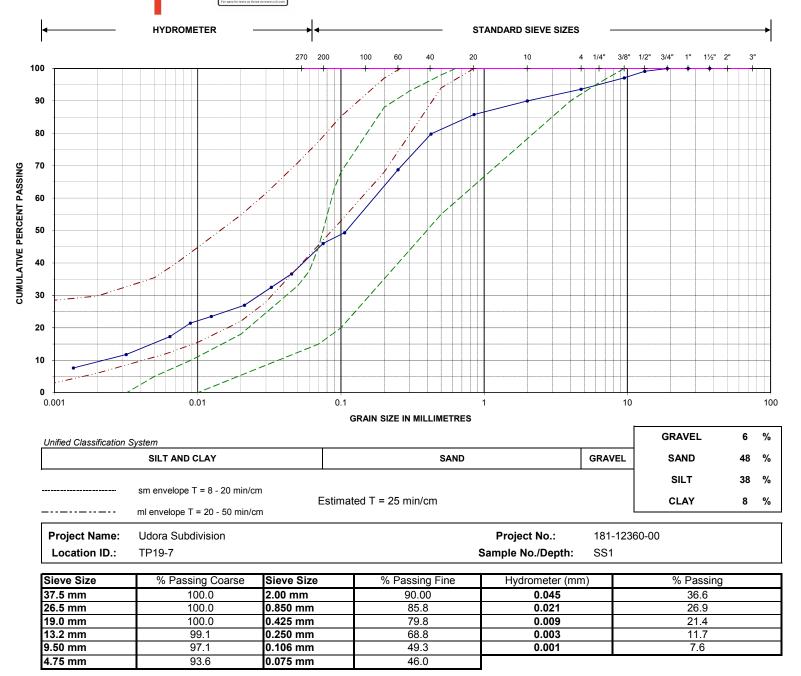




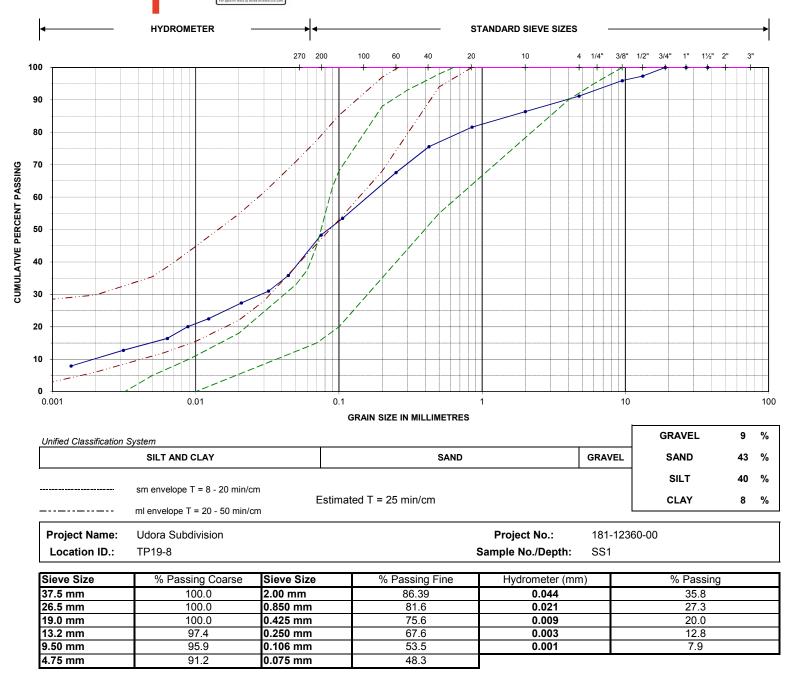


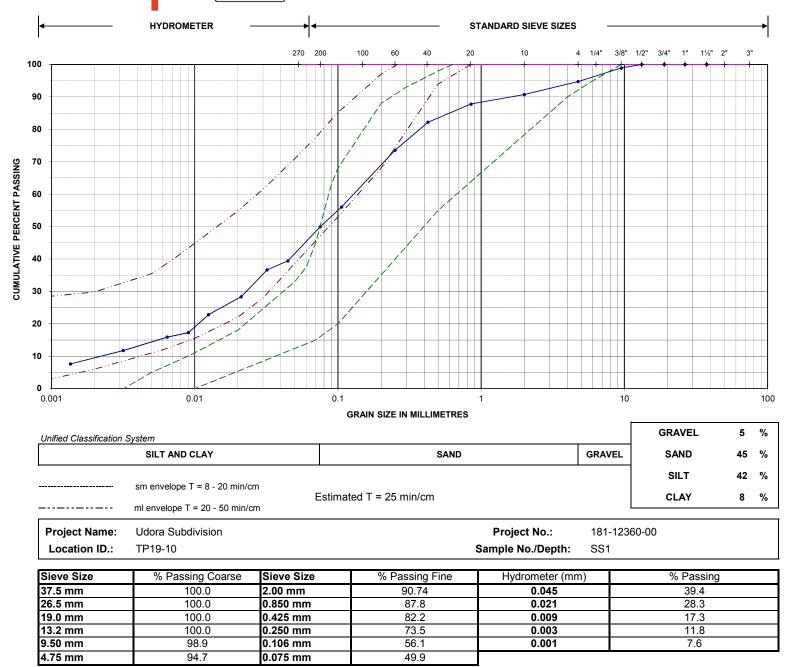


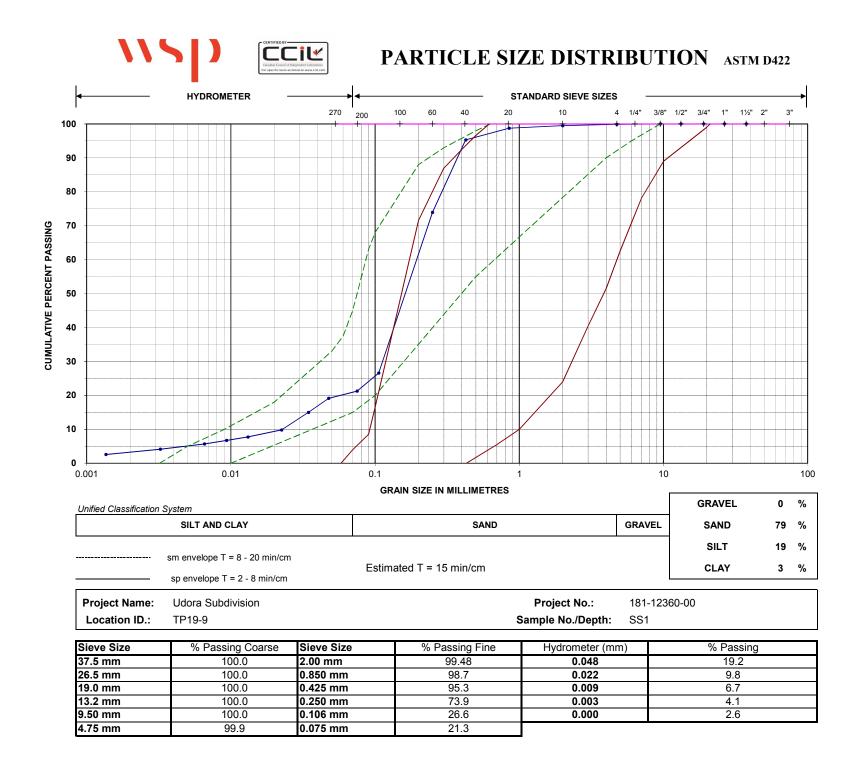
Sieve Size	% Passing Coarse	Sieve Size	% Passing Fine	Hydrometer (mm)	% Passing
37.5 mm	100.0	2.00 mm	97.32	0.038	66.8
26.5 mm	100.0	0.850 mm	95.6	0.018	55.3
19.0 mm	100.0	0.425 mm	93.1	0.008	41.0
13.2 mm	100.0	0.250 mm	88.9	0.003	23.7
9.50 mm	100.0	0.106 mm	79.4	0.001	12.2
4.75 mm	99.1	0.075 mm	77.6		



PARTICLE SIZE DISTRIBUTION ASTM D422






PARTICLE SIZE DISTRIBUTION ASTM D422

PARTICLE SIZE DISTRIBUTION ASTM D422

GAMAN CONSULTANTS INC.

UDORA ESTATES WATER BALANCE EVALUATION PART LOT 35, CON. 6, TWP UXBRIDGE REGION OF DURHAM

Prepared for: 2695867 Ontario Inc.

January 2025

File 22012.00

Distribution: 1 c Client (PDF) 1 c File

GAMAN CONSULTANTS INC.

Barrie, Ont. 705-279-9156 ghendy.gaman@outlook.com

January 21, 2025

2695867 Ontario Inc. 71 Shannon St. Toronto, On. M6J 2E6

Attention: Mr. Jeff Risi and John Cooper

Re: Udora Estates Water Balance Evaluation Part Lot 35, Con. 6, TWP Uxbridge, Durham Region File 22012.00

GAMAN Consultants Inc. is pleased to submit this hydrogeological report documenting the results of a water balance evaluation for the above noted property. The results of the water balance evaluation show a deficit in infiltration after development, and this is common with developments. There is enough recharge available from rooftops to off-set the deficit using low impact development measures.

Yours truly, GAMAN Consultants Inc.

hang R Hentz

Gary R. Hendy, P.Eng. Consulting Engineer

TABLE OF CONTENTS

Letter of Transmittal

PAGE

1.0	INT	RODUCTION1
	1.1	BACKGROUND1
	1.2	STUDY OBJECTIVES & SCOPE
2.0	РНУ	SICAL SETTING 2
	2.1	PHYSIOGRAPHY, SURFICIAL GEOLOGY & DRAINAGE2
	2.2	HYDROGEOLOGY
	2.3	WATER WELL RECONNAISSANCE SURVEY4
3.0	SIT	E INVESTIGATIONS
	3.1	SHALLOW SUBSURFACE SOILS
	3.2	GROUNDWATER MOVEMENT
	3.3	GROUNDWATER QUALITY
	3.4	SINGLE WELL RESPONSE TESTS
4.0	WA	TER BUDGET9
		CLIMATE DATA9
	4.1	CLIMATE DATA
	4.1 4.2	GROUNDWATER RECHARGE ESTIMATES
		GROUNDWATER RECHARGE ESTIMATES10
		GROUNDWATER RECHARGE ESTIMATES
	4.2	GROUNDWATER RECHARGE ESTIMATES104.2.1MECP Recharge Estimates104.2.2ORMPG Recharge Rates12
	4.2	GROUNDWATER RECHARGE ESTIMATES104.2.1MECP Recharge Estimates104.2.2ORMPG Recharge Rates12PRE-DEVELOPMENT & POST-DEVELOPMENT WATER BUDGETS12
5.0	4.2 4.3 4.4	GROUNDWATER RECHARGE ESTIMATES104.2.1MECP Recharge Estimates104.2.2ORMPG Recharge Rates12PRE-DEVELOPMENT & POST-DEVELOPMENT WATER BUDGETS12
5.0 6.0	4.2 4.3 4.4 CON	GROUNDWATER RECHARGE ESTIMATES104.2.1MECP Recharge Estimates104.2.2ORMPG Recharge Rates12PRE-DEVELOPMENT & POST-DEVELOPMENT WATER BUDGETS12MITIGATION13

TABLE OF CONTENTS (Cont'd)

PAGE

APPENDICES

APPENDIX A WATER WELL RECORDS AND RECONNAISSANCE SURVEY

- APPENDIX B BOREHOLE LOGS
- APPENDIX C WATER BUDGET
- APPENDIX D GROUNDWATER CHEMISTRY
- APPENDIX E SHALLOW SOILS AND GROUNDWATER

FIGURES

FIGURE 1	SITE LOCATION	AFTER TEXT
FIGURE 2	SITE PLAN	AFTER TEXT
FIGURE 3	PHYSIOGRAPHY	AFTER TEXT
FIGURE 4	SURFICIAL GEOLOGY	AFTER TEXT
FIGURE 5	BEDROCK GEOLOGY	AFTER TEXT
FIGURE 6	DRAINAGE	AFTER TEXT
FIGURE 7	WATER WELL LOCATION MAP	AFTER TEXT
FIGURE 8	SECTION A-A'	AFTER TEXT
FIGURE 9	SECTION B-B'	AFTER TEXT
FIGURE 10	AGRICULTURAL SOILS CHART	AFTER TEXT
FIGURE 11	ORMPG RECHARGE RATES	AFTER TEXT
FIGURE 12	PROPOSED LID PLAN	AFTER TEXT

FIGURE E-1	SHALLOW GROUNDWATER MOVEMENT	APPENDIX E
FIGURE E-2	SLUG TEST ANALYSIS MW17-1DL	APPENDIX E
FIGURE E-3	SLUG TEST ANALYSIS MW17-2 MANUALS	APPENDIX E
FIGURE E-4	SLUG TEST ANALYSIS MW17-2DL	APPENDIX E
FIGURE E-5	SLUG TEST ANALYSIS MW17-3 MANUALS	APPENDIX E
FIGURE E-6	SLUG TEST ANALYSIS MW17-3DL	APPENDIX E
FIGURE E-7	TP19-1 PARTICAL SIZE ANALYSIS	APPENDIX E
FIGURE E-8	TP19-2 PARTICAL SIZE ANALYSIS	APPENDIX E
FIGURE E-9	TP19-3 PARTICAL SIZE ANALYSIS	APPENDIX E
FIGURE E-10	TP19-4 PARTICAL SIZE ANALYSIS	APPENDIX E

TABLE OF CONTENTS (Cont'd)

PAGE

FIGURE E-11	TP19-5 PARTICAL SIZE ANALYSIS	APPENDIX E
FIGURE E-12	TP19-6 PARTICAL SIZE ANALYSIS	APPENDIX E
FIGURE E-13	TP19-7 PARTICAL SIZE ANALYSIS	APPENDIX E
FIGURE E-14	TP19-8 PARTICAL SIZE ANALYSIS	APPENDIX E
FIGURE E-15	TP19-9 PARTICAL SIZE ANALYSIS	APPENDIX E
FIGURE E-16	TP19-10 PARTICAL SIZE ANALYSIS	APPENDIX E

TABLES

TABLE A-1	SUMMARY OF WATER WELL RECORDS	APPENDIX A
TABLE A-2	SUMMARY OF WATER WELL SURVEY	APPENDIX A
TABLE C-1	INFILTRATION FACTORS	APPENDIX D
TABLE C-2	PRE-DEVELOPMENT & POST DEVELOPMENT WATER BUDGET	APPENDIX D
TABLE C-3	RECHARGE MITIGATION	APPENDIX D
TABLE D-1	SHALLOW GROUNDWATER QUALITY	APPENDIX D
TABLE E-1	TEST PITS LOGS	APPENDIX E
TABLE E-2	GROUNDWATER LEVELS	
TABLE E-3	MONITOR WELL DETAILS	APPENDIX E

1.0 INTRODUCTION

1.1 BACKGROUND

This report provides the results of a hydrogeological assessment carried out by GAMAN Consultants Inc. (GAMAN) in support of a plan of subdivision application for the subject lands owned by 2695867 Ontario Inc. The report was initiated to document the effects of creating hard cover surfaces that prevent recharge from infiltrating to the water table.

By way of background, 2695867 Ontario Inc. owns a 1.7055-ha parcel of land situated on Part Lots 34 & 35, Concession 6, Township of Uxbridge within the Hamlet of Udora, as shown in Figure 1. Figure 2 illustrates the layout of the 7 proposed lots.

WSP Canada Inc. and GAMAN Consultants Inc. completed hydrogeological investigations of the Capris Development during 2019 for Capris Developments. The WSP Report was never finalized, and the subdivision was sold to 2695867 Ontario Inc. GAMAN Consultants was retained to re-evaluate the test data from the 2019 investigations and integrate those study results into this hydrogeological report.

1.2 STUDY OBJECTIVES & SCOPE

The Conservation Authorities Geoscience Group developed guidelines for hydrogeological assessment submissions related to water balances. The document provides information for consultants to consider and address in technical submissions for a development site. The purpose of this evaluation was to assess the changes in recharge to the site for input into appropriate mitigation methods to be implemented to maintain groundwater recharge.

The tasks required to complete the work program included:

- Background review of the physical setting of the site including physiography, surficial geology and groundwater.
- ➤ A site inspection of the site and surrounding area.
- Review soils and groundwater monitoring data from boreholes installed by other project team members.
- > A review of local water well records and existing services around the site.
- Preparation of a hydrogeological report to address Conservation Authority Guidelines for a water balance.

This report documents the study findings of these investigations.

2.0 <u>PHYSICAL SETTING</u>

2.1 PHYSIOGRAPHY, SURFICIAL GEOLOGY AND DRAINAGE

The physiography of the Site is illustrated in Figure 3. The study area is situated within the Peterborough Drumlin Field Physiographic Region as described by Chapman and Putnam (1984) as represented in the OGS Earth application accessible through the Ministry of Northern Development and Mines Web Page. A small portion of the northeast corner of the Site lies within the Simcoe Lowlands Physiographic Region. The Peterborough Drumlin Field is characterized by a rolling till plain that is dotted with oval-shaped hills known as drumlins. Although drumlins flank the site to the east, south and west, there are no drumlins noted within the Site boundary. The till plains and drumlins dominate the landscape at a regional scale. Organic deposits of peat and muck are present in the valleys.

Surficial geology is illustrated in Figure 4. The site is situated on dominantly till-like soils comprised of heterogeneous mixtures of sand and silt with some gravel and clay. The sandy

overburden west and north of the site are distinct from the surficial soils east of the site and reflect the two physiographic settings described above.

The bedrock beneath the study area is mapped as limestone/dolostone/shale/arkose/sandstone of the Simcoe Group; Lindsay Formation (Ontario Geological Survey, 2011) as illustrated on Figure 5. The depth to bedrock is estimated to be between 30 to 40 metres below ground surface (m bgs), based on overburden thickness mapping (Gao et al., 2006).

The Site is located within the Lake Simcoe Watershed. The local topography of the Site slopes from the south at an elevation of 250 metres above sea level (masl) to the north, at an elevation of approximately 240 masl. Runoff drains to the north into a drainage ditch along Ravenshoe Road and is inferred to flow into a tributary which connects to the Pefferlaw River, and subsequently Lake Simcoe (Figure 6).

2.2 HYDROGEOLOGY

The hydrogeologic setting was interpreted based on the local water well record database maintained by the MECP and plotted on Figure 7. The Oak Ridges Moraine Groundwater Program was also referenced to support the interpretation.

As noted within the test pit logs, Table E-1, the shallow overburden is comprised mostly of silty-sand to sandy-silt of varying thicknesses and fine sand, typically a minimum of 1.5 metres and up to more than 1.8 metres thick. One test pit documented silt. Particle size distribution analyses from soils from the test pits (Appendix E) are representative of shallow soils and illustrate the gradation of the soils in the uppermost portion of the overburden. The borehole logs for MW17-1, MW17-2 and MW17-3 identify a silty-sand to sandy-silt layer extending to at least 6.7 m bgs. The water well record submitted for the on-site well TW1 also noted a sandy composition to a depth of 5.7 metres bgs. It is inferred, based on the drilling records, that the soil composition becomes finer grained with depth.

The regional hydrogeologic setting of the area is described below with the visual aid of hydrostratigraphic sections 'A-A' and 'B-B' in Figures 8 and 9 respectively. The hydrostratigraphy consists of the following types of units:

- Upper Unconfined Aquifer
- ➢ Upper Aquitard
- Lower Overburden Aquifer
- Bedrock Aquifer

<u>The Upper Unconfined Aquifer</u> is formed within the surficial sand plain. This unit is limited in both vertical and lateral extent, based on the physiographic setting. The unit could be a source of groundwater for shallow dug and bored wells that would extend through this unit and into the underlying till-based aquitard. Domestic wells that might extend through this unit could experience water shortages based on seasonal variations in the water table.

<u>The Upper Aquitard</u> is generally till-like at a depth of below 3 metres, and characteristic of Newmarket Till-aged deposits. This aquitard is comprised of mostly fine-grained sediments that behave as a protective layer above the water-bearing units. Portions of the aquitard described as clay, or as sand containing a significant component of clay, will have reduced permeability. The aquitard acts as a barrier to retard the vertical movement of groundwater from the ground surface to the underlying aquifers from which water supplies will be obtained by the development. This hydrostratigraphic unit should buffer groundwater quality in the supply aquifer from shallow sources of contaminants discharged near surface. Some portions of the aquitard may contain coarser fractions that allow wells to extract enough groundwater for domestic use.

<u>The Lower Overburden Aquifer</u> is comprised of granular sediments of limited lateral and vertical extent. The aquifer ranges from less than 1 metre to more than 17 metres thick. The aquifer may be non-existent in some of the study area. Many of the wells on-site and off-

site terminate within this aquifer. The Lower Overburden Aquifer is confined beneath the overlying Upper Aquitard. Where encountered this aquifer tends to yield sufficient water quantity for domestic use.

<u>The fractured Limestone Bedrock Aquifer</u> is also confined beneath the Upper Aquitard and the Lower Overburden Aquifer, and it extends across the study area. The depth to limestone is generally greater than about 20 metres below grade as observed at the King Coles Ducks Test Well TW09-2 (Figure 8). The physical evidence from previous reporting suggests that the upper portion of the bedrock aquifer and the lower overburden aquifer are hydraulically connected to one another. Either the Lower Overburden Aquifer (where encountered), or the fractured Limestone Bedrock Aquifer, is proposed as the source of groundwater for this development. The water quality in these aquifers is protected from activities at surface by the Upper Aquitard.

2.3 WATER WELL RECONNAISSANCE SURVEY

The Site is surrounded by rural residential properties to the north, east and south and borders a natural heritage system to the west, which currently remains undeveloped. No landfills, salt domes, or any other land use that would be considered major pollution sources are present within 500 metres of the Site.

Existing agricultural, domestic fertilizers and on-site sewage disposal systems would be sources of nitrogen to the shallow groundwater regime. A survey was conducted on September 25 and 27, 2018 and October 3, 2018, to identify current users of groundwater within 500 metres of the Site. Residents were asked to participate on a voluntary basis and were provided with a letter outlining the purpose of the survey. The survey was administered by a representative from WSP at the time of visitation, or the survey form was left with the resident at their request. Homeowners who were not present were left with the letter outlining the purpose of the survey form the survey form this the purpose of the survey and the survey form itself. The information gathered from this

program was used to supplement information in the (MECP) Water Well Record database. Figure 7 shows the water well locations based on the MECP Water Well Information Service (WWIS). Information contained within the WWIS is summarized in Table A-1, Appendix A.

We understand that WSP staff visited 109 properties in the area surrounding the Site to assess private water supply wells. Between inspections that were conducted during site visits and questionnaires that were e-mailed to WSP, 13 responses to the survey were received. This reflects a response rate of 12%. Some residents were willing to answer a few questions regarding the well but would not allow an inspection. The responses have been summarized in Table A-2 in Appendix A.

The results of the survey indicate that there is a mixture of drilled and dug wells in the surrounding area. The majority of respondents indicated that they had good water pressure with the exception of the properties at 685 Ravenshoe Road, 25 Bagshaw Crescent, 28 Bagshaw Crescent, and 52 Victoria Road. Bagshaw Crescent is located immediately south of the proposed development. Issues related to water pressure can result from the size, age and type of pump to the depth the pump, or pump intake in the well and/or the yield of the well.

Wells that were inspected ranged from 8.2 m bgs to 46 m bgs in depth. One resident noted that their well became contaminated in 2006; however, for privacy issues we have not disclosed the location. No further information on the type of contamination was provided. An ultraviolet treatment system was installed; however, the resident no longer drinks the water.

3.0 <u>SITE INVESTIGATIONS</u>

3.1 SHALLOW SUBSURFACE SOILS

WSP excavated ten (10) test pits on-site on May 3, 2019, that are designated as TP19-1 to TP19-10. The field investigation was carried out under supervision of WSP to assess the subsurface soils and shallow groundwater conditions with respect to the general suitability of the Site to accommodate private sewage disposal systems. Soil samples were obtained from the test pits for visual examination and textural classification. Ten (10) samples were submitted to the WSP soils laboratory for grain size distribution analysis. The approximate locations of the test pits are shown in Figure 2, and test pit logs and particle size analysis reports are presented in Appendix E. This information was considered in preparation of the water budget evaluation for the site.

3.2 GROUNDWATER MOVEMENT

GAMAN Consultants completed seasonal groundwater monitoring between December 2022 and November 2024. The results are documented in Table E-2, Appendix E. The interpreted direction of shallow groundwater movement is illustrated in Figure E-1, Appendix E. Shallow groundwater flows in a northwest direction towards a tributary of Pefferlaw River.

Groundwater levels show seasonal variations with spring-time highs and late summer lows. This is typical for shallow groundwater. The monitors on the low-lying north side of the site may have defective grout seals, given the age of the monitors and this could be a reason for the spikes in groundwater levels documented in the report.

GAMAN Consultants Inc. 21/01/25 8:09 AM C:\Users\GARY\Documents\Projects\2022\22012 Udora Rural Servicing\00 Udora D-5-4 & D-5-5\Wp\GRH-R Updated Udora Water Balance Text.docx

3.3 GROUNDWATER QUALITY

Groundwater samples were collected from the three shallow monitoring wells at MW17-1, MW17-2 and MW17-3 on February 20, 2019, to determine the existing background water quality parameters within the shallow groundwater regime. The laboratory results of these samples are included in Appendix D.

The analytical results indicate dissolved organic carbon (DOC), and hardness concentrations were above Criteria C of the Ontario Drinking Water Quality Standards (ODWQS) for each of MW17-1, MW17-2 and MW17-3. Total alkalinity was also greater than the guidelines for MW17-1 and MW17-3 with values of 510 mg/L and 517 mg/L respectively. These parameters are not a health-related concern in drinking water. These parameters can be effectively managed by point-of-use treatment systems.

The groundwater samples were also analyzed for nitrate to determine the existing background nitrate concentration within the shallow groundwater regime. The groundwater had nitrate concentrations of 0.201 mg/L to 2.12 mg/L, with an average concentration of 0.88 mg/L at the time of testing. This is a reasonable estimate as the background nitrate concentration in the proposed adjacent development to the west of the Site (King Cole Ducks development) had nearly non-detectable concentrations of nitrate (0.1 mg/L) at the time of testing.

3.4 SINGLE WELL RESPONSE TESTS

Single well response tests were performed to estimate the hydraulic conductivity of the saturated soils adjacent to the well screens at MW17-1, MW17-2 and MW17-3.

WSP performed rising head tests using a bailer to remove water from the monitor. A data logger and pressure transducer were used to record the responses. The tests were completed on February 20, 2019. The data was evaluated using software and the graphical results are

presented in Appendix E. Hydraulic conductivities ranged from 2.6×10^{-7} to 1.6×10^{-6} m/sec. The range of values is consistent with the observed materials.

4.0 WATER BUDGET

4.1 CLIMATE DATA

As precipitation falls to the ground in the form of rainfall or snow, it is subject to components of the hydrological cycle. Water will generally runoff, infiltrate, evaporate or be subject to transpiration from plant uptake. Evaporation and transpiration are commonly grouped together as evapotranspiration while runoff and infiltration are grouped together as water surplus. The water budget is represented in a simple form as follows:

Water In = water Out P + EI = ET + IR + RO + EO

Where:

P = Precipitation

EI = External Inputs (Run-on, irrigation and vertical/lateral transfers)

ET = Evapotranspiration from plant uptake and evaporation.

IR = Infiltration Recharge

RO = Run-off

EO = External Outputs (water taking and vertical/lateral transfers)

Lake Simcoe Conservation Authority produced a technical document entitled "Lake Simcoe Data: A Reference Document to Support the Completion of Water Balance Assessments.", April 2017, Version 1. This document was prepared to standardize climatic data used in water balance evaluations. The data are intended to provide reasonable estimates for these evaluations; however, the qualified professional is expected to use judgement when using these data with site specific data.

The climate data for the Pefferlaw Brook Subwatershed documents the mean precipitation at 897 mm/yr. This average precipitation was used to advance the water balance evaluation for this site.

4.2 GROUNDWATER RECHARGE ESTIMATES

The following sections document estimates of groundwater recharge using LSRCA suggested values and verifying these values against other methods for consistency.

4.2.1 MECP Recharge Estimates

The MOEE Hydrogeological Technical Information Requirements for Land Development Applications (1995) includes Tables 1 and 2 derived from hydrologic analysis for assessing peak runoff for storm water management.

Table 1 is premised on soil types. The silty sand to sandy silt soils at this site are consistent with recharge rates ranging from 150-200 mm/yr. Three of the test pits showed dominantly sandy soils and one showed silt. The upper range of this infiltration rate of 200 mm/yr is a reasonable average recharge rate using this methodology.

Recharge rates derived from Table 2 of the MECP Hydrotechnical Guidelines considers infiltration factors related to:

- Topography (range of 0.1 to 0.3)
- Soil type (range of 0.1 to 0.4)
- > Vegetation cover. (range of 0.1 to 0.2)

Table C-1, Appendix C documents the infiltration factors for pre-development and postdevelopment scenarios at the site using this method. Topography was evaluated using topographic information from the site with an average slope of about 5% or 50m/km as shown in Figure C-1, Appendix C. The site reflects steep slopes with a topographic factor of 0.1 for pre-development as shown in Table C-1. Site grading usually makes the slopes gentler than the original topography. The gentler the slope, the higher the infiltration factor and higher the recharge rate post-development. Though grading could enhance recharge compared with pre-development slope factors, we have been conservative and assumed the topographic infiltration factor remains at 0.1 and continues to reflect steep slopes after grading.

Soils at the site are comprised of medium loam to loamy sand as described in Section 3.1. The soils reflect an infiltration factor of 0.35 as shown in Table C-2 for pre-development and post-development.

Cover reflects the presence or absence of a canopy that can shade parts of the site and reduce evaporation. The site in its pre-development state is dominantly shrubs with some treed areas consistent with a cover factor of 0.15 and we assumed the same value for post development.

The total infiltration factors pre-development and post-development are estimated at 0.60.

The Pefferlaw Brook Subwatershed Table documents precipitation surplus rates for various hydrological soil groups. The grain size analyses from ten test pits were plotted on Figure 10 to provide input to selecting appropriate soils groups for evaluating precipitation surplus at the site. Most of the soils across the site range from medium loam to sandy loam with one test result showing silt loam. The soils groups in the LSRCA Pefferlaw Brook Subwatershed Table identify Silt loam and Sandy Loam as two groups on either range of these site soils. This is a small site at 1.7055 ha. and it was deemed appropriate to simplify the selection of a soils group based on the average precipitation surplus values for Sandy Loam and Silt Loam from the table. The average precipitation surplus value for pasture and shrubs within the Sandy Loam to Silt Loam is 314 mm/yr. for pre-development. The average precipitation

surplus value for urban lawns in post-development within the Sandy Loam to Silt Loam is 321 mm/yr.

Recharge is calculated as the product of water surplus (precipitation surplus) x Total Infiltration Factor (0.60). The predevelopment recharge rate for the site is 189 mm/year and the post-development recharge rate for urban lawns is 193 mm/year.

4.2.2 ORMPG Recharge Estimates

The Oak Ridges Moraine Groundwater Program on-line data visualization tools was used as a guide for evaluating recharge rates. We reviewed the recharge model for the area and presented the information in Figure 11. The recharge rates within various blocks (or cells) at or adjacent to the site show recharge rates ranging from about 121 to 562 mm/yr. The lower recharge rates appear to be influenced by urban development with larger impervious areas. The subject property is located mostly within recharge rate cells of 192 mm/year, and this is consistent with recharge rates calculated for this site in Section 4.2.1.

4.3 PRE-DEVELOPMENT & POST-DEVELOPMENT WATER BUDGETS

The existing lands are undeveloped. There are no impermeable surfaces at the site and the soils have been shown to be comprised of heterogeneous mixtures of silty-sand to sandy-silt associated with loamy sand to medium loam. Runoff and infiltration for the pre-development conditions of the site were based on water budget information presented in previous sections. Table C-2 documents the runoff and recharge rates for the pre-development and post-development scenarios.

The pre-development recharge rate for the undeveloped lands was calculated at $3,223 \text{ m}^3/\text{year}$ based on a recharge rate of 189 mm/year. Runoff was calculated at $2,149 \text{ m}^3/\text{year}$ and is expected to be conveyed off-site.

Sources of recharge for post-development include natural infiltration on urban lawns. The impermeable areas of the site include the dwellings and driveways. The total infiltration post-development on urban lawns is estimated at 2,841 m³/year. Table C-2 documents a recharge deficit of 382 m³/year for the site, equivalent to a reduction of about 12% in recharge.

4.4 MITIGATION

Mitigation is recommended to maintain pre-development groundwater recharge rates and to minimize or eliminate compensation fees to LSRCA. Sources of clean runoff to off-set the recharge deficit include roof runoff and runoff from urban lawns.

Rooftop runoff is one source of water to mitigate recharge. Table C-3 documents the total rooftop area at 594 m² for lots 1 and 2. This area of the site was used for recharge mitigation based on the Proposed LID Plan Figure 2.3 of the SCS Functional Servicing Report that is shown as Figure 12 in this report. SCS relies on enhanced swale infiltration in the vicinity of lots 1 and 2. If 90% of the total precipitation is collected from rooftops on lots 1 and 2, up to 480 m³/year of runoff would be available to offset the infiltration deficit of 382 m³/yr. using low impact development measures. The total infiltration after mitigation is estimated at 3,321 m³/yr. and is higher than the pre-development recharge rate of 3,223 m³/yr.

In summary, the runoff available from the rooftops of Lots 1 and 2 exceeds the estimated recharge deficit for the site and this should result in a balanced water budget for recharge.

5.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

The conclusions and recommendations presented below are premised on the data collected and reviewed as part of these investigations:

- The site is predominantly located within the Peterborough Drumlin Field Physiographic Region while a small portion lies within the Simcoe Lowlands Physiographic Region.
- Local topography of the site slopes from the south to the north. Drainage is to the north towards a drainage ditch along Ravenshoe Road that discharges into a tributary of Pefferlaw River.
- The surficial soils at the site are comprised mostly of sandy silt-silty sand, and sandy soils. One test pit location showed silt.
- > Shallow groundwater movement is from south to north through the site.
- A water well reconnaissance survey was conducted at 109 properties surrounding the Site. The results of the survey indicated that the majority of respondents have adequate water quantity.
- Groundwater quality at the on-site shallow groundwater monitors showed the presence of dissolved organic carbon (DOC), alkalinity, and hardness at concentrations above the aesthetic or operational guidelines of the Ontario Drinking Water Quality Standards (ODWQS). The measured parameter values do not restrict the ability to use this water for drinking water purposes. All other parameters tested were less than or within ranges prescribed by the ODWQS.
- The average background nitrate concentration in shallow groundwater in 2019 was 0.86 mg/L and is below the ODWQS of 10 mg/L.
- Hydraulic conductivity tests performed at the three shallow monitors demonstrated hydraulic conductivity between 2.6x10⁻⁷ and 1.6x10⁻⁶ m/sec. The range of values is consistent with the observed materials.
- > The site is located outside of any defined Wellhead Protection Areas.

- The recharge rates for the shallow soils observed at this site were estimated at 188 mm/year for pre-development and 193 mm/year for post-development areas. These values are consistent with the recharge rates documented in the Oak Ridges Moraine Groundwater Program.
- The pre-development recharge was calculated at 3,223 m³/year and the postdevelopment recharge rate was calculated at 2,841 m³/year. The recharge deficit caused by construction of hard covered surfaces in the post-development scenario for this site is calculated at 382 m³/year and represents about a 12% reduction in recharge.
- Sources of clean runoff to off-set the deficit in recharge are available from roof runoff on Lots 1 and 2. The volume of runoff available from these sources can effectively mitigate the estimated recharge deficit for the site. LID measures to promote infiltration include advanced swale infiltration measures proposed by SCS.

Respectfully Submitted,

GAMAN CONSULTANTS INC.

PROFESSION Gay RHards GARY R. HENDY

Gary R. Hendy, P.Eng. Consulting Engineer

6.0 <u>LIMITATIONS AND USE</u>

This report has been prepared for the exclusive use of 2695867 Ontario Inc. for their exclusive use in the evaluation of the area for the proposed development. GAMAN Consultants Inc. accepts no responsibility for any damages incurred by any third party as a result of decisions made, or actions taken based upon the information contained within this report.

All background information used in the preparation of this report has been relied upon in good faith, and GAMAN does not accept any responsibility for any misstatements, inaccuracies, or deficiencies contained in those documents or records. The information contained in this report should be evaluated, interpreted and implemented only in the context of the assignment.

The findings and conclusions included in this report reflect our best judgement in light of the information available at the time of report preparation and site inspection and are valid only at the date of issuance. If additional information is provided in the future, such as the results of additional site-specific assessments or monitoring, GAMAN will be pleased to reevaluate our conclusions contained within this report, and issue amendments, as required.

7.0 <u>REFERENCES</u>

Chapman L.J. and Putnam, D.F., 1984

The Physiography of Southern Ontario, 3rd edition.

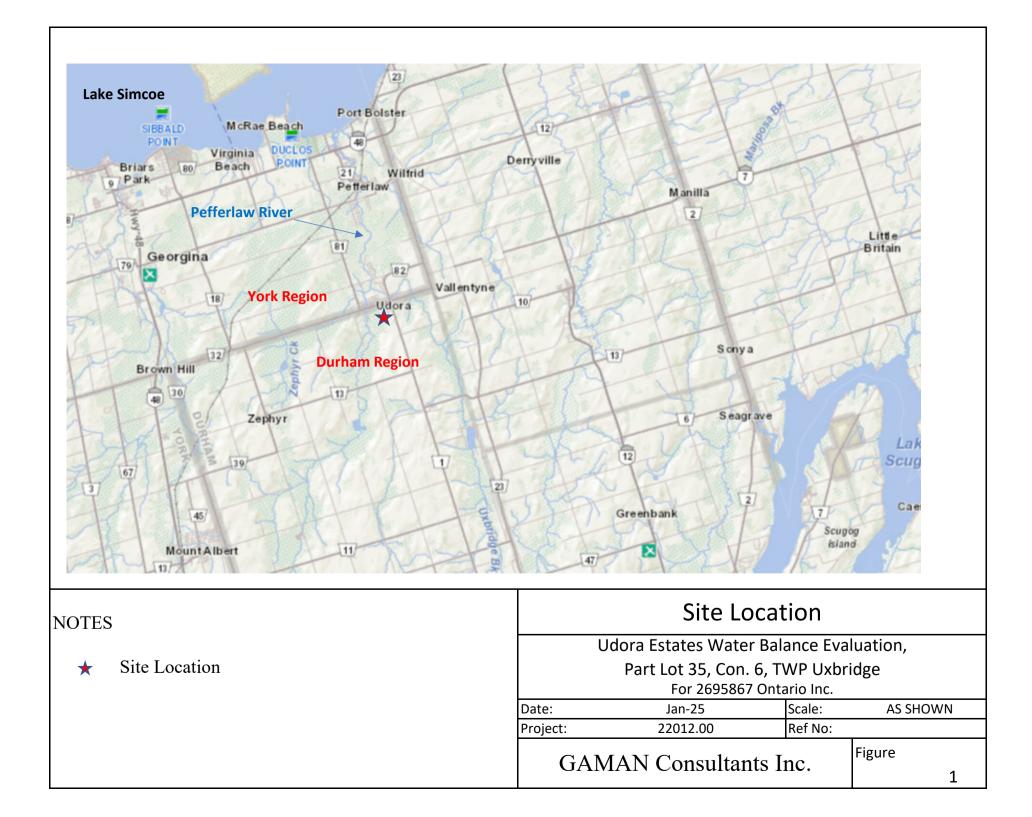
Ontario Geological Survey Special Volume 2; Ministry of Natural Resources.

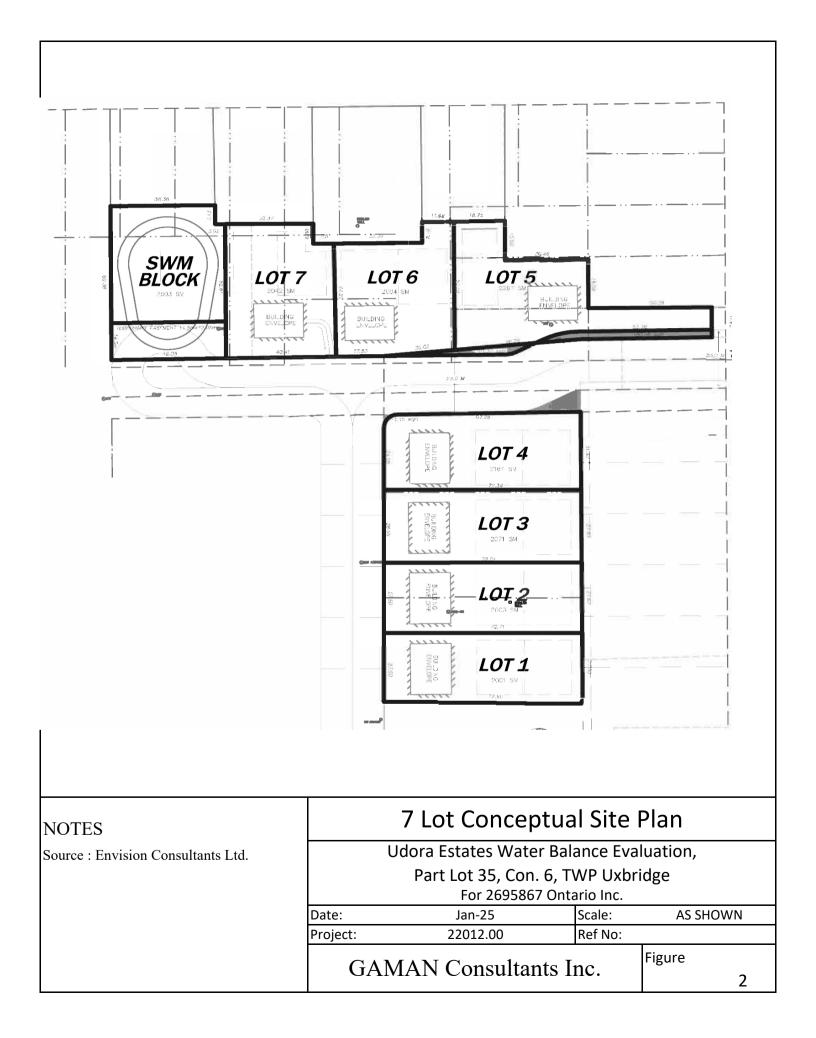
Lake Simcoe Region Conservation Authority, April 2017

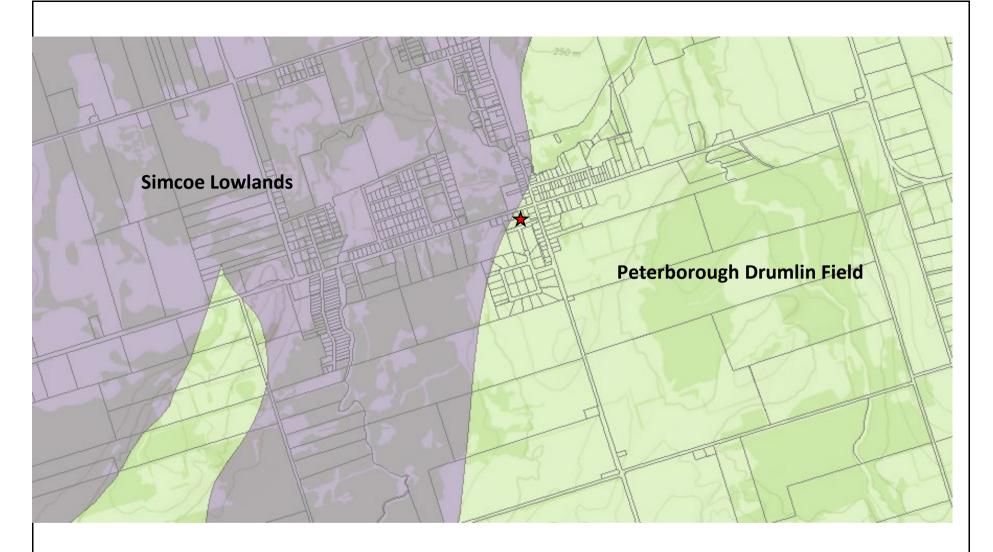
Lake Simcoe Data: A Reference Document to Support the Completion of Water Balance Assessments, Version 1.

Lake Simcoe Region Conservation Authority, June 2013 Hydrogeological Assessment Submissions, Conservation Authority Guidelines for Development Applications.

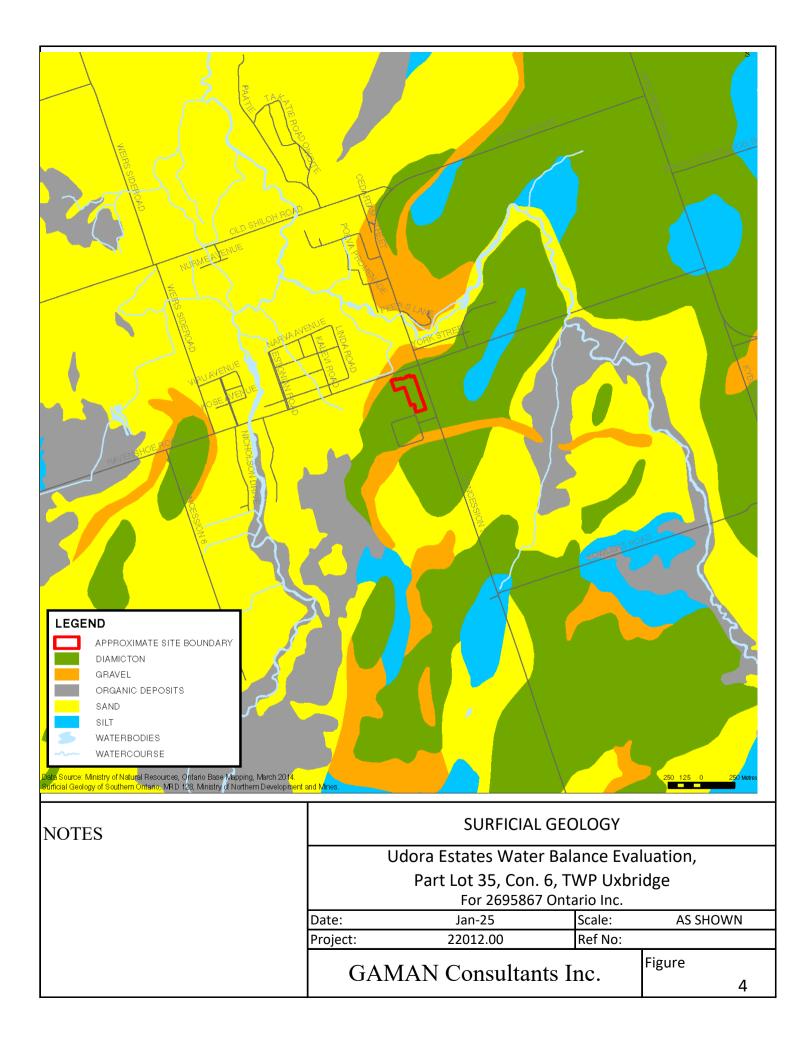
Ministry of Environment Conservation & Parks Water Well Records

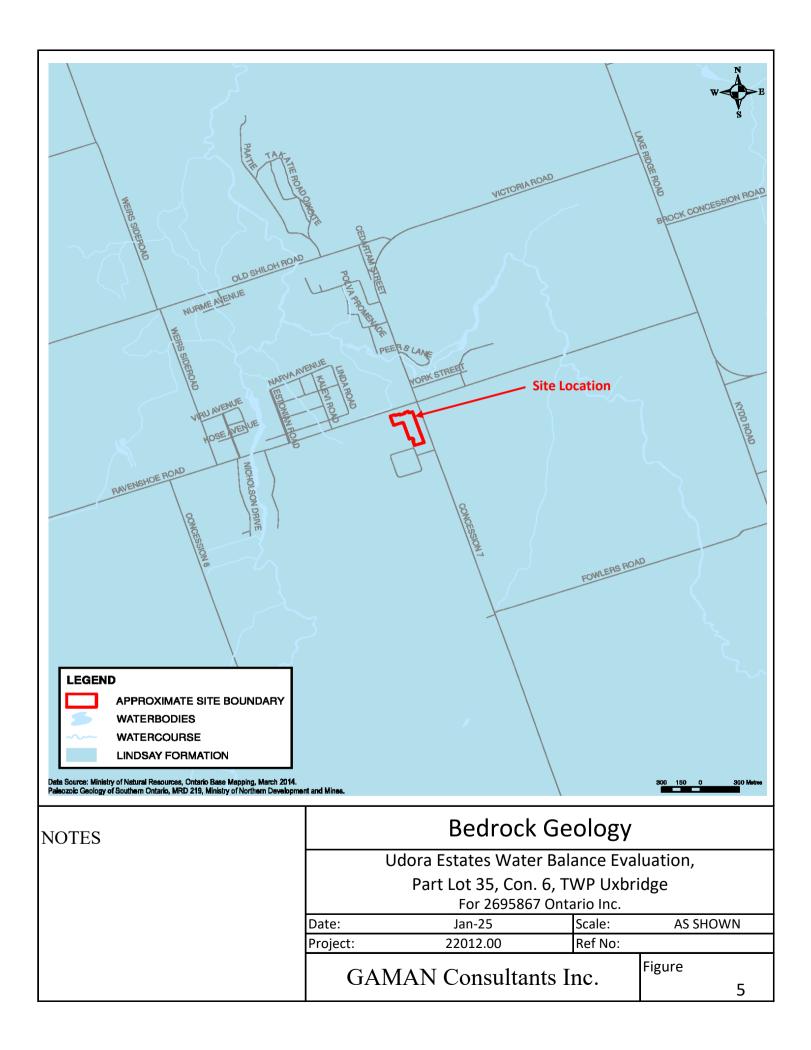

Ministry of Environment Conservation & Parks

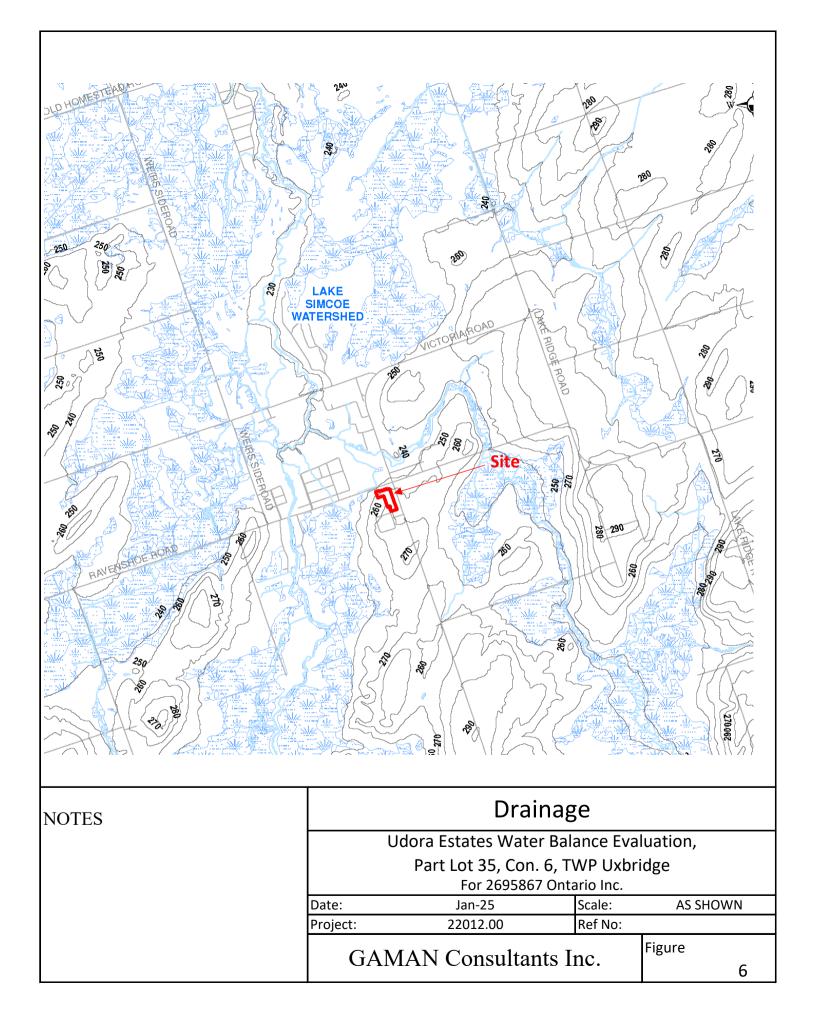

(Revision) Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, 2006

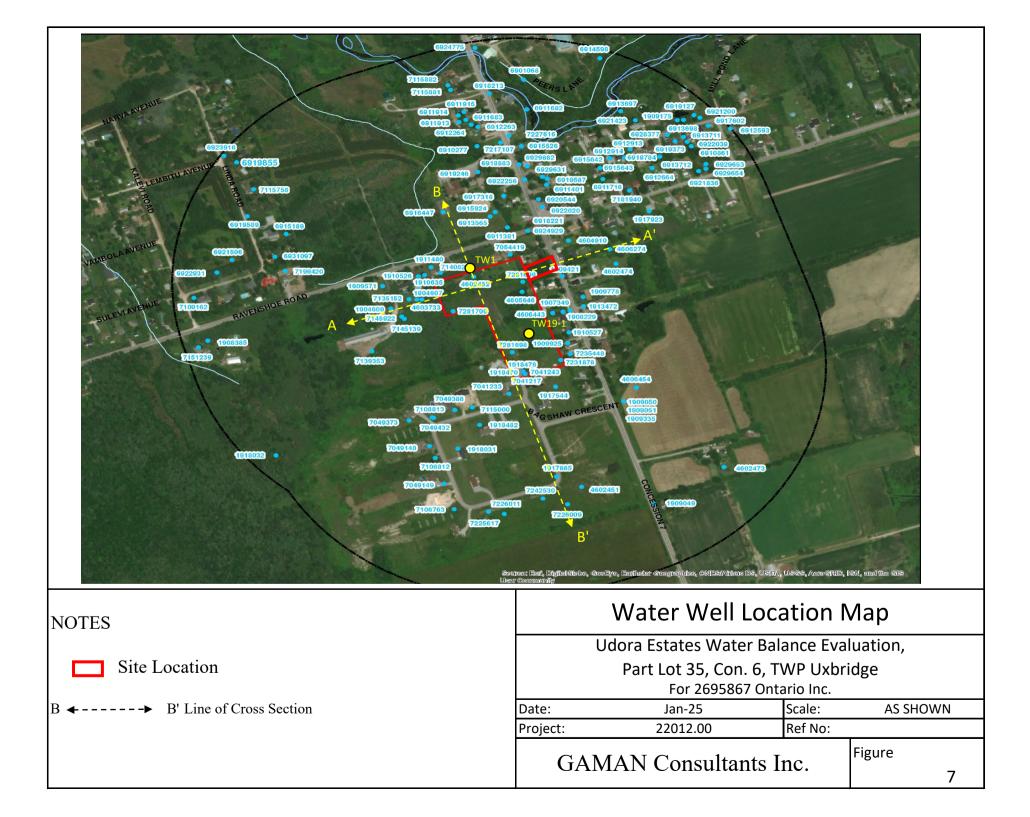

Ministry of Environment Conservation & Parks, 1995 MOEE Hydrogeological Technical Information Requirements for Land Development Applications, ISBN 0-7778-4340-4, April, Queen's Printer.

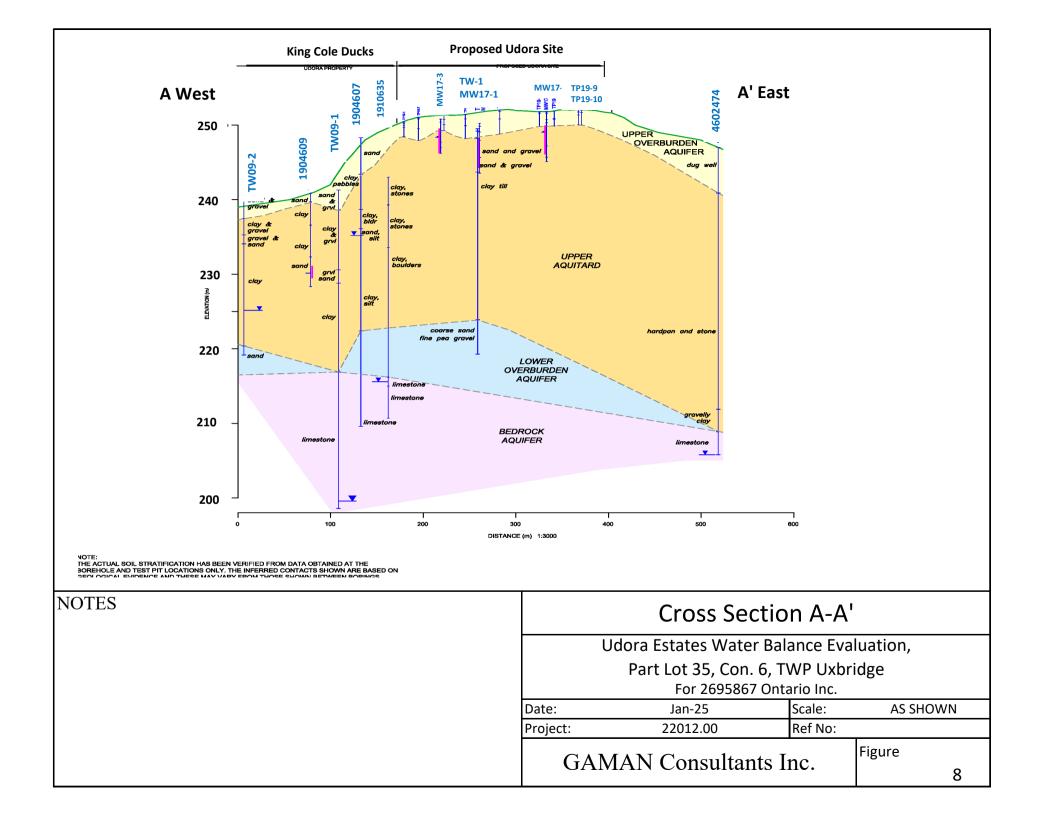
Oak Ridges Moraine Groundwater Program, (Web-based).

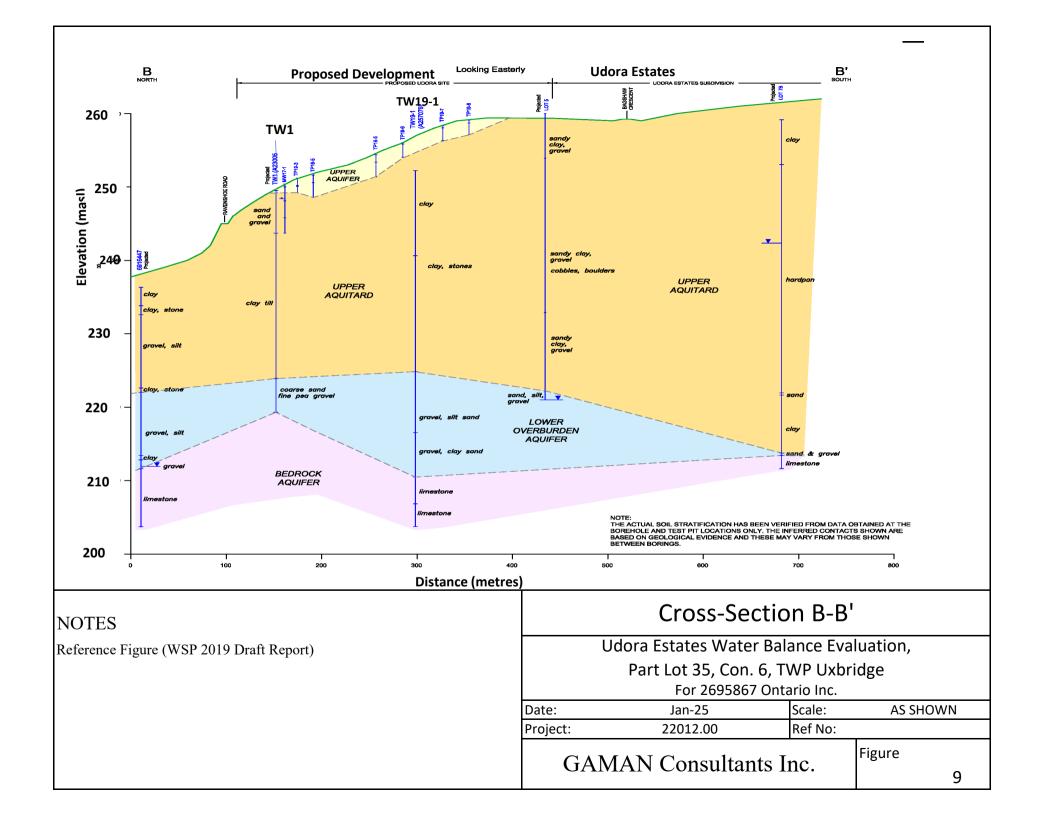

FIGURES

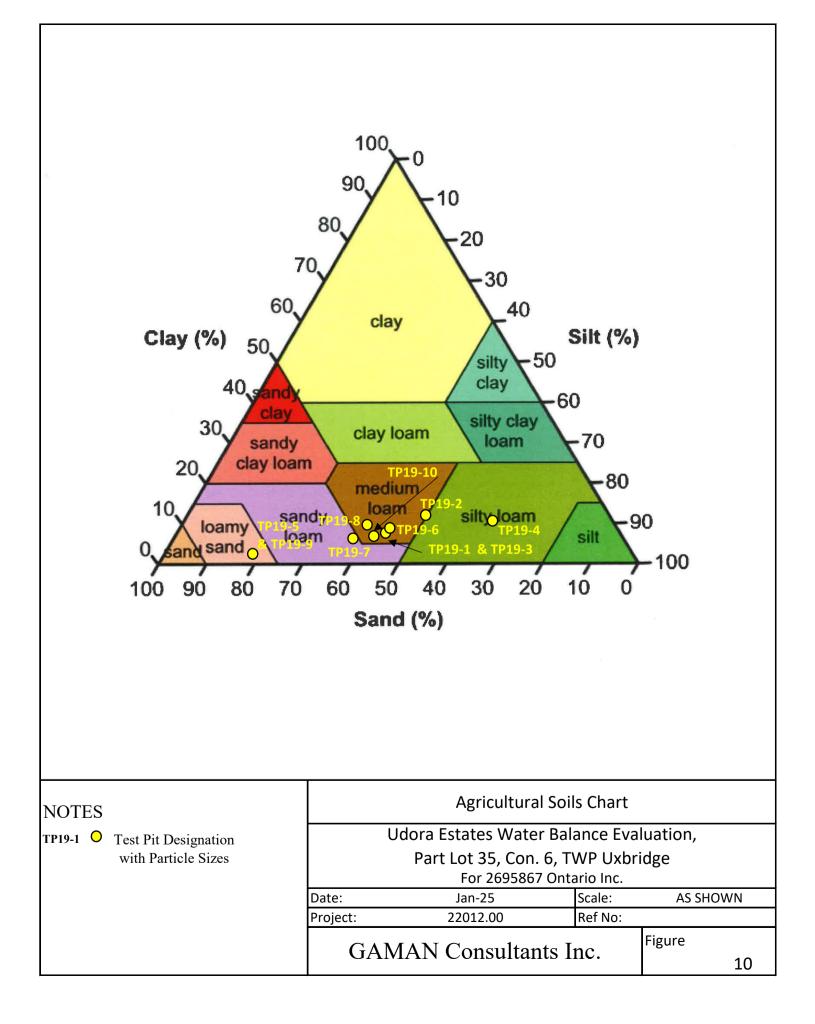


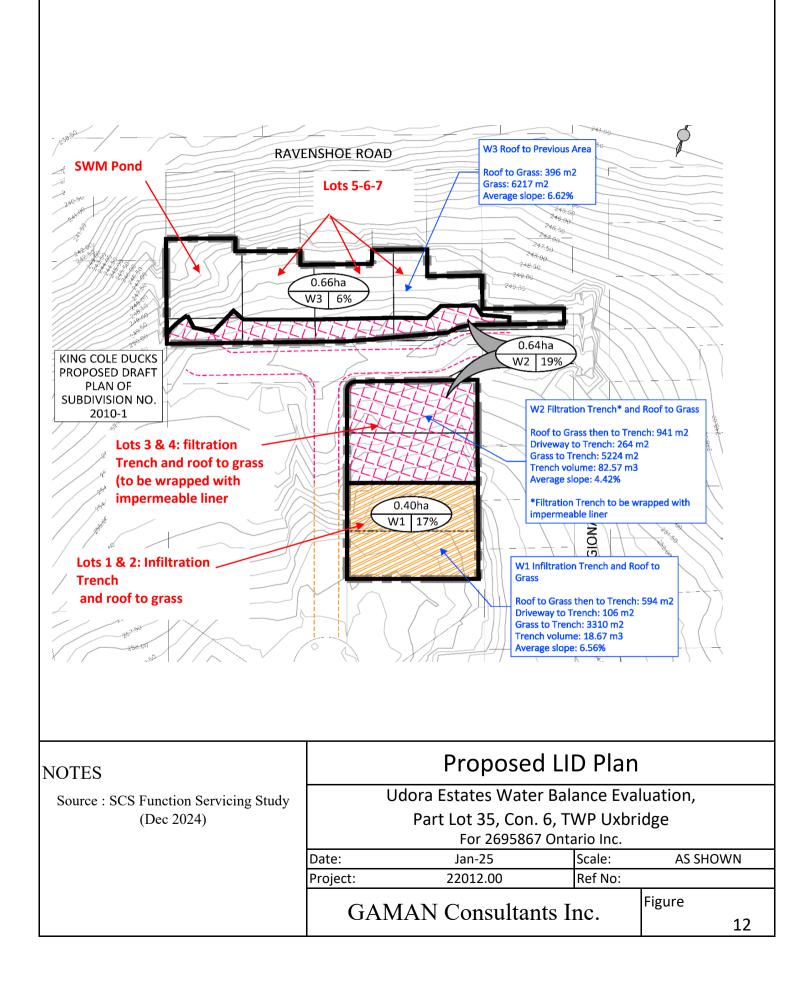





NOTES Physiography		graphy		
★ Site Location	Udora Estates Water Balance Evaluation,			
	Part Lot 35, Con. 6, TWP Uxbridge For 2695867 Ontario Inc.			
	Date: Jan-25	Scale: AS SHOWN		
	Project: 22012.00	Ref No:		
	GAMAN Consultan	nts Inc. Figure 3		







APPENDICES

APPENDIX A

WELL RECORDS WELL RECONNAISSANCE SURVEY

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
1917885	645032	4901420	260.56	24.99							Abandoned-		1917885				
1918470	644968	4901660	260.36		Other Method						Other Abandoned-		1918470				
1910470	044908	4901000	200.30								Supply		1918470				
	644885		260.77	176.00	Rotary (Air)						Abandoned-	23.00		BROWN	SAND	SILTY	GRAVEL
											Supply						
	644885		260.77	176.00	Rotary (Air)						Abandoned- Supply	60.00		GREY	SAND	SILTY	GRAVEL
	644885		260.77	176.00	Rotary (Air)						Abandoned-	141 .50		GREY	CLAY	SANDY	GRAVEL
1918482	644885	4901538	260.77	176.00	Rotary (Air)						Abandoned- Supply	176 .00	1918482	GREY	LIMESTONE		
6911913	644845.7	4902228	234.75	2.13	Cable Tool						Abandoned-	2.13	6911913	BROWN	CLAY	SAND	BOULDERS
6911914	644843.7	4902243	234.59	4.88	Cable Tool						Supply Abandoned-	4.88	6911914	BROWN	CLAY	SAND	BOULDERS
0911914	044645.7	4902245	254.59	4.00	Cable 100						Supply	4.00	0911914	BROWN	CLAT	SAND	BOULDERS
	644854.7		234.74	21.03	Cable Tool						Abandoned-	4.27		BROWN	CLAY	SAND	BOULDERS
											Supply				-		
	644854.7		234.74	21.03	Cable Tool						Abandoned-	10.67		GREY	CLAY	BOULDERS	
											Supply						
	644854.7		234.74	21.03	Cable Tool						Abandoned-	15.24		GREY	CLAY		
	644854.7		234.74	21.03	Cable Tool						Abandoned-	21.03		GREY	CLAY	GRAVEL	BOULDERS
6911915		4902251									Supply		6911915				
6929654	645317.8	4902121	244.21			9					Abandoned-		6929654				
7108813	644797	4901554	256.73						-	-	Other Abandoned-		7108813				
/106615	044797	4901334	230.73								Supply		/108815				
7115758	644452	4902075	233.79								Unknown		7115758				
7140825	644810	4901884	243.57								Abandoned-		7140825				
	644741	4901780	245.50								Other Unknown		_		-		
	044741	4901780	243.30								UTIKHOWH		_				
7145139	644347	4901715	233.61								Unknown		7145139				
	645053		261.54	48.70		48.00	28		LPM		Unknown	5.10		BROWN	CLAY	SAND	
	645053		261.54	48.70		48.00	28		LPM		Unknown	31.00		GREY	CLAY	BOULDERS	
	645053		261.54	48.70		48.00	28		LPM		Unknown	44.00		GREY	CLAY	STONES	LAYERED
	645053		261.54	48.70		48.00	28		LPM	1	Unknown	45.10		GREY	CLAY		SOFT
7226009	645053	4901357	261.54	48.70		48.00	28		LPM		Unknown	48.70	7226009	GREY	LIMESTONE	CLAY	HARD
7226009	645058	4901357 4901700	257.42								Abandoned-	1	7226009			L	ļ
	644764.7	4901823	245.72	38.71	Rotary	13.11	6	27.276	GPM	Domestic	Quality Water Supply	4.88		BROWN	SAND	PACKED	
	644764.7	4901823	245.72	38.71	(Convent.) Rotary (Convent.)	13.11	6	27.276	GPM	Domestic	Water Supply	9.75	-	BLUE	CLAY	STONES	DENSE

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644764.7	4901823	245.72	38.71	Rotary (Convent.)	13.11	6	27.276	GPM	Domestic	Water Supply	12.19		GREY	CLAY	BOULDERS	LOOSE
	644764.7	4901823	245.72	38.71	Rotary (Convent)	13.11	6	27.276	GPM	Domestic	Water Supply	13.11		BLACK	SAND	SILT	LOOSE
	644764.7	4901823	245.72	38.71	(Convent.)	13.11	6	27.276	GPM	Domestic	Water Supply	25.91		GREY	CLAY	SILT	HARD
1904607	644764.7	4901823	245.72	38.71	Rotary (Convent.)	13.11	6	27.276	GPM	Domestic	Water Supply	38.71	в	BROWN	SHALE	HARD	
	644714.7	4901803	242.09	12.50	Rotary (Convent.)	12.50	3	13.638	GPM	Domestic	Water Supply	4.27		BROWN	SAND	PACKED	
	644714.7	4901803	242.09	12.50	Rotary (Convent.)	12.50	3	13.638	GPM	Domestic	Water Supply	8.53		BLUE	CLAY	STONES	DENSE
	644714.7	4901803	242.09	12.50	Rotary (Convent.)	12.50	3	13.638	GPM	Domestic	Water Supply	11.28		GREY	CLAY	STONES	LOOSE
1904609	644714.7	4901803	242.09	12.50	Rotary (Convent.)	12.50	3	13.638	GPM	Domestic	Water Supply	12.50	0	BLACK	SAND	SILT	LOOSE
	645044	4901796	254.86	25.91	Rotary (Convent.)	24.38	3	13.638	GPM	Domestic	Water Supply	4.27		BROWN	CLAY		
	645044	4901796	254.86	25.91	Rotary (Convent.)	24.38	3	13.638	GPM	Domestic	Water Supply	23.77		GREY	CLAY	STONES	HARD
1907349	645044	4901796	254.86	25.91	Rotary (Convent.)	24.38	3	13.638	GPM	Domestic	Water Supply	25.91	0	BROWN	GRAVEL	SAND	
	645057.7	4901799	255.03	24.99	Cable Tool	24.99	7	31.822	GPM	Domestic	Water Supply	0.61			TOPSOIL		
	645057.7	4901799	255.03	24.99	Cable Tool	24.99	7	31.822	GPM	Domestic	Water Supply	3.66			SAND	CLAY	
	645057.7	4901799	255.03	24.99	Cable Tool	24.99	7	31.822	GPM	Domestic	Water Supply	23.16			HARDPAN		
1908229	645057.7	4901799	255.03	24.99	Cable Tool	24.99	7	31.822	GPM	Domestic	Water Supply	24.99	0		SAND	GRAVEL	
	644364.7	4901730	234.05	6.40	Boring	1.52	6	27.276	GPM	Domestic	Water Supply	0.30		BLACK	TOPSOIL		
	644364.7	4901730	234.05	6.40	Boring	1.52	6	27.276	GPM	Domestic	Water Supply	1.52		BROWN	CLAY	STONES	PACKED
	644364.7	4901730	234.05	6.40	Boring	1.52	6	27.276	GPM	Domestic	Water Supply	3.05		BROWN	SAND	WATER-	PACKED
1908385	644364.7	4901730	234.05	6.40	Boring	1.52	6	27.276	GPM	Domestic	Water Supply	6.40	1908385	GREY	CLAY	BEARING PACKED	
	645160		256.34	70.10	Rotary (Convent.)					Domestic	Abandoned- Supply	0.30			TOPSOIL		
	645160		256.34	70.10	Rotary (Convent.)					Domestic	Abandoned- Supply	2.74		BROWN	FINE SAND		
	645160		256.34	70.10	Rotary (Convent.)					Domestic	Abandoned- Supply	3.05	1		STONES		
	645160		256.34	70.10	Rotary (Convent.)				1	Domestic	Abandoned-	19.81	-	GREY	CLAY	GRAVEL	
	645160		256.34	70.10	(Convent) Rotary (Convent.)					Domestic	Abandoned- Supply	24.38	1		LIMESTONE	ROCK	
1909050	645160	4901592	256.34	70.10	Rotary (Convent.)					Domestic	Abandoned- Supply	70.10	1909050		LIMESTONE	ROCK	
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	0.30			TOPSOIL		

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	0.91			SAND		
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	4.88	_	BROWN	CLAY	GRAVEL	SANDSTON
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	6.71	_	GREY	CLAY	GRAVEL	STONES
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	18 .59		GREY	CLAY	GRAVEL	
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	24.69			FINE GRAVEL	LAYERED	CLAY
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	26.52			LIMESTONE	ROCK	
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	28.35		GREY	CLAY	GRAVEL	
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	29.26		GREY	MEDIUM SAND		
	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	37.49		GREY	CLAY	GRAVEL	
1909051	645160	4901592	256.34	39.01	Diamond	28.35	5	22.73	GPM	Domestic	Water Supply	39.01	В	GREY	LIMESTONE	ROCK	
	645263	4902232	235.26	22.86	Cable Tool	21.34	15	68.19	GPM	Domestic	Water Supply	3.05		BROWN	SAND		
	645263	4902232	235.26	22.86	Cable Tool	21.34	15	68.19	GPM	Domestic	Water Supply	3.96			GRAVEL		
	645263	4902232	235.26	22.86	Cable Tool	21.34	15	68.19	GPM	Domestic	Water Supply	17.37		GREY	CLAY	SAND	
	645263	4902232	235.26	22.86	Cable Tool	21.34	15	68.19	GPM	Domestic	Water Supply	19.20			GRAVEL		
	645263	4902232	235.26	22.86	Cable Tool	21.34	15	68.19	GPM	Domestic	Water Supply	21.34		GREY	CLAY	STONES	
1909175	645263	4902232	235.26	22.86	Cable Tool	21.34	15	68.19	GPM	Domestic	Water Supply	22.86	0		COARSE SAND		
	645160	4901592	256.34	21.34	Cable Tool	17.98	4	18.184	GPM	Domestic	Water Supply	3.05		GREY	CLAY	SANDY	
	645160	4901592	256.34	21.34	Cable Tool	17.98	4	18.184	GPM	Domestic	Water Supply	12.19		GREY	SANDSTONE		
	645160	4901592	256.34	21.34	Cable Tool	17.98	4	18.184	GPM	Domestic	Water Supply	17.98		GREY	CLAY	GRAVELLY	
909335	645160	4901592	256.34	21.34	Cable Tool	17.98	4	18.184	GPM	Domestic	Water Supply	21.34	В	GREY	LIMESTONE		
	645043	4901877	251.47	13.41	Rotary (Convent.)	12.19	6	27.276	GPM	Domestic	Water Supply	1.52		BLUE	CLAY		
	645043	4901877	251.47	13.41	Rotary (Convent.)	12.19	6	27.276	GPM	Domestic	Water Supply	11.89		BROWN	CLAY	STONES	
909421	645043	4901877	251.47	13.41	(Convent.) (Convent.)	12.19	6	27.276	GPM	Domestic	Water Supply	13.41	0	BROWN	SAND	STONES	
	644699	4901854	239.78	7.32	Boring	3.66	6	27.276	GPM	Domestic	Water Supply	0.61		BLACK	TOPSOIL		
	644699	4901854	239.78	7.32	Boring	3.66	6	27.276	GPM	Domestic	Water Supply	3.66		BROWN	CLAY	STONES	PACKED
	644699	4901854	239.78	7.32	Boring	3.66	6	27.276	GPM	Domestic	Water Supply	6.10	_	GREY	CLAY	LAYERED	WATER-

Well ID	x	У	Elevation (m)		Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
1909571	644699	4901854	239.78	7.32	Boring	3.66	6	27.276	GPM	Domestic	Water Supply	7.32	1909571	GREY	CLAY	STONES	CEMENTED
	645082	4901829	253.55	40.54	Cable Tool	39.62	80	363.68	GPM	Domestic	Water Supply	21.34		BROWN	CLAY	STONEY	
	645082	4901829	253.55	40.54	Cable Tool	39.62	80	363.68	GPM	Domestic	Water Supply	25.91		GREY	CLAY	STONEY	
	645082	4901829	253.55	40.54	Cable Tool	39.62	80	363.68	GPM	Domestic	Water Supply	28.96		WHITE	CLAY	STONEY	
	645082	4901829	253.55	40.54	Cable Tool	39.62	80	363.68	GPM	Domestic	Water Supply	39.62		GREY	CLAY	SANDY	
	645082	4901829	253.55	40.54	Cable Tool	39.62	80	363.68	GPM	Domestic	Water Supply	40.54		GREY	SAND	GRAVEL	
1909778	645082	4901829	253.55	40.54	Cable Tool	39.62	80	363.68	GPM	Domestic	Water Supply	40.54	В	WHITE	LIMESTONE		
	645053.7	4901725	256.87	18.29	Cable Tool	18.29	20	90.92	GPM	Domestic	Water Supply	2.44		BROWN	SAND	GRAVEL	
	645053.7	4901725	256.87	18.29	Cable Tool	18.29	20	90.92	GPM	Domestic	Water Supply	15 .24		GREY	SAND	GRAVEL	BOULDERS
	645053.7	4901725	256.87	18.29	Cable Tool	18.29	20	90.92	GPM	Domestic	Water Supply	17.07		BLUE	SAND	CLAY	
1909925	645053.7	4901725	256.87	18.29	Cable Tool	18.29	20	90.92	GPM	Domestic	Water Supply	18.29	0	BROWN	SAND	GRAVEL	
	644767.7	4901876	241.68	27.13	Rotary (Convent.)	22.25	10	45.46	GPM	Domestic	Water Supply	0.61		BROWN	CLAY	TOPSOIL	SOFT
	644767.7	4901876	241.68	27.13	(Convent.) (Convent.)	22.25	10	45.46	GPM	Domestic	Water Supply	2.44		BROWN	GRAVEL	CLAY	LOOSE
	644767.7	4901876	241.68	27.13	(Convent.) Rotary (Convent.)	22.25	10	45.46	GPM	Domestic	Water Supply	5.49		GREY	CLAY	SOFT	
	644767.7	4901876	241.68	27.13	(Convent.) Rotary (Convent.)	22.25	10	45.46	GPM	Domestic	Water Supply	22.25		BLUE	CLAY	SANDY	HARD
1910526	644767.7	4901876	241.68	27.13	(Convent.) Rotary (Convent.)	22.25	10	45.46	GPM	Domestic	Water Supply	27.13	В	GREY	LIMESTONE	HARD	
	645055.7	4901749	256.00	44.20	(Convent.) Rotary (Convent.)	43.28	12	54.552	GPM	Domestic	Water Supply	0.61		BROWN	SAND	FILL	LOOSE
	645055.7	4901749	256.00	44.20	(Convent.) Rotary (Convent.)	43.28	12	54.552	GPM	Domestic	Water Supply	8.23		BROWN	CLAY	STONES	HARD
	645055.7	4901749	256.00	44.20	Rotary	43.28	12	54.552	GPM	Domestic	Water Supply	39.93	-	GREY	CLAY	BOULDERS	SILT
1910527	645055.7	4901749	256.00	44.20	(Convent) Rotary (Convent.)	43.28	12	54.552	GPM	Domestic	Water Supply	44.20	В	GREY	LIMESTONE	HARD	
	644779.7	4901879	241.82	32.31	(Convent.) Rotary (Convent.)	26.82	8	36.368	GPM	Domestic	Water Supply	3.66		BROWN	CLAY	STONES	HARD
	644779.7	4901879	241.82	32.31	Rotary	26.82	8	36.368	GPM	Domestic	Water Supply	9.45		BLUE	CLAY	STONES	SOFT
	644779.7	4901879	241.82	32.31	(Convent.) Rotary	26.82	8	36.368	GPM	Domestic	Water Supply	26.82	1	BLUE	CLAY	BOULDERS	HARD
	644779.7	4901879	241.82	32.31	(Convent.) Rotary	26.82	8	36.368	GPM	Domestic	Water Supply	28.04	-	GREY	LIMESTONE	SHALE	
1910635	644779.7	4901879	241.82	32.31	(Convent.) Rotary (Convent.)	26.82	8	36.368	GPM	Domestic	Water Supply	32.31	В	GREY	LIMESTONE	HARD	
	644791.7	4901897	240.00	35.05	Cable Tool	32.92	5	22.73	GPM	Domestic	Water Supply	6.10		BROWN	CLAY	SOFT	

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644791.7	4901897	240.00	35.05	Cable Tool	32.92	5	22.73	GPM	Domestic	Water Supply	8.53		GREY	CLAY		
	644791.7	4901897	240.00	35.05	Cable Tool	32.92	5	22.73	GPM	Domestic	Water Supply	26.52		GREY	CLAY	STONES	
	644791.7	4901897	240.00	35.05	Cable Tool	32.92	5	22.73	GPM	Domestic	Water Supply	30.48	-	GREY	CLAY		
	644791.7	4901897	240.00	35.05	Cable Tool	32.92	5	22.73	GPM	Domestic	Water Supply	32.00	-	GREY	CLAY	GRAVEL	
	644791.7	4901897	240.00	35.05	Cable Tool	32.92	5	22.73	GPM	Domestic	Water Supply	32.92		GREY	SAND	CLAY	SILT
1911480	644791.7	4901897	240.00	35.05	Cable Tool	32.92	5	22.73	GPM	Domestic	Water Supply	35.05	0	GREY	SHALE		
	645083	4901808	254.39	23.77	Rotary (Convent.)	23.77	8	36.368	GPM	Domestic	Water Supply	0.30		BLACK	TOPSOIL	PACKED	
	645083	4901808	254.39	23.77	Rotary (Convent.)	23.77	8	36.368	GPM	Domestic	Water Supply	8.53		BROWN	CLAY	STONES	HARD
	645083	4901808	254.39	23.77	Rotary (Convent.)	23.77	8	36.368	GPM	Domestic	Water Supply	19.20		GREY	CLAY	STONES	HARD
	645083	4901808	254.39	23.77	Rotary (Convent.)	23.77	8	36.368	GPM	Domestic	Water Supply	22.86		GREY	SAND	STONES	LOOSE
1913472	645083	4901808	254.39	23.77	Rotary (Convent.)	23.77	8	36.368	GPM	Domestic	Water Supply	23.77	0	GREY	STONES	CLAY	HARD
	645209	4902025	242.26	33.53	Rotary (Air)	33.00	75	75	LPM	Domestic	Water Supply	6.71		BROWN	SAND		
	645209	4902025	242.26	33.53	Rotary (Air)	33.00	75	75	LPM	Domestic	Water Supply	28.66		GREY	CLAY	STONES	
1917923	645209	4902025	242.26	33.53	Rotary (Air)	33.00	75	75	LPM	Domestic	Water Supply	33.53	в	GREY	LIMESTONE		
	644843		260.78	37.80	Rotary (Air)	36.88	4		LPM	Domestic	Test Hole	4.57		BROWN	SAND	CLAY	STONES
	644843		260.78	37.80	Rotary (Air)	36.88	4		LPM	Domestic	Test Hole	6.10		BROWN	SAND	GRAVEL	
	644843		260.78	37.80	Rotary (Air)	36.88	4		LPM	Domestic	Test Hole	9.75		GREY	CLAY	SILT	SOFT
	644843		260.78	37.80	Rotary (Air)	36.88	4		LPM	Domestic	Test Hole	12.19		BROWN	CLAY	SILT	SOFT
	644843		260.78	37.80	Rotary (Air)	36.88	4		LPM	Domestic	Test Hole	28.96		GREY	CLAY		
	644843		260.78	37.80	Rotary (Air)	36.88	4		LPM	Domestic	Test Hole	29.87		GREY	GRAVEL	SILT	
	644843		260.78	37.80	Rotary (Air)	36.88	4		LPM	Domestic	Test Hole	36.88		GREY	SILT	SAND	
1918031	644843	4901484	260.78	37.80	Rotary (Air)	36.88	4		LPM	Domestic	Test Hole	37.80	1918031	BROWN	SAND		
	644495		237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	0.61		BROWN	TOPSOIL		
	644495		237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	8.84	1	BROWN	SAND	CLAY	
	644495		237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	9.14	1	BROWN	GRAVEL		
	644495		237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	27.74	1	GREY	CLAY		

Well ID	x	У	Elevation (m)	Well Depth (m)		Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644495		237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	29.57		BROWN	CLAY		
	644495		237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	38.10		GREY	CLAY		
	644495		237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	38.71		GREY	SAND		
	644495		237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	43.89		GREY	CLAY		
1918032	644495	4901469	237.22	48.16	Rotary (Air)	47.85	5		LPM	Domestic	Test Hole	48.16	1918032	BROWN	ROCK		
	644968	4901660	260.36	77.94	Rotary (Air)	43.13	3	13.638	GPM	Domestic	Water Supply	4.88		BROWN	CLAY	SILTY	GRAVEL
	644968	4901660	260.36	77.94	Rotary (Air)	43.13	3	13.638	GPM	Domestic	Water Supply	31.39		GREY	CLAY	SANDY	GRAVEL
	644968	4901660	260.36	77.94	Rotary (Air)	43.13	3	13.638	GPM	Domestic	Water Supply	39.32		GREY	CLAY	SANDY	SILT
	644968	4901660	260.36	77.94	Rotary (Air)	43.13	3	13.638	GPM	Domestic	Water Supply	43.13		GREY	CLAY	SANDY	GRAVEL
1918476	644968	4901660	260.36	77.94	Rotary (Air)	43.13	3	13.638	GPM	Domestic	Water Supply	77.94	в	GREY	LIMESTONE		
	644873.7	4901875	249.89	36.58	Cable Tool	35.05	2	9.092	GPM	Domestic	Water Supply	7.62			PREVIOUSLY DUG		
	644873.7	4901875	249.89	36.58	Cable Tool	35.05	2	9.092	GPM	Domestic	Water Supply	14.63		GREY	MEDIUM		
	644873.7	4901875	249.89	36.58	Cable Tool	35.05	2	9.092	GPM	Domestic	Water Supply	27.74		GREY	CLAY	GRAVEL	
4602452	644873.7	4901875	249.89	36.58	Cable Tool	35.05	2	9.092	GPM	Domestic	Water Supply	36.58	в		LIMESTONE		
	645145.7	4901905	245.99	41.15	Cable Tool	38.10	7	31.822	GPM	Domestic	Water Supply	6.10			PREVIOUSLY DUG		
	645145.7	4901905	245.99	41.15	Cable Tool	38.10	7	31.822	GPM	Domestic	Water Supply	35.05			HARDPAN	STONES	
	645145.7	4901905	245.99	41.15	Cable Tool	38.10	7	31.822	GPM	Domestic	Water Supply	38.10			CLAY	GRAVEL	
4602474	645145.7	4901905	245.99	41.15	Cable Tool	38.10	7	31.822	GPM	Domestic	Water Supply	41.15	в		LIMESTONE		
	645054.7	4901958	246.44	8.53	Boring	3.05	10	45.46	GPM	Domestic	Water Supply	0.30		BLACK	TOPSOIL		
	645054.7	4901958	246.44	8.53	Boring	3.05	10	45.46	GPM	Domestic	Water Supply	3.05		BROWN	CLAY		
	645054.7	4901958	246.44	8.53	Boring	3.05	10	45.46	GPM	Domestic	Water Supply	3.35		BROWN	CLAY	SILT	
	645054.7	4901958	246.44	8.53	Boring	3.05	10	45.46	GPM	Domestic	Water Supply	6.40		BLUE	CLAY	STONES	
	645054.7	4901958	246.44	8.53	Boring	3.05	10	45.46	GPM	Domestic	Water Supply	7.01	1	BLUE	CLAY	SILT	
4604910	645054.7	4901958	246.44	8.53	Boring	3.05	10	45.46	GPM	Domestic	Water Supply	8.53	4604910	BLUE	CLAY	STONES	
	644965.7	4901841	253.97	43.28	Rotary (Convent.)	43.28	6	27.276	GPM	Domestic	Water Supply	6.10		BROWN	CLAY	STONES	
	644965.7	4901841	253.97	43.28	(Convent.)	43.28	6	27.276	GPM	Domestic	Water Supply	40.54		BLUE	CLAY	STONES	

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
4605646	644965.7	4901841	253.97	43.28	Rotary	43.28	6	27.276	GPM	Domestic	Water Supply	43.28	В	GREY	LIMESTONE		
SAND					(Convent.)								В				
	645133.7	4901938	245.45	15.24	Cable Tool	14.02	6	27.276	GPM	Domestic	Water Supply	0.61		BLACK	TOPSOIL		
	645133.7	4901938	245.45	15.24	Cable Tool	14.02	6	27.276	GPM	Domestic	Water Supply	3.05		BROWN	CLAY	BOULDERS	
	645133.7	4901938	245.45	15.24	Cable Tool	14.02	6	27.276	GPM	Domestic	Water Supply	12.19		GREY	CLAY	GRAVEL	
4606274	645133.7	4901938	245.45	15.24	Cable Tool	14.02	6	27.276	GPM	Domestic	Water Supply	15 .24	0	GREY	CLAY	GRAVEL	
4000274	645024.7	4901793	255.09	45.72	Cable Tool	41.76	15	68.19	GPM	Domestic	Water Supply	0.61	0	BLACK	TOPSOIL		
	645024.7	4901793	255.09	45.72	Cable Tool	41.76	15	68.19	GPM	Domestic	Water Supply	6.10	_	BROWN	CLAY	STONES	HARD
	645024.7	4901793	255.09	45.72	Cable Tool	41.76	15	68.19	GPM	Domestic	Water Supply	22.86		BLUE	CLAY	STONES	HARDPAN
	645024.7	4901793	255.09	45.72	Cable Tool	41.76	15	68.19	GPM	Domestic	Water Supply	23.77		GREY	GRAVEL	CLAY	
	645024.7	4901793	255.09	45.72	Cable Tool	41.76	15	68.19	GPM	Domestic	Water Supply	40.54	-	GREY	CLAY	STONES	HARDPAN
4606443	645024.7	4901793	255.09	45.72	Cable Tool	41.76	15	68.19	GPM	Domestic	Water Supply	45.72	В	WHITE	LIMESTONE	HARD	
	645184.7	4901623	255.56	43.89	Cable Tool	41.15	15	68.19	GPM	Domestic	Water Supply	6.10		BROWN	CLAY	SAND	
	645184.7	4901623	255.56	43.89	Cable Tool	41.15	15	68.19	GPM	Domestic	Water Supply	9.14		BROWN	CLAY	STONES	
	645184.7	4901623	255.56	43.89	Cable Tool	41.15	15	68.19	GPM	Domestic	Water Supply	18.29		BLUE	CLAY	STONES	HARDPAN
	645184.7	4901623	255.56	43.89	Cable Tool	41.15	15	68.19	GPM	Domestic	Water Supply	27.43		BLUE	CLAY	GRAVEL	LAYERED
	645184.7	4901623	255.56	43.89	Cable Tool	41.15	15	68.19	GPM	Domestic	Water Supply	39.32		BLUE	CLAY	BOULDERS	HARDPAN
4606454	645184.7	4901623	255.56	43.89	Cable Tool	41.15	15	68.19	GPM	Domestic	Water Supply	43.89	В	WHITE	LIMESTONE	FRACTURED	
	644879.7	4902173	234.64	12.50	Cable Tool	12.50	10	45.46	GPM	Domestic	Water Supply	3.66		BROWN	CLAY	MEDIUM SAND	
	644879.7	4902173	234.64	12.50	Cable Tool	12.50	10	45.46	GPM	Domestic	Water Supply	12.19		BLUE	CLAY	STONES	
6910277	644879.7	4902173	234.64	12.50	Cable Tool	12.50	10	45.46	GPM	Domestic	Water Supply	12.50	0	GREY	GRAVEL	MEDIUM SAND	
	645289.7	4902173	240.83	18.90	Rotary	18.90	20	90.92	GPM	Domestic	Water Supply	6.10		BROWN	SAND	SAND	
	645289.7	4902173	240.83	18.90	(Convent.) Rotary (Convent.)	18.90	20	90.92	GPM	Domestic	Water Supply	12.50	-	BLUE	CLAY		
	645289.7	4902173	240.83	18.90	Rotary	18.90	20	90.92	GPM	Domestic	Water Supply	15.24	-	GREY	CLAY	SILT	STONES
6910861	645289.7	4902173	240.83	18.90	(Convent) Rotary (Convent.)	18.90	20	90.92	GPM	Domestic	Water Supply	18.90	0	GREY	SAND	GRAVEL	STONES
	644937.7	4901988	242.15	14.63	Rotary (Convent.)	14.63	6	27.276	GPM	Domestic	Water Supply	5.49	-	BROWN	CLAY	STONES	

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644937.7	4901988	242.15	14.63	Rotary (Convent.)	14.63	6	27.276	GPM	Domestic	Water Supply	10.97		GREY	CLAY	STONES	BOULDERS
6911381	644937.7	4901988	242.15	14.63	Rotary (Convent.)	14.63	6	27.276	GPM	Domestic	Water Supply	14.63	0	GREY	SAND	GRAVEL	
	645012.7	4902085	237.54	24.99	Rotary (Convent.)	24.99	10	45.46	GPM	Domestic	Water Supply	0.91		BROWN	CLAY		
	645012.7	4902085	237.54	24.99	Rotary (Convent.)	24.99	10	45.46	GPM	Domestic	Water Supply	3.66		BROWN	GRAVEL		
	645012.7	4902085	237.54	24.99	Rotary (Convent.)	24.99	10	45.46	GPM	Domestic	Water Supply	24.69		BLUE	CLAY	SILT	STONES
6911401	645012.7	4902085	237.54	24.99	Rotary (Convent.)	24.99	10	45.46	GPM	Domestic	Water Supply	24.99	0	GREY	GRAVEL		
	644975.7	4902257	230.66	18.90	Rotary (Convent.)	13.72	5	22.73	GPM	Domestic	Water Supply	1.83		BROWN	SAND	GRAVEL	
	644975.7	4902257	230.66	18.90	Rotary (Convent.)	13.72	5	22.73	GPM	Domestic	Water Supply	4.27		BROWN	GRAVEL		
	644975.7	4902257	230.66	18.90	Rotary (Convent.)	13.72	5	22.73	GPM	Domestic	Water Supply	13 .72		BLUE	CLAY	STONES	
	644975.7	4902257	230.66	18.90	Rotary (Convent)	13.72	5	22.73	GPM	Domestic	Water Supply	14.02		GREY	SAND		
	644975.7	4902257	230.66	18.90	Rotary (Convent.)	13.72	5	22.73	GPM	Domestic	Water Supply	18 .59		BLUE	CLAY	STONES	
6911682	644975.7	4902257	230.66	18.90	Rotary (Convent.)	13.72	5	22.73	GPM	Domestic	Water Supply	18.90	В	GREY	LIMESTONE		
	644858.7	4902233	235.02	28.04	Rotary (Convent.)	10.67	8	36.368	GPM	Domestic	Water Supply	2.44		BROWN	CLAY	STONES	
	644858.7	4902233	235.02	28.04	Rotary (Convent.)	10.67	8	36.368	GPM	Domestic	Water Supply	10.67		GREY	CLAY	STONES	
	644858.7	4902233	235.02	28.04	Rotary (Convent.)	10.67	8	36.368	GPM	Domestic	Water Supply	10.97		GREY	GRAVEL		
	644858.7	4902233	235.02	28.04	Rotary (Convent.)	10.67	8	36.368	GPM	Domestic	Water Supply	19.51		GREY	CLAY	BOULDERS	STONES
6911683	644858.7	4902233	235.02	28.04	Rotary (Convent.)	10.67	8	36.368	GPM	Domestic	Water Supply	28.04	в	GREY	LIMESTONE		
	645120.7	4902098	238.91	34.75	Rotary (Convent.)	29.26	4	18.184	GPM	Domestic	Water Supply	0.61		BROWN	SAND	FILL	
	645120.7	4902098	238.91	34.75	Rotary (Convent.)	29.26	4	18.184	GPM	Domestic	Water Supply	0.91		BLACK	TOPSOIL		
	645120.7	4902098	238.91	34.75	Rotary (Convent.)	29.26	4	18.184	GPM	Domestic	Water Supply	6.10		BROWN	CLAY	STONES	BOULDERS
	645120.7	4902098	238.91	34.75	Rotary (Convent)	29.26	4	18.184	GPM	Domestic	Water Supply	28.65		GREY	CLAY	STONES	BOULDERS
	645120.7	4902098	238.91	34.75	Rotary (Convent.)	29.26	4	18.184	GPM	Domestic	Water Supply	29.26	7	GREY	GRAVEL		
6911716	645120.7	4902098	238.91	34.75	Rotary (Convent.)	29.26	4	18.184	GPM	Domestic	Water Supply	34.75	В	GREY	LIMESTONE		
	644881.7	4902217	235.12	19.81	Cable Tool	19.51	13	59.098	GPM	Domestic	Water Supply	3.66		BLUE	CLAY		
	644881.7	4902217	235.12	19.81	Cable Tool	19.51	13	59.098	GPM	Domestic	Water Supply	7.32]	GREY	GRAVEL		
	644881.7	4902217	235.12	19.81	Cable Tool	19.51	13	59.098	GPM	Domestic	Water Supply	18.59		BLUE	CLAY	STONES	

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
6912263	644881.7	4902217	235.12	19.81	Cable Tool	19.51	13	59.098	GPM	Domestic	Water Supply	19.81	В	GREY	LIMESTONE		
	644868.7	4902222	235.01	18.59	Cable Tool	17.37	20	90.92	GPM	Domestic	Water Supply	5.49		YELLOW	SAND	CLAY	
	644868.7	4902222	235.01	18.59	Cable Tool	17.37	20	90.92	GPM	Domestic	Water Supply	7.32		GREY	BOULDERS		
	644868.7	4902222	235.01	18.59	Cable Tool	17.37	20	90.92	GPM	Domestic	Water Supply	13 .72		BLUE	CLAY	SAND	
	644868.7	4902222	235.01	18.59	Cable Tool	17.37	20	90.92	GPM	Domestic	Water Supply	17.37		BROWN	CLAY	SAND	
6912264	644868.7	4902222	235.01	18.59	Cable Tool	17.37	20	90.92	GPM	Domestic	Water Supply	18 .59	0	BROWN	SAND	GRAVEL	
	645364.7	4902213	242.82	25.91	Cable Tool	24.99	10	45.46	GPM	Domestic	Water Supply	3.66			SAND	STONES	
	645364.7	4902213	242.82	25.91	Cable Tool	24.99	10	45.46	GPM	Domestic	Water Supply	9.75			GRAVEL	STONES	
	645364.7	4902213	242.82	25.91	Cable Tool	24.99	10	45.46	GPM	Domestic	Water Supply	24.99			STONES		
6912593	645364.7	4902213	242.82	25.91	Cable Tool	24.99	10	45.46	GPM	Domestic	Water Supply	25.91	0	BROWN	GRAVEL		
	645214.7	4902123	239.40	16.15	Rotary (Convent.)	16.15	6	27.276	GPM	Domestic	Water Supply	3.35		BROWN	SAND		
	645214.7	4902123	239.40	16.15	(Convent.) Rotary (Convent.)	16.15	6	27.276	GPM	Domestic	Water Supply	9.14		BLUE	CLAY		
	645214.7	4902123	239.40	16.15	(Convent.) Rotary (Convent.)	16.15	6	27.276	GPM	Domestic	Water Supply	10.06		GREY	CLAY	STONES	
	645214.7	4902123	239.40	16.15	(Convent.) Rotary (Convent.)	16.15	6	27.276	GPM	Domestic	Water Supply	15.24		GREY	CLAY	STONES	
6912664	645214.7	4902123	239.40	16.15	(Convent.) Rotary (Convent.)	16.15	6	27.276	GPM	Domestic	Water Supply	16.15	0	GREY	SAND	GRAVEL	
	645172.7	4902166	236.84	14.63	Rotary (Convent.)	14.63	12	54.552	GPM	Domestic	Water Supply	2.44		BROWN	SAND	GRAVEL	
	645172.7	4902166	236.84	14.63	(Convent.) Rotary (Convent.)	14.63	12	54.552	GPM	Domestic	Water Supply	10.67		BLUE	CLAY		
	645172.7	4902166	236.84	14.63	Rotary	14.63	12	54.552	GPM	Domestic	Water Supply	13.41		GREY	CLAY	STONES	
6912913	645172.7	4902166	236.84	14.63	(Convent) Rotary (Convent.)	14.63	12	54.552	GPM	Domestic	Water Supply	14.63	0	GREY	SAND	GRAVEL	
	645161.7	4902147	237.48	14.63	(Convent.) Rotary (Convent.)	14.63	10	45.46	GPM	Domestic	Water Supply	2.13		BROWN	GRAVEL	SAND	
	645161.7	4902147	237.48	14.63	Rotary (Convent.)	14.63	10	45.46	GPM	Domestic	Water Supply	13 .72		GREY	CLAY	STONES	
6912914	645161.7	4902147	237.48	14.63	(Convent.) Rotary (Convent.)	14.63	10	45.46	GPM	Domestic	Water Supply	14.63	0	GREY	SAND	GRAVEL	
	644904.7	4902013	239.32	13.11	Cable Tool	11.89	20	90.92	GPM	Domestic	Water Supply	2.13	, , , , , , , , , , , , , , , , , , ,	BROWN	CLAY	SAND	
	644904.7	4902013	239.32	13.11	Cable Tool	11.89	20	90.92	GPM	Domestic	Water Supply	9.75	-	BROWN	SAND	CLAY	STONES
	644904.7	4902013	239.32	13.11	Cable Tool	11.89	20	90.92	GPM	Domestic	Water Supply	11.89	-	BROWN	FINE SAND		
	644904.7	4902013	239.32	13.11	Cable Tool	11.89	20	90.92	GPM	Domestic	Water Supply	12.50		BROWN	COARSE SAND		

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
6913565	644904.7	4902013	239.32	13.11	Cable Tool	11.89	20	90.92	GPM	Domestic	Water Supply	13 .11	0	BLACK	GRAVEL		
	645154.7	4902253	231.04	10.97	Cable Tool	5.49	20	90.92	GPM	Domestic	Water Supply	5.49		BROWN	CLAY	SANDY	
	645154.7	4902253	231.04	10.97	Cable Tool	5.49	20	90.92	GPM	Domestic	Water Supply	9.75	_	GREY	GRAVEL	CLAY	
6913697	645154.7	4902253	231.04	10.97	Cable Tool	5.49	20	90.92	GPM	Domestic	Water Supply	10.97	0	GREY	GRAVEL	CLEAN	
	645274.7	4902233	236.15	10.67	Cable Tool	5.79	12	54.552	GPM	Domestic	Water Supply	5.79		BROWN	CLAY	SANDY	
	645274.7	4902233	236.15	10.67	Cable Tool	5.79	12	54.552	GPM	Domestic	Water Supply	9.14		GREY	GRAVEL		
6913698	645274.7	4902233	236.15	10.67	Cable Tool	5.79	12	54.552	GPM	Domestic	Water Supply	10.67	0	GREY	GRAVEL	CLEAN	
0710070	645274.7	4902194	238.72	17.68	Rotary (Convent.)	17.68	25	113.65	GPM	Domestic	Water Supply	2.74	Ŭ	BROWN	SAND		
	645274.7	4902194	238.72	17.68	(Convent.) Rotary (Convent.)	17.68	25	113.65	GPM	Domestic	Water Supply	9.75	_	BLUE	CLAY		
	645274.7	4902194	238.72	17.68	Rotary	17.68	25	113.65	GPM	Domestic	Water Supply	15.24	_	GREY	CLAY	STONES	
6913711	645274.7	4902194	238.72	17.68	(Convent) Rotary (Convent.)	17.68	25	113.65	GPM	Domestic	Water Supply	17.68	0	GREY	SAND	GRAVEL	
	645229.7	4902149	238.76	16.76	Rotary (Convent.)	16.76	7	31.822	GPM	Domestic	Water Supply	2.74		BROWN	SAND		
	645229.7	4902149	238.76	16.76	(Convent.) Rotary (Convent.)	16.76	7	31.822	GPM	Domestic	Water Supply	8.23	_	BLUE	CLAY		
	645229.7	4902149	238.76	16.76	(Convent.) Rotary (Convent.)	16.76	7	31.822	GPM	Domestic	Water Supply	9.14	_	RED	GRANITE	BOULDERS	
	645229.7	4902149	238.76	16.76	(Convent.) Rotary (Convent.)	16.76	7	31.822	GPM	Domestic	Water Supply	14.63	_	GREY	CLAY	STONES	
6913712	645229.7	4902149	238.76	16.76	(Convent.) Rotary (Convent.)	16.76	7	31.822	GPM	Domestic	Water Supply	16.76	0	GREY	SAND	GRAVEL	
0710712	645114.7	4902373	234.85	25.30	(Convent.) Rotary (Convent.)	22.25	6	27.276	GPM	Domestic	Water Supply	0.91	Ŭ	BROWN	SAND	DRY	
	645114.7	4902373	234.85	25.30	Rotary	22.25	6	27.276	GPM	Domestic	Water Supply	3.35	_	BROWN	GRAVEL	DRY	
	645114.7	4902373	234.85	25.30	(Convent.) Rotary (Convent.)	22.25	6	27.276	GPM	Domestic	Water Supply	6.10	_	BROWN	GRAVEL	SAND	
	645114.7	4902373	234.85	25.30	Rotary	22.25	6	27.276	GPM	Domestic	Water Supply	9.14	_	BROWN	SAND	CLAY	PACKED
	645114.7	4902373	234.85	25.30	(Convent.) Rotary	22.25	6	27.276	GPM	Domestic	Water Supply	16.46		GREY	CLAY	BOULDERS	HARD
	645114.7	4902373	234.85	25.30	(Convent.) Rotary	22.25	6	27.276	GPM	Domestic	Water Supply	18.29		GREY	GRAVEL	SILT	CEMENTED
	645114.7	4902373	234.85	25.30	(Convent) Rotary	22.25	6	27.276	GPM	Domestic	Water Supply	21.95		GREY	CLAY	STONES	HARD
	645114.7	4902373	234.85	25.30	(Convent.) Rotary	22.25	6	27.276	GPM	Domestic	Water Supply	22.86		GREY	SAND	SILT	POROUS
	645114.7	4902373	234.85	25.30	(Convent.) Rotary	22.25	6	27.276	GPM	Domestic	Water Supply	24.69		GREY	CLAY	STONES	HARD
6914598	645114.7	4902373	234.85	25.30	(Convent.) Rotary (Convent.)	22.25	6	27.276	GPM	Domestic	Water Supply	25.30	В	GREY	LIMESTONE	HARD	

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644514.7	4901973	234.91	17.98	Rotary (Convent.)	17.98	9	40.914	GPM	Domestic	Water Supply	3.05		BROWN	GRAVEL	LOOSE	
	644514.7	4901973	234.91	17.98	Rotary (Convent.)	17.98	9	40.914	GPM	Domestic	Water Supply	9.14		GREY	CLAY	STONES	HARD
	644514.7	4901973	234.91	17.98	Rotary (Convent)	17.98	9	40.914	GPM	Domestic	Water Supply	17.07		GREY	SILT	CLAY	HARD
6915189	644514.7	4901973	234.91	17.98	Rotary (Convent.)	17.98	9	40.914	GPM	Domestic	Water Supply	17.98	В	GREY	LIMESTONE	SHALY	
	644964.7	4902173	234.00	13.72	Cable Tool	10.67	10	45.46	GPM	Domestic	Water Supply	0.61		BLACK	TOPSOIL		
	644964.7	4902173	234.00	13.72	Cable Tool	10.67	10	45.46	GPM	Domestic	Water Supply	2.74		BROWN	CLAY		
	644964.7	4902173	234.00	13.72	Cable Tool	10.67	10	45.46	GPM	Domestic	Water Supply	10.67		GREY	CLAY	STONES	PACKED
6915526	644964.7	4902173	234.00	13.72	Cable Tool	10.67	10	45.46	GPM	Domestic	Water Supply	13 .72	0	GREY	GRAVEL	SAND	
	645114.7	4902123	237.81	13.11	Cable Tool	11.58	6	27.276	GPM	Domestic	Water Supply	7.01		BROWN	CLAY		
	645114.7	4902123	237.81	13.11	Cable Tool	11.58	6	27.276	GPM	Domestic	Water Supply	11.58		YELLOW	SAND	GRAVEL	LAYERED
6915642	645114.7	4902123	237.81	13.11	Cable Tool	11.58	6	27.276	GPM	Domestic	Water Supply	13 .11	0	BROWN	SAND	GRAVEL	LAYERED
0715042	645114.7	4902123	237.81	13.41	Cable Tool	11.28	8	36.368	GPM	Domestic	Water Supply	4.88	0	BROWN	CLAY	STONES	
	645114.7	4902123	237.81	13.41	Cable Tool	11.28	8	36.368	GPM	Domestic	Water Supply	11.28		YELLOW	CLAY	SAND	
6915643	645114.7	4902123	237.81	13.41	Cable Tool	11.28	8	36.368	GPM	Domestic	Water Supply	13 .41	0	BROWN	SAND	GRAVEL	LAYERED
	644914.7	4902023	239.39	7.01	Boring	3.66	2	9.092	GPM	Domestic	Water Supply	0.30			TOPSOIL		
	644914.7	4902023	239.39	7.01	Boring	3.66	2	9.092	GPM	Domestic	Water Supply	3.66			CLAY		
6915924	644914.7	4902023	239.39	7.01	Boring	3.66	2	9.092	GPM	Domestic	Water Supply	7.01	6915924		HARDPAN	STONES	
	644814.7	4902023	234.73	32.61	Rotary (Convent.)	27.43	3	13.638	GPM	Domestic	Water Supply	3.66		BROWN	CLAY	DENSE	
	644814.7	4902023	234.73	32.61	Rotary (Convent.)	27.43	3	13.638	GPM	Domestic	Water Supply	13.72		GREY	CLAY	STONES	HARD
	644814.7	4902023	234.73	32.61	Rotary (Convent.)	27.43	3	13.638	GPM	Domestic	Water Supply	14.33		GREY	GRAVEL	SILT	CEMENTED
	644814.7	4902023	234.73	32.61	Rotary (Convent.)	27.43	3	13.638	GPM	Domestic	Water Supply	22.86		GREY	CLAY	STONES	HARD
	644814.7	4902023	234.73	32.61	Rotary	27.43	3	13.638	GPM	Domestic	Water Supply	23.47	-	GREY	GRAVEL	SILT	CEMENTED
	644814.7	4902023	234.73	32.61	(Convent.) Rotary (Convent.)	27.43	3	13.638	GPM	Domestic	Water Supply	24.69	-	GREY	CLAY	HARD	
	644814.7	4902023	234.73	32.61	(Convent.) Rotary (Convent.)	27.43	3	13.638	GPM	Domestic	Water Supply	24.99	-	GREY	GRAVEL	CEMENTED	
6916447	644814.7	4902023	234.73	32.61	(Convent.) Rotary (Convent.)	27.43	3	13.638	GPM	Domestic	Water Supply	32.61	в	GREY	LIMESTONE	HARD	
	644930.7	4902060	238.48	13.72	Cable Tool	12.80	15	68.19	GPM	Domestic	Water Supply	7.62			PREVIOUSLY DUG		

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644930.7	4902060	238.48	13.72	Cable Tool	12.80	15	68.19	GPM	Domestic	Water Supply	12.80		BROWN	CLAY	STONES	HARD
6917318	644930.7	4902060	238.48	13.72	Cable Tool	12.80	15	68.19	GPM	Domestic	Water Supply	13.72	0	GREY	COARSE SAND	GRAVEL	
	645322	4902220	240.47	10.06	Rotary (Convent.)	9.14	12	54.552	GPM	Domestic	Water Supply	0.30		BROWN	TOPSOIL		
	645322	4902220	240.47	10.06	Rotary (Convent.)	9.14	12	54.552	GPM	Domestic	Water Supply	2.44		BROWN	CLAY		
	645322	4902220	240.47	10.06	Rotary (Convent.)	9.14	12	54.552	GPM	Domestic	Water Supply	4.57		BROWN	GRAVEL	HARD	
	645322	4902220	240.47	10.06	Rotary (Convent.)	9.14	12	54.552	GPM	Domestic	Water Supply	5.49		BROWN	SAND	HARD	
	645322	4902220	240.47	10.06	Rotary (Convent.)	9.14	12	54.552	GPM	Domestic	Water Supply	8.53		BROWN	GRAVEL	HARD	
6917602	645322	4902220	240.47	10.06	Rotary (Convent.)	9.14	12	54.552	GPM	Domestic	Water Supply	10.06	0	BROWN	SAND	HARD	
	644903	4902293	234.36	31.70	Rotary (Convent.)	31.70	20	90.92	GPM	Domestic	Water Supply	3.66		BROWN	SAND	DRY	
	644903	4902293	234.36	31.70	Rotary (Convent.)	31.70	20	90.92	GPM	Domestic	Water Supply	8.53		BROWN	COARSE GRAVEL	SAND	
	644903	4902293	234.36	31.70	Rotary (Convent.)	31.70	20	90.92	GPM	Domestic	Water Supply	28.65		YELLOW	CLAY	STONES	HARD
6918213	644903	4902293	234.36	31.70	Rotary (Convent.)	31.70	20	90.92	GPM	Domestic	Water Supply	31.70	в	GREY	LIMESTONE		
	645004.7	4902035	240.74	12.19	Cable Tool	10.97	8	36.368	GPM	Domestic	Water Supply	0.61		BROWN	FILL	STONES	
	645004.7	4902035	240.74	12.19	Cable Tool	10.97	8	36.368	GPM	Domestic	Water Supply	5.79		BROWN	SAND	CLAY	LOOSE
	645004.7	4902035	240.74	12.19	Cable Tool	10.97	8	36.368	GPM	Domestic	Water Supply	10.97		BLUE	CLAY	STONES	
6918221	645004.7	4902035	240.74	12.19	Cable Tool	10.97	8	36.368	GPM	Domestic	Water Supply	12.19	0	BROWN	SAND	CLAY	LAYERED
	644960	4902131	234.99	26.52	Cable Tool	24.38	7	31.822	GPM	Domestic	Water Supply	7.62		BROWN	CLAY	SAND	STONES
	644960	4902131	234.99	26.52	Cable Tool	24.38	7	31.822	GPM	Domestic	Water Supply	24.38		GREY	CLAY	STONEY	
6918583	644960	4902131	234.99	26.52	Cable Tool	24.38	7	31.822	GPM	Domestic	Water Supply	26.52	В		LIMESTONE		
	645294.7	4902244	237.51	22.86	Cable Tool	21.95	30	136.38	GPM	Domestic	Water Supply	0.61			TOPSOIL		
	645294.7	4902244	237.51	22.86	Cable Tool	21.95	30	136.38	GPM	Domestic	Water Supply	3.66			SAND	GRAVEL	
	645294.7	4902244	237.51	22.86	Cable Tool	21.95	30	136.38	GPM	Domestic	Water Supply	10.06		BROWN	CLAY	STONEY	SANDY
	645294.7	4902244	237.51	22.86	Cable Tool	21.95	30	136.38	GPM	Domestic	Water Supply	21.95		GREY	CLAY	SANDY	
6919127	645294.7	4902244	237.51	22.86	Cable Tool	21.95	30	136.38	GPM	Domestic	Water Supply	22.86	0	GREY	COARSE SAND		
	645258.7	4902184	238.05	10.97	Rotary (Convent.)	8.53	15	68.19	GPM	Domestic	Water Supply	0.61		BROWN	SAND	FILL	LOOSE
	645258.7	4902184	238.05	10.97	Rotary (Convent.)	8.53	15	68.19	GPM	Domestic	Water Supply	2.74		BLACK	TOPSOIL	LOOSE	

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	645258.7	4902184	238.05	10.97	Rotary (Convent.)	8.53	15	68.19	GPM	Domestic	Water Supply	4.88		RED	SAND	CLAY	SOFT
	645258.7	4902184	238.05	10.97	Rotary (Convent.)	8.53	15	68.19	GPM	Domestic	Water Supply	8.53		GREY	CLAY	SILT	HARD
6919373	645258.7	4902184	238.05	10.97	Rotary (Convent.)	8.53	15	68.19	GPM	Domestic	Water Supply	10.97	0	RED	SAND	GRAVEL	LOOSE
	645014	4902099	236.84	32.00	Rotary (Convent.)	31.39	10	45.46	GPM	Domestic	Water Supply	0.30		BROWN	TOPSOIL		
	645014	4902099	236.84	32.00	Rotary (Convent.)	31.39	10	45.46	GPM	Domestic	Water Supply	3.66		BROWN	SAND		
	645014	4902099	236.84	32.00	Rotary (Convent)	31.39	10	45.46	GPM	Domestic	Water Supply	23.47		GREY	CLAY	STONES	HARDPAN
6919587	645014	4902099	236.84	32.00	Rotary (Convent.)	31.39	10	45.46	GPM	Domestic	Water Supply	32.00	В	GREY	LIMESTONE	CLAY	
	644439.7	4902013	233.94	18.90	Rotary (Convent.)	14.02	20	90.92	GPM	Domestic	Water Supply	0.91		BROWN	SAND		
	644439.7	4902013	233.94	18.90	Rotary (Convent.)	14.02	20	90.92	GPM	Domestic	Water Supply	3.66		BROWN	SAND	STONES	HARD
	644439.7	4902013	233.94	18.90	Rotary (Convent)	14.02	20	90.92	GPM	Domestic	Water Supply	14.02		GREY	CLAY	STONES	HARD
6919589	644439.7	4902013	233.94	18.90	Rotary (Convent.)	14.02	20	90.92	GPM	Domestic	Water Supply	18.90	В	GREY	LIMESTONE		
	645133.7	4902146	237.22	13.72	Cable Tool	13.41	15	68.19	GPM	Domestic	Water Supply	2.13		BROWN	CLAY	TOPSOIL	
	645133.7	4902146	237.22	13.72	Cable Tool	13.41	15	68.19	GPM	Domestic	Water Supply	8.84		BROWN	CLAY	SAND	
	645133.7	4902146	237.22	13.72	Cable Tool	13.41	15	68.19	GPM	Domestic	Water Supply	13.41		GREY	CLAY	STONES	
6919784	645133.7	4902146	237.22	13.72	Cable Tool	13.41	15	68.19	GPM	Domestic	Water Supply	13 .72	0	GREY	SAND	GRAVEL	CLEAN
c010055	644419.7	4902136	233.41	10.97	Rotary (Convent.)	7.62	20	90.92	GPM	Domestic	Water Supply	0.30	0	BROWN	TOPSOIL	SAND	
6919855	644419.7	4902136	233.41	10.97	Rotary (Convent)	7.62	20	90.92	GPM	Domestic	Water Supply	10.97	0	BROWN	SAND	STONES	SANDY
	644997.7	4902052	239.54	13.72	Cable Tool	12.80	6	27.276	GPM	Domestic	Water Supply	0.30		BROWN	TOPSOIL	SOFT	
	644997.7	4902052	239.54	13.72	Cable Tool	12.80	6	27.276	GPM	Domestic	Water Supply	2.74		BROWN	SAND	STONES	
	644997.7	4902052	239.54	13.72	Cable Tool	12.80	6	27.276	GPM	Domestic	Water Supply	10.06		GREY	CLAY	GRAVEL	
	644997.7	4902052	239.54	13.72	Cable Tool	12.80	6	27.276	GPM	Domestic	Water Supply	12.50		GREY	GRAVEL	STONES	BOULDERS
6920544	644997.7	4902052	239.54	13.72	Cable Tool	12.80	6	27.276	GPM	Domestic	Water Supply	13 .72	0	BLACK	COARSE SAND		
	645305.7	4902238	238.54	22.56	Rotary (Air)	22.56	60	272.76	GPM	Domestic	Water Supply	11 .28		BROWN	CLAY	SOFT	
	645305.7	4902238	238.54	22.56	Rotary (Air)	22.56	60	272.76	GPM	Domestic	Water Supply	17.37		GREY	CLAY	STONES	HARD
6921200	645305.7	4902238	238.54	22.56	Rotary (Air)	22.56	60	272.76	GPM	Domestic	Water Supply	22.56	0	GREY	COARSE GRAVEL	CLEAN	
	645182.7	4902232	233.23	10.97	Rotary (Convent.)	6.10	25	113.65	GPM	Domestic	Water Supply	1.22		BLACK	PEAT	TOPSOIL	LOOSE

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	645182.7	4902232	233.23	10.97	Rotary (Convent.)	6.10	25	113.65	GPM	Domestic	Water Supply	2.13		BROWN	GRAVEL	SAND	LOOSE
	645182.7	4902232	233.23	10.97	Rotary (Convent.)	6.10	25	113.65	GPM	Domestic	Water Supply	6.10		BLUE	CLAY	DENSE	
	645182.7	4902232	233.23	10.97	Rotary (Convent.)	6.10	25	113.65	GPM	Domestic	Water Supply	8.53		GREY	SAND	LAYERED	
6921423	645182.7	4902232	233.23	10.97	Rotary (Convent.)	6.10	25	113.65	GPM	Domestic	Water Supply	10.97	0	GREY	GRAVEL	LOOSE	
	644410.7	4901914	234.01	17.37	Cable Tool	17.37	6	27.276	GPM	Domestic	Water Supply	0.30		BROWN	TOPSOIL		
	644410.7	4901914	234.01	17.37	Cable Tool	17.37	6	27.276	GPM	Domestic	Water Supply	5.49		BROWN	SAND		
	644410.7	4901914	234.01	17.37	Cable Tool	17.37	6	27.276	GPM	Domestic	Water Supply	12.19		GREY	CLAY		
6921506	644410.7	4901914	234.01	17.37	Cable Tool	17.37	6	27.276	GPM	Domestic	Water Supply	17.37	в	BROWN	SHALE	ROCK	SAND
	645303.7	4902116	243.40	25.91	Cable Tool	24.99	20	90.92	GPM	Domestic	Water Supply	0.30		BROWN	TOPSOIL		
	645303.7	4902116	243.40	25.91	Cable Tool	24.99	20	90.92	GPM	Domestic	Water Supply	7.01		BROWN	SAND	LOOSE	
	645303.7	4902116	243.40	25.91	Cable Tool	24.99	20	90.92	GPM	Domestic	Water Supply	16.15		BLUE	CLAY	STONES	STICKY
	645303.7	4902116	243.40	25.91	Cable Tool	24.99	20	90.92	GPM	Domestic	Water Supply	18 .29		BROWN	CLAY	SAND	LAYERED
	645303.7	4902116	243.40	25.91	Cable Tool	24.99	20	90.92	GPM	Domestic	Water Supply	19.81		GREY	CLAY		
	645303.7	4902116	243.40	25.91	Cable Tool	24.99	20	90.92	GPM	Domestic	Water Supply	24.69		GREY	GRAVEL	LOOSE	
	645303.7	4902116	243.40	25.91	Cable Tool	24.99	20	90.92	GPM	Domestic	Water Supply	24.99		GREY	CLAY		
6921836	645303.7	4902116	243.40	25.91	Cable Tool	24.99	20	90.92	GPM	Domestic	Water Supply	25.91	0	BLACK	COARSE SAND		
	645004.7	4902035	240.74	30.18	Cable Tool	28.04	10	45.46	GPM	Domestic	Water Supply	12.19			PREV. DRILLED		
	645004.7	4902035	240.74	30.18	Cable Tool	28.04	10	45.46	GPM	Domestic	Water Supply	13 .41		BROWN	CLAY	SAND	LAYERED
	645004.7	4902035	240.74	30.18	Cable Tool	28.04	10	45.46	GPM	Domestic	Water Supply	25.91		GREY	CLAY	STONES	HARD
	645004.7	4902035	240.74	30.18	Cable Tool	28.04	10	45.46	GPM	Domestic	Water Supply	26.21		GREY	CLAY	SOFT	
	645004.7	4902035	240.74	30.18	Cable Tool	28.04	10	45.46	GPM	Domestic	Water Supply	28.04		GREY	LIMESTONE	HARD	
6922020	645004.7	4902035	240.74	30.18	Cable Tool	28.04	10	45.46	GPM	Domestic	Water Supply	30.18	в	WHITE	LIMESTONE		
3722020	645281.7	4902183	239.79	13.72	Cable Tool	12.19	7	31.822	GPM	Domestic	Water Supply	1.22		BLACK	MUCK	SOFT	
	645281.7	4902183	239.79	13.72	Cable Tool	12.19	7	31.822	GPM	Domestic	Water Supply	2.44]	BROWN	SAND		
	645281.7	4902183	239.79	13.72	Cable Tool	12.19	7	31.822	GPM	Domestic	Water Supply	12.19		GREY	CLAY	SOFT	
6922039	645281.7	4902183	239.79	13.72	Cable Tool	12.19	7	31.822	GPM	Domestic	Water Supply	13 .72	0		COARSE SAND	LOOSE	

Well ID	х	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644971	4902097	236.68	17.68	Rotary (Air)	16.15	10	45.46	GPM	Domestic	Water Supply	5.18		BROWN	CLAY	STONES	HARD
	644971	4902097	236.68	17.68	Rotary (Air)	16.15	10	45.46	GPM	Domestic	Water Supply	13 .72		GREY	CLAY	BOULDERS	HARD
	644971	4902097	236.68	17.68	Rotary (Air)	16.15	10	45.46	GPM	Domestic	Water Supply	14.33		GREY	CLAY	DENSE	
6922256	644971	4902097	236.68	17.68	Rotary (Air)	16.15	10	45.46	GPM	Domestic	Water Supply	17.68	0	BLACK	FINE SAND	CLEAN	
0,22200	644382	4901885	234.04	21.34	Rotary (Air)	21.34	10	45.46	GPM	Domestic	Water Supply	4.57	0	BROWN	SAND	PACKED	
	644382	4901885	234.04	21.34	Rotary (Air)	21.34	10	45.46	GPM	Domestic	Water Supply	15.85		GREY	CLAY	GRAVEL	SOFT
6922931	644382	4901885	234.04	21.34	Rotary (Air)	21.34	10	45.46	GPM	Domestic	Water Supply	21.34	В	GREY	LIMESTONE	HARD	
0,22,01	644395	4902151	233.25	19.81	Rotary (Convent.)	12.50	10	45.46	GPM	Domestic	Water Supply	3.96		BROWN	SAND	STONES	LOOSE
	644395	4902151	233.25	19.81	Rotary	12.50	10	45.46	GPM	Domestic	Water Supply	11.58		BLUE	CLAY	SILT	LAYERED
	644395	4902151	233.25	19.81	(Convent.) Rotary	12.50	10	45.46	GPM	Domestic	Water Supply	12.19	-	GREY	CLAY	STONES	CEMENTED
	644395	4902151	233.25	19.81	(Convent.) Rotary	12.50	10	45.46	GPM	Domestic	Water Supply	13 .41		GREY	LIMESTONE	SHALE	FILL
6923916	644395	4902151	233.25	19.81	(Convent.) Rotary	12.50	10	45.46	GPM	Domestic	Water Supply	19.81	В	GREY	LIMESTONE	FRACTURED	
0723710	644876	4902397	233.03	25.91	(Convent.) Rotary (Convent.)	25.91	10	45.46	GPM	Domestic	Water Supply	5.18		BROWN	GRAVEL	CLAY	LOOSE
	644876	4902397	233.03	25.91	Rotary (Convent.)	25.91	10	45.46	GPM	Domestic	Water Supply	7.62	-	BROWN	STONES	CLAY	HARD
	644876	4902397	233.03	25.91	Rotary (Convent.)	25.91	10	45.46	GPM	Domestic	Water Supply	9.75		BLUE	CLAY	SOFT	
	644876	4902397	233.03	25.91	Rotary (Convent.)	25.91	10	45.46	GPM	Domestic	Water Supply	22.86	_	BROWN	SILT	GRAVEL	LOOSE
	644876	4902397	233.03	25.91	Rotary (Convent.)	25.91	10	45.46	GPM	Domestic	Water Supply	25.91			LIMESTONE		
6924775	644876	4902397	233.03	25.91	Rotary (Convent.)	25.91	10	45.46	GPM	Domestic	Water Supply	25.91	0	GREY	CLAY	SAND	STONES
	644977	4901980	244.13	23.47	Rotary (Air)	23.47	8	36.368	GPM	Domestic	Water Supply	3.66		BROWN	SAND	GRAVEL	LOOSE
	644977	4901980	244.13	23.47	Rotary (Air)	23.47	8	36.368	GPM	Domestic	Water Supply	17.68		GREY	CLAY	HARD	STONES
6924929	644977	4901980	244.13	23.47	Rotary (Air)	23.47	8	36.368	GPM	Domestic	Water Supply	23.47	в	GREY	LIMESTONE	HARD	
0,21,2,	645244	4902199	236.30	28.90	Rotary (Convent.)		36	36	LPM	Domestic	Water Supply	0.60		BROWN	TOPSOIL	SOFT	
	645244	4902199	236.30	28.90	Rotary (Convent.)		36	36	LPM	Domestic	Water Supply	2.40	-	RED	SAND		LOOSE
	645244	4902199	236.30	28.90	Rotary (Convent.)		36	36	LPM	Domestic	Water Supply	5.70	-	BROWN	SAND	STONES	LOOSE
	645244	4902199	236.30	28.90	(Convent.) (Convent.)		36	36	LPM	Domestic	Water Supply	7.30	-	BROWN	CLAY	SAND	SOFT
	645244	4902199	236.30	28.90	Rotary (Convent.)		36	36	LPM	Domestic	Water Supply	15.40	-	GREY	CLAY	DENSE	DENSE

Well ID	x	У	Elevation (m)	Well Depth (m)		Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	645244	4902199	236.30	28.90	Rotary (Convent.)		36	36	LPM	Domestic	Water Supply	17.30		BROWN	SAND	GRAVEL	LAYERED
	645244	4902199	236.30	28.90	Rotary (Convent.)		36	36	LPM	Domestic	Water Supply	24.60		GREY	GRAVEL	CEMENTED	
6928377	645244	4902199	236.30	28.90	Rotary (Convent.)		36	36	LPM	Domestic	Water Supply	28.90	В	GREY	LIMESTONE	ROCK	HARD
	645005	4902103	236.52	11.28	Rotary (Air)	11.00	38	38	LPM	Domestic	Water Supply	5.19		BROWN	SAND		
6929631	645005	4902103	236.52	11.28	Rotary (Air)	11.00	38	38	LPM	Domestic	Water Supply	11.28	0	BROWN	SAND	GRAVEL	
	645317.5	4902132	244.39	19.20	Cable Tool	17.98	90	409.14	GPM	Domestic	Water Supply	0.30		BLACK	TOPSOIL		
	645317.5	4902132	244.39	19.20	Cable Tool	17.98	90	409.14	GPM	Domestic	Water Supply	8.23		BROWN	CLAY		
	645317.5	4902132	244.39	19.20	Cable Tool	17.98	90	409.14	GPM	Domestic	Water Supply	8.53		BROWN	GRAVEL	CLAY	
	645317.5	4902132	244.39	19.20	Cable Tool	17.98	90	409.14	GPM	Domestic	Water Supply	15 .85		BLUE	CLAY	STONES	
	645317.5	4902132	244.39	19.20	Cable Tool	17.98	90	409.14	GPM	Domestic	Water Supply	17.98		GREY	GRAVEL	CLAY	
6929653	645317.5	4902132	244.39	19.20	Cable Tool	17.98	90	409.14	GPM	Domestic	Water Supply	19.20	0	GREY	SAND	GRAVEL	
	644976	4902127	235.04	14.02	Cable Tool	14.00	22.7	22.7	LPM	Domestic	Water Supply	0.30		BLACK	TOPSOIL		
	644976	4902127	235.04	14.02	Cable Tool	14.00	22.7	22.7	LPM	Domestic	Water Supply	12.81			HARDPAN		
6929882	644976	4902127	235.04	14.02	Cable Tool	14.00	22.7	22.7	LPM	Domestic	Water Supply	14.02	0		SAND	GRAVEL	
	644493	4901921	234.64	21.60	Rotary (Convent.)		22	22	LPM	Domestic	Water Supply	1.80		RED	SAND	LOOSE	
	644493	4901921	234.64	21.60	Rotary (Convent.)		22	22	LPM	Domestic	Water Supply	7.00		GREY	CLAY	SOFT	
	644493	4901921	234.64	21.60	(Convent.)		22	22	LPM	Domestic	Water Supply	11.80		GREY	STONES	CLAY	HARD
	644493	4901921	234.64	21.60	Rotary		22	22	LPM	Domestic	Water Supply	15 .80		GREY	SAND	STONES	CLAY
	644493	4901921	234.64	21.60	(Convent) Rotary (Convent.)		22	22	LPM	Domestic	Water Supply	17.00		GREY	LIMESTONE	CLAY	FRACTURED
6931097	644493	4901921	234.64	21.60	Rotary (Convent.)		22	22	LPM	Domestic	Water Supply	21.60	В	GREY	LIMESTONE	HARD	
	644972	4901654	260.36	32.61	Rotary (Air)	31.39	3	13.638	GPM	Domestic	Water Supply	0.30		BLACK	TOPSOIL		
	644972	4901654	260.36	32.61	Rotary (Air)	31.39	3	13.638	GPM	Domestic	Water Supply	4.88		BROWN	SAND	SILTY	GRAVEL
	644972	4901654	260.36	32.61	Rotary (Air)	31.39	3	13.638	GPM	Domestic	Water Supply	13.41		GREY	CLAY	SANDY	GRAVEL
	644972	4901654	260.36	32.61	Rotary (Air)	31.39	3	13.638	GPM	Domestic	Water Supply	17.37		GREY	CLAY	SANDY	GRAVEL
	644972	4901654	260.36	32.61	Rotary (Air)	31.39	3	13.638	GPM	Domestic	Water Supply	31.39		GREY	GRAVEL	CLAY	SANDY
	644972	4901654	260.36	32.61	Rotary (Air)	31.39	3	13.638	GPM	Domestic	Water Supply	32.61		GREY	SAND	GRAVEL	

Well ID	х	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
7041217	644972	4901654	260.36	32.61	Rotary (Air)	31.39	3	13.638	GPM	Domestic	Water Supply		0	GREY	GRAVEL	SANDY	CLAY
	644941	4901609	260.75	39.01	Rotary (Air)	37.80	4	18.184	GPM	Domestic	Water Supply	6.10		BROWN	CLAY	SANDY	GRAVEL
	644941	4901609	260.75	39.01	Rotary (Air)	37.80	4	18.184	GPM	Domestic	Water Supply	27.13		GREY	CLAY	SANDY	GRAVEL
	644941	4901609	260.75	39.01	Rotary (Air)	37.80	4	18.184	GPM	Domestic	Water Supply	37.80		GREY	CLAY	SANDY	GRAVEL
	644941	4901609	260.75	39.01	Rotary (Air)	37.80	4	18.184	GPM	Domestic	Water Supply	39.01		GREY	SAND	SILT	GRAVEL
7041233	644941	4901609	260.75	39.01	Rotary (Air)	37.80	4	18.184	GPM	Domestic	Water Supply		0	GREY	CLAY	SANDY	GRAVEL
1011255	644972		260.36	53.64	Rotary (Air)					Domestic	Abandoned-	0.30	Ŭ	BLACK	TOPSOIL		
	644972		260.36	53.64	Rotary (Air)					Domestic	Supply Abandoned-	5.18	-	BROWN	SAND	SILTY	GRAVEL
	644972		260.36	53.64	Rotary (Air)					Domestic	Supply Abandoned-	6.10	_	BROWN	SAND	SILTY	GRAVEL
	644972		260.36	53.64	Rotary (Air)					Domestic	Supply Abandoned- Supply	20.73	-	GREY	CLAY	SANDY	GRAVEL
	644972		260.36	53.64	Rotary (Air)					Domestic	Abandoned-	24.99	_	GREY	GRAVEL	CLAY	SANDY
	644972		260.36	53.64	Rotary (Air)					Domestic	Supply Abandoned-	39.01		GREY	CLAY	SANDY	GRAVEL
	644972		260.36	53.64	Rotary (Air)					Domestic	Supply Abandoned-	42.98		GREY	CLAY	GRAVEL	
7041243	644972	4901654	260.36	53.64	Rotary (Air)					Domestic	Supply Abandoned- Supply	53.64	7041243	GREY	LIMESTONE		
	644789	4901490	258.63	42.97	Rotary (Convent.)	40.00	18.92	18.92	LPM	Domestic	Water Supply	1.82		BROWN	SAND	STONES	
	644789	4901490	258.63	42.97	Rotary (Convent.)	40.00	18.92	18.92	LPM	Domestic	Water Supply	3.35		GREY	CLAY	TILL	STONES
	644789	4901490	258.63	42.97	Rotary (Convent.)	40.00	18.92	18.92	LPM	Domestic	Water Supply	10.05		GREY	CLAY	TILL	
	644789	4901490	258.63	42.97	Rotary	40.00	18.92	18.92	LPM	Domestic	Water Supply	21.03		GREY	CLAY	TILL	BOULDERS
	644789	4901490	258.63	42.97	(Convent.) Rotary	40.00	18.92	18.92	LPM	Domestic	Water Supply	26.21		GREY	CLAY	TILL	STONES
	644789	4901490	258.63	42.97	(Convent.) Rotary	40.00	18.92	18.92	LPM	Domestic	Water Supply	39.62	-	GREY	CLAY	TILL	SAND
7049148	644789	4901490	258.63	42.97	(Convent.) Rotary	40.00	18.92	18.92	LPM	Domestic	Water Supply	42.97	В	GREY	LIMESTONE	HARD	
/04/140	644817	4901404	261.24	47.54	(Convent.) Rotary	44.00	11.35	11.35	LPM	Domestic	Water Supply	5.48	0	BROWN	CLAY	TILL	STONES
	644817	4901404	261.24	47.54	(Convent.) Rotary	44.00	11.35	11.35	LPM	Domestic	Water Supply	17.06	-	GREY	CLAY	TILL	STONES
	644817	4901404	261.24	47.54	(Convent.) Rotary	44.00	11.35	11.35	LPM	Domestic	Water Supply	29.56	-	GREY	CLAY		
	644817	4901404	261.24	47.54	(Convent.) Rotary	44.00	11.35	11.35	LPM	Domestic	Water Supply	33.22	-	GREY	CLAY	STONES	DENSE
	644817	4901404	261.24	47.54	(Convent) Rotary (Convent.)	44.00	11.35	11.35	LPM	Domestic	Water Supply	43.89		GREY	CLAY	TILL	SAND

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
7049149	644817	4901404	261.24	47.54	Rotary (Convent.)	44.00	11.35	11.35	LPM	Domestic	Water Supply	47.54	в	GREY	LIMESTONE	HARD	
	644750	4901548	254.11	39.01	Rotary (Air)	37.80	6	27.276	GPM	Domestic	Water Supply	2.74		BROWN	SILT	GRAVEL	
	644750	4901548	254.11	39.01	Rotary (Air)	37.80	6	27.276	GPM	Domestic	Water Supply	5.79	_	BROWN	SAND	SILT	
	644750	4901548	254.11	39.01	Rotary (Air)	37.80	6	27.276	GPM	Domestic	Water Supply	15.24	-	BROWN	GRAVEL	SANDY	CLAY
	644750	4901548	254.11	39.01	Rotary (Air)	37.80	6	27.276	GPM	Domestic	Water Supply	18 .59		GREY	GRAVEL	SANDY	CLAY
	644750	4901548	254.11	39.01	Rotary (Air)	37.80	6	27.276	GPM	Domestic	Water Supply	21.03		GREY	SILT	CLAY	GRAVEL
	644750	4901548	254.11	39.01	Rotary (Air)	37.80	6	27.276	GPM	Domestic	Water Supply	22.25		GREY	SILT	SAND	CLAY
	644750	4901548	254.11	39.01	Rotary (Air)	37.80	6	27.276	GPM	Domestic	Water Supply	23.16		GREY	CLAY	GRAVEL	
7049373	644750	4901548	254.11	39.01	Rotary (Air)	37.80	6	27.276	GPM	Domestic	Water Supply	39.01	0	GREY	GRAVEL	CLAYEY	
	644837	4901572	258.65	47.85	Rotary (Convent.)	21.95	1.5	6.819	GPM	Domestic	Water Supply	6.10		BROWN	SAND	CLAY	GRAVEL
	644837	4901572	258.65	47.85	(Convent.) Rotary (Convent.)	21.95	1.5	6.819	GPM	Domestic	Water Supply	20.42		GREY	SAND	CLAY	GRAVEL
	644837	4901572	258.65	47.85	Rotary	21.95	1.5	6.819	GPM	Domestic	Water Supply	21.95	_	GREY	SAND	CLAY	GRAVEL
	644837	4901572	258.65	47.85	(Convent.) Rotary	21.95	1.5	6.819	GPM	Domestic	Water Supply	24.99	_	GREY	SAND	CLAY	GRAVEL
	644837	4901572	258.65	47.85	(Convent.) Rotary (Convent.)	21.95	1.5	6.819	GPM	Domestic	Water Supply	26.21	_	GREY	SAND	CLAY	GRAVEL
	644837	4901572	258.65	47.85	Rotary (Convent.)	21.95	1.5	6.819	GPM	Domestic	Water Supply	29.87		GREY	GRAVEL		
	644837	4901572	258.65	47.85	Rotary	21.95	1.5	6.819	GPM	Domestic	Water Supply	34.14	_	GREY	SAND	CLAY	GRAVEL
	644837	4901572	258.65	47.85	(Convent.) Rotary	21.95	1.5	6.819	GPM	Domestic	Water Supply	41.30	_	GREY	SAND	CLAY	GRAVEL
7040200	644837	4901572	258.65	47.85	(Convent.) Rotary	21.95	1.5	6.819	GPM	Domestic	Water Supply	47.85		GREY	LIMESTONE		
7049388	644794	4901555	256.52	60.20	(Convent.) Rotary (Air)	40.54	2	9.092	GPM	Domestic	Water Supply	5.49	В	BROWN	SILT	GRAVEL	
	644794	4901555	256.52	60.20	Rotary (Air)	40.54	2	9.092	GPM	Domestic	Water Supply	25.60	-	GREY	CLAY	GRAVEL	
	644794	4901555	256.52	60.20	Rotary (Air)	40.54	2	9.092	GPM	Domestic	Water Supply	35.97	_	GREY	SILT	GRAVEL	
	644794	4901555	256.52	60.20	Rotary (Air)	40.54	2	9.092	GPM	Domestic	Water Supply	39.01	-	GREY	CLAY	GRAVEL	
	644794	4901555	256.52	60.20	Rotary (Air)	40.54	2	9.092	GPM	Domestic	Water Supply	40.54	-	GREY	GRAVEL	SAND	
	644794	4901555	256.52	60.20	Rotary (Air)	40.54	2	9.092	GPM	Domestic	Water Supply	60.20	-	GREY	LIMESTONE		
7049432	644943	4901926	249.55	42.07	Rotary (Air)	33.00	24	24	LPM	Domestic	Water Supply	9.15	В	BROWN	CLAY	GRAVEL	HARD
	644943	4901926	249.55	42.07	Rotary (Air)	33.00	24	24	LPM	Domestic	Water Supply	33.84	-	GREY	CLAY	STONES	HARD
	044943	+901920	249.33	42.07	(All)	55.00	24	24		Somostio	Trater Supply	33.04	[ONE I		CICINEO	

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
7054419	644943	4901926	249.55	42.07	Rotary (Air)	33.00	24	24	LPM	Domestic	Water Supply	42.07	В	GREY	LIMESTONE		HARD
	644836	4901346	261.24	47.86	Rotary (Air)	25.00	40	40	LPM	Domestic	Water Supply	5.19		BROWN	CLAY		HARD
	644836	4901346	261.24	47.86	Rotary (Air)	25.00	40	40	LPM	Domestic	Water Supply	24.38		GREY	CLAY	STONES	HARD
	644836	4901346	261.24	47.86	Rotary (Air)	25.00	40	40	LPM	Domestic	Water Supply	25.91		GREY	SAND		LOOSE
	644836	4901346	261.24	47.86	Rotary (Air)	25.00	40	40	LPM	Domestic	Water Supply	39.01		GREY	CLAY		DENSE
	644836	4901346	261.24	47.86	Rotary (Air)	25.00	40	40	LPM	Domestic	Water Supply	42.37		GREY	GRAVEL	CLAY	LAYERED
7106763	644836	4901346	261.24	47.86	Rotary (Air)	25.00	40	40	LPM	Domestic	Water Supply	47.86	В	GREY	LIMESTONE		HARD
1100705	644800	4901463	260.24	46.02	Rotary (Convent.)	42.37	8	36.368	GPM	Domestic	Water Supply	3.35		GREY	SAND		LOOSE
	644800	4901463	260.24	46.02	Rotary (Convent.)	42.37	8	36.368	GPM	Domestic	Water Supply	7.01	_	GREY	CLAY	TILL	STONES
	644800	4901463	260.24	46.02	Rotary (Convent.)	42.37	8	36.368	GPM	Domestic	Water Supply	14.02	_	GREY	CLAY	TILL	STONES
	644800	4901463	260.24	46.02	(Convent.) Rotary (Convent.)	42.37	8	36.368	GPM	Domestic	Water Supply	17.07	_	GREY	CLAY	TILL	SAND
	644800	4901463	260.24	46.02	(Convent.) Rotary (Convent.)	42.37	8	36.368	GPM	Domestic	Water Supply	27.74		GREY	CLAY	TILL	HARD
	644800	4901463	260.24	46.02	(Convent.) Rotary (Convent.)	42.37	8	36.368	GPM	Domestic	Water Supply	41.76		GREY	CLAY	TILL	FINE GRAVEL
7108812	644800	4901463	260.24	46.02	(Convent.) Rotary (Convent.)	42.37	8	36.368	GPM	Domestic	Water Supply	46.02	в	GREY	LIMESTONE		HARD
/108812	644338	4901827	234.25	18.80	Cable Tool	18.80	40	40	LPM	Domestic	Water Supply	0.30	В	BLACK	TOPSOIL		SOFT
	644338	4901827	234.25	18.80	Cable Tool	18.80	40	40	LPM	Domestic	Water Supply	3.60		BROWN	SAND	CLAY	
	644338	4901827	234.25	18.80	Cable Tool	18.80	40	40	LPM	Domestic	Water Supply	14.60		GREY	CLAY	STONES	MEDIUM-
7109162	644338	4901827	234.25	18.80	Cable Tool	18.80	40	40	LPM	Domestic	Water Supply	18.80	в	GREY	LIMESTONE	CLAY	GRAINED HARD
/109162	644871	4901578	260.04	48.16	Rotary	48.16	4	18.184	GPM	Domestic	Water Supply	10.67	В	BROWN	CLAY		HARD
	644871	4901578	260.04	48.16	(Convent.) Rotary	48.16	4	18.184	GPM	Domestic	Water Supply	35.66		GREY	CLAY	SAND	HARD
	644871	4901578	260.04	48.16	(Convent.) Rotary	48.16	4	18.184	GPM	Domestic	Water Supply	42.06		GREY	CLAY		DENSE
7115000	644871	4901578	260.04	48.16	(Convent.) Rotary	48.16	4	18.184	GPM	Domestic	Water Supply	48.16	В	GREY	LIMESTONE		HARD
7115000	644829	4902301	233.44	18.80	(Convent.) Cable Tool	18.00	16	16	LPM	Domestic	Water Supply	0.30	В	BLACK	TOPSOIL		LOOSE
	644829	4902301	233.44	18.80	Cable Tool	18.00	16	16	LPM	Domestic	Water Supply	3.60		BROWN	SAND	CLAY	MEDIUM
	644829	4902301	233.44	18.80	Cable Tool	18.00	16	16	LPM	Domestic	Water Supply	12.10		GREY	CLAY	STONES	SAND
	644829	4902301	233.44	18.80	Cable Tool	18.00	16	16	LPM	Domestic	Water Supply	13.70	1	BROWN	SAND		LOOSE

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644829	4902301	233.44	18.80	Cable Tool	18.00	16	16	LPM	Domestic	Water Supply	16.40		GREY	CLAY		SOFT
7115881	644829	4902301	233.44	18.80	Cable Tool	18.00	16	16	LPM	Domestic	Water Supply	18.80	0	BROWN	SAND	CLAY	PACKED
	644824	4902312	232.91	31.30	Cable Tool	31.00	8	8	LPM	Domestic	Water Supply	0.30		BLACK	TOPSOIL		LOOSE
	644824	4902312	232.91	31.30	Cable Tool	31.00	8	8	LPM	Domestic	Water Supply	1.80		BROWN	SAND	CLAY	MEDIUM SAND
	644824	4902312	232.91	31.30	Cable Tool	31.00	8	8	LPM	Domestic	Water Supply	21.30		GREY	CLAY	STONES	MEDIUM-
7115882	644824	4902312	232.91	31.30	Cable Tool	31.00	8	8	LPM	Domestic	Water Supply	31.30	В	GREY	LIMESTONE	CLAY	HARD
	644750	4901824	244.42	42.67	Rotary (Convent.)		2	9.092	GPM	Domestic	Water Supply	2.74		BROWN	SAND	STONES	
	644750	4901824	244.42	42.67	Rotary (Convent.)		2	9.092	GPM	Domestic	Water Supply	10.36		BROWN	CLAY	STONES	
	644750	4901824	244.42	42.67	Rotary (Convent.)		2	9.092	GPM	Domestic	Water Supply	10.67		GREY	CLAY	STONES	
	644750	4901824	244.42	42.67	Rotary (Convent.)		2	9.092	GPM	Domestic	Water Supply	12.50		GREY	GRAVEL	SAND	
	644750	4901824	244.42	42.67	Rotary (Convent.)		2	9.092	GPM	Domestic	Water Supply	24.38		GREY	CLAY	STONES	SILTY
	644750	4901824	244.42	42.67	Rotary (Convent.)		2	9.092	GPM	Domestic	Water Supply	29.57		BROWN	LIMESTONE		
7135152	644750	4901824	244.42	42.67	Rotary (Convent.)		2	9.092	GPM	Domestic	Water Supply	42.67	В	GREY	LIMESTONE		
	644679	4901706	243.50	21.34	Rotary (Convent.)	20.12	10	45.46	GPM	Domestic	Water Supply	3.05		BROWN	SAND	CLAY	STONES
	644679	4901706	243.50	21.34	Rotary (Convent.)	20.12	10	45.46	GPM	Domestic	Water Supply	5.18		GREY	CLAY	STONES	
	644679	4901706	243.50	21.34	Rotary (Convent.)	20.12	10	45.46	GPM	Domestic	Water Supply	6.40		GREY	GRAVEL	SAND	
	644679	4901706	243.50	21.34	Rotary (Convent.)	20.12	10	45.46	GPM	Domestic	Water Supply	20.12		GREY	CLAY	STONES	SILTY
7139353	644679	4901706	243.50	21.34	Rotary (Convent.)	20.12	10	45.46	GPM	Domestic	Water Supply	21.34	0	GREY	COARSE SAND		
	645171	4902072	239.93	21.90	Cable Tool	21.00	24	24	LPM	Domestic	Water Supply	0.30		BLACK	TOPSOIL		MEDIUM- GRAINED
	645171	4902072	239.93	21.90	Cable Tool	21.00	24	24	LPM	Domestic	Water Supply	2.10		BROWN	SAND		MEDIUM- GRAINED
	645171	4902072	239.93	21.90	Cable Tool	21.00	24	24	LPM	Domestic	Water Supply	12.80		BROWN	CLAY	SAND	SOFT
	645171	4902072	239.93	21.90	Cable Tool	21.00	24	24	LPM	Domestic	Water Supply	20.70		GREY	CLAY	STONES	MEDIUM- GRAINED
7181940	645171	4902072	239.93	21.90	Cable Tool	21.00	24	24	LPM	Domestic	Water Supply	21.90	0	BROWN	SAND	GRAVEL	LOOSE
	644513	4901889	234.69	21.34	Rotary (Convent.)	21.34	10	45.46	GPM	Domestic	Water Supply	1.52		BROWN	SAND	GRAVEL	LOOSE
	644513	4901889	234.69	21.34	Rotary (Convent.)	21.34	10	45.46	GPM	Domestic	Water Supply	3.66		BROWN	SAND	CLAY	
	644513	4901889	234.69	21.34	Rotary (Convent.)	21.34	10	45.46	GPM	Domestic	Water Supply	14.63		GREY	CLAY	STONES	HARD

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	644513	4901889	234.69	21.34	Rotary (Convent.)	21.34	10	45.46	GPM	Domestic	Water Supply	15.85		BROWN	SAND	CLAY	LAYERED
	644513	4901889	234.69	21.34	Rotary (Convent.)	21.34	10	45.46	GPM	Domestic	Water Supply	16.15		GREY	CLAY		HARD
7199420	644513	4901889	234.69	21.34	Rotary (Convent.)	21.34	10	45.46	GPM	Domestic	Water Supply	21.34	в	GREY	LIMESTONE		HARD
	644925	4902181	235.09	27.43	Rotary (Convent.)	27.43	6	27.276	GPM	Domestic	Water Supply	7.62		BROWN	SAND	PACKED	
	644925	4902181	235.09	27.43	Rotary (Convent.)	27.43	6	27.276	GPM	Domestic	Water Supply	21.34		GREY	CLAY	SOFT	
	644925	4902181	235.09	27.43	Rotary (Convent.)	27.43	6	27.276	GPM	Domestic	Water Supply	21.95		GREY	GRAVEL	SILT	LOOSE
7217107	644925	4902181	235.09	27.43	Rotary (Convent.)	27.43	6	27.276	GPM	Domestic	Water Supply	27.43	В	GREY	LIMESTONE		HARD
	644902	4901340	261.71	39.62	Rotary (Air)	41.15	10	45.46	GPM	Domestic	Water Supply	5.49		BROWN	SAND		SOFT
	644902	4901340	261.71	39.62	Rotary (Air)	41.15	10	45.46	GPM	Domestic	Water Supply	6.10		GREY	GRAVEL	SAND	LOOSE
	644902	4901340	261.71	39.62	Rotary (Air)	41.15	10	45.46	GPM	Domestic	Water Supply	12.19		BROWN	SILT	SANDY	SOFT
	644902	4901340	261.71	39.62	Rotary (Air)	41.15	10	45.46	GPM	Domestic	Water Supply	32.61		GREY	CLAY	TILL	DENSE
	644902	4901340	261.71	39.62	Rotary (Air)	41.15	10	45.46	GPM	Domestic	Water Supply	33.22		GREY	SILT	FINE SAND	SILT
	644902	4901340	261.71	39.62	Rotary (Air)	41.15	10	45.46	GPM	Domestic	Water Supply	38.10		GREY	CLAY	TILL	DENSE
7225617	644902	4901340	261.71	39.62	Rotary (Air)	41.15	10	45.46	GPM	Domestic	Water Supply	39.62	0	GREY	SAND	GRAVEL	SILT
	644932	4901335	261.74	41.10	Rotary (Convent.)	41.00	40	40	LPM	Domestic	Water Supply	5.40		BROWN	CLAY	SAND	
	644932	4901335	261.74	41.10	Rotary (Convent.)	41.00	40	40	LPM	Domestic	Water Supply	11.20		GREY	CLAY		SOFT
	644932	4901335	261.74	41.10	Rotary (Convent.)	41.00	40	40	LPM	Domestic	Water Supply	13.70		BROWN	GRAVEL	SAND	LOOSE
	644932	4901335	261.74	41.10	Rotary (Convent.)	41.00	40	40	LPM	Domestic	Water Supply	36.50		GREY	CLAY	BOULDERS	
	644932	4901335	261.74	41.10	(Convent.) Rotary (Convent.)	41.00	40	40	LPM	Domestic	Water Supply	39.60		GREY	CLAY		HARD
	644932	4901335	261.74	41.10	Rotary	41.00	40	40	LPM	Domestic	Water Supply	40.20		GREY	GRAVEL	SAND	PACKED
7226011	644932	4901335	261.74	41.10	(Convent.) Rotary	41.00	40	40	LPM	Domestic	Water Supply	41.10	в	GREY	LIMESTONE	CLAY	HARD
. 220011	644941	4902197	235.18	27.00	(Convent.) Rotary	25.00	16	16	LPM	Domestic	Water Supply	4.60		BROWN	SAND	CLAY	
	644941	4902197	235.18	27.00	(Convent.) Rotary	25.00	16	16	LPM	Domestic	Water Supply	8.80	1	GREY	CLAY		
	644941	4902197	235.18	27.00	(Convent.) Rotary	25.00	16	16	LPM	Domestic	Water Supply	10.60	1	GREY	SAND	CLAY	LOOSE
	644941	4902197	235.18	27.00	(Convent.) Rotary	25.00	16	16	LPM	Domestic	Water Supply	22.50	1	GREY	CLAY	STONES	
7227616	644941	4902197	235.18	27.00	(Convent.) Rotary (Convent.)	25.00	16	16	LPM	Domestic	Water Supply	27.00	В	GREY	LIMESTONE	CLAY	HARD

Well ID	x	У	Elevation (m)	Well Depth (m)		Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
	645040	4901686	258.31	48.46	Rotary (Convent.)	48.46	20	90.92	GPM	Domestic	Water Supply	5.79		BROWN	CLAY		TILL
	645040	4901686	258.31	48.46	Rotary (Convent.)	48.46	20	90.92	GPM	Domestic	Water Supply	35.66		GREY	CLAY	STONES	HARD
	645040	4901686	258.31	48.46	Rotary (Convent)	48.46	20	90.92	GPM	Domestic	Water Supply	39.93		GREY	CLAY	SILT	LAYERED
7231878	645040	4901686	258.31	48.46	Rotary (Convent.)	48.46	20	90.92	GPM	Domestic	Water Supply	48.46	В	GREY	LIMESTONE		HARD
	645006	4901370	261.22	41.15	Rotary (Air)	41.15	5	22.73	GPM	Domestic	Water Supply	7.62		GREY	SAND	CLAY	LAYERED
	645006	4901370	261.22	41.15	Rotary (Air)	41.15	5	22.73	GPM	Domestic	Water Supply	11 .28		BROWN	SAND		SOFT
	645006	4901370	261.22	41.15	Rotary (Air)	41.15	5	22.73	GPM	Domestic	Water Supply	28.96		GREY	CLAY	TILL	DENSE
	645006	4901370	261.22	41.15	Rotary (Air)	41.15	5	22.73	GPM	Domestic	Water Supply	37.19		GREY	CLAY		STICKY
7242530	645006	4901370	261.22	41.15	Rotary (Air)	41.15	5	22.73	GPM	Domestic	Water Supply	41.15	0	BROWN	SAND	SILT	STONES
	645218	4901359	264.82	29.26	Rotary (Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	0.30			TOPSOIL		
	645218	4901359	264.82	29.26	Rotary (Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	1.22		BROWN	FINE SAND		
	645218	4901359	264.82	29.26	(Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	4.27			CLAY	STONES	GRAVEL
	645218	4901359	264.82	29.26	(Reverse) (Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	6.40		GREY	CLAY	GRAVEL	STONES
	645218	4901359	264.82	29.26	(Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	10.67			COARSE GRAVEL	CLAY	STONES
	645218	4901359	264.82	29.26	Rotary (Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	19.81			COARSE GRAVEL	SILTY	STONES
	645218	4901359	264.82	29.26	(Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	20.73		GREY	CLAY		
	645218	4901359	264.82	29.26	Rotary (Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	23.77			FINE SAND	CLAY	GRAVEL
	645218	4901359	264.82	29.26	Rotary (Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	24.69		GREY	MEDIUM SAND		
	645218	4901359	264.82	29.26	(Reverse) (Reverse)	23.77	3	13.638	GPM	Livestock	Water Supply	26.21		GREY	MEDIUM SAND	CLAY	
1909049	645218	4901359	264.82	29.26	Rotary	23.77	3	13.638	GPM	Livestock	Water Supply	29.26	0	GREY	CLAY	SAND	GRAVEL
	645079.7	4901397	261.10	47.55	(Reverse) Cable Tool	45.72	4	18.184	GPM	Livestock	Water Supply	6.10	-	BROWN	CLAY		
	645079.7	4901397	261.10	47.55	Cable Tool	45.72	4	18.184	GPM	Livestock	Water Supply	37.19	-		HARDPAN		
	645079.7	4901397	261.10	47.55	Cable Tool	45.72	4	18.184	GPM	Livestock	Water Supply	37.49			MEDIUM		
	645079.7	4901397	261.10	47.55	Cable Tool	45.72	4	18.184	GPM	Livestock	Water Supply	45.42		BLUE	CLAY		
	645079.7	4901397	261.10	47.55	Cable Tool	45.72	4	18.184	GPM	Livestock	Water Supply	45.72			MEDIUM SAND	GRAVEL	
4602451	645079.7	4901397	261.10	47.55	Cable Tool	45.72	4	18.184	GPM	Livestock	Water Supply	47.55	В		LIMESTONE		

Well ID	x	У	Elevation (m)	Well Depth (m)	Construction Method	Water Level (m)	Water Yield	LPM	Units of Measurement	Water Use	Water Status	Formation Depth(m)	Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
SAND									1								
	645351.7	4901442	263.47	32.00	Cable Tool	32.00	9	40.914	GPM	Livestock	Water Supply	5.49		RED	CLAY		
	645351.7	4901442	263.47	32.00	Cable Tool	32.00	9	40.914	GPM	Livestock	Water Supply	25.30	-	BLUE	CLAY	STONES	
	645351.7	4901442	263.47	32.00	Cable Tool	32.00	9	40.914	GPM	Livestock	Water Supply	27.43	-		GRAVEL	CLAY	SILT
	645351.7	4901442	263.47	32.00	Cable Tool	32.00	9	40.914	GPM	Livestock	Water Supply	30.48			HARDPAN		
	645351.7	4901442	263.47	32.00	Cable Tool	32.00	9	40.914	GPM	Livestock	Water Supply	32.00			MEDIUM	GRAVEL	
	644774.7	4901823	247.09	21.03	Cable Tool	20.73	8	36.368	GPM	Livestock	Water Supply	5.49		RED	MEDIUM	CLAY	
	644774.7	4901823	247.09	21.03	Cable Tool	20.73	8	36.368	GPM	Livestock	Water Supply	20.73			HARDPAN		
4602473	644774.7	4901823	247.09	21.03	Cable Tool	20.73	8	36.368	GPM	Livestock	Water Supply	21.03	0		GRAVEL		
	644968.7	4902325	234.77	9.75	Boring	9.14	10	45.46	GPM	Livestock	Water Supply	9.14		BLUE	CLAY	STONES	
6901068	644968.7	4902325	234.77	9.75	Boring	9.14	10	45.46	GPM	Livestock	Water Supply	9.75	6901068		GRAVEL		
7281698	644947	4901704	259.87		Boring					Monitoring	Test Hole		7281698				
7281699	644967	4901864	252.69		Boring					Monitoring	Test Hole		7281699				
7281700	644834	4901797	252.12		Boring					Monitoring	Test Hole		7281700				
	645030		258.78	9.14	Other Method					Not Used	Observation Wells	4.57		BROWN	SAND	SILT	
	645030		258.78	9.14	Other Method					Not Used	Observation Wells	7.62		BROWN	SILT	SAND	
1917544	645030	4901625	258.78	9.14	Other Method					Not Used	Observation Wells	9.14	1917544	GREY	SILT	SAND	
	644881.7	4902114	235.97	28.65	Rotary (Convent.)	22.25	7	31.822	GPM	Public	Water Supply	0.61		BROWN	SAND	TOPSOIL	SOFT
	644881.7	4902114	235.97	28.65	Rotary (Convent.)	22.25	7	31.822	GPM	Public	Water Supply	4.88		BROWN	CLAY	STONES	HARD
	644881.7	4902114	235.97	28.65	Rotary (Convent.)	22.25	7	31.822	GPM	Public	Water Supply	18 .90		GREY	CLAY	STONES	HARD
	644881.7	4902114	235.97	28.65	Rotary (Convent)	22.25	7	31.822	GPM	Public	Water Supply	21.34		GREY	GRAVEL	SAND	SILT
	644881.7	4902114	235.97	28.65	Rotary (Convent.)	22.25	7	31.822	GPM	Public	Water Supply	22.25		GREY	CLAY	STONES	HARD
6919246	644881.7	4902114	235.97	28.65	Rotary (Convent.)	22.25	7	31.822	GPM	Public	Water Supply	28.65	в	GREY	LIMESTONE	HARD	
	644736		244.61	30.48	Rotary (Convent.)				GPM	Test Hole	Abandoned- Supply	2.13		BROWN	SAND	GRAVEL	SILT
	644736	1	244.61	30.48	Rotary (Convent.)				GPM	Test Hole	Abandoned- Supply	9.14	1	BROWN	CLAY	STONES	SILT
	644736	1	244.61	30.48	Rotary (Convent.)				GPM	Test Hole	Abandoned- Supply	10.67	1	GREY	SAND	FINE SAND	

Well ID	x	У	Elevation (m)		Construction Method	Water Level (m)	Water Yield	Units of Measurement	Water Use			Overburden or Bedrock?	Material Colour	Material 1	Material 2	Material 3
			()	、 <i>,</i>		()										
	644736		244.61	30.48	Rotary			GPM	Test Hole	Abandoned-	24.08		GREY	CLAY	STONES	
					(Convent.)					Supply						
	644736	1	244.61	30.48	Rotary			GPM	Test Hole	Abandoned-	30.48		GREY	LIMESTONE		HARD
714592	2	4901785			(Convent.)					Supply		7145922				

Table A-2 Water Well Reconnaissance Survey Project: J&J Developments Udora Water Balance Evaluation (22012.00) Hamlet of Udora, Durham Region

Address	Owner Present at Time of Site Visit	Conduct Inspection (CI) or Left Letters (LL)	Well Types	Well Depth	Well Depth		Coordinate Easting		Consent to Monitor	2018-09-25	Water Level 2018-09-27	2018-03-10	Well Age	Diameter	Type of Casing	Casing Condition	Stick Up	Comments
	(y/n)	Lett Letters (LL)		(ft)	(m)	Lone	Lasting	Northing	WORITO	(m bTOP)	(m bTOP)	(m bTOP)	(years)	(inch)			(m)	
1 Birdie Smith		ш	Drilled			17 T	0645022	4901696	ves	15.87			12	10			1.02	request an email or text prior to coming onsite
5 Bagshaw	y V	CI	Drilled	151	46.0	17 T	0645022	4901898	No	13.07			2	10			1.02	89 ft original water depth (May 2016)
	,	C.			40.0	17 T	0045025	4501400	140				~	Ū			-	
7 Bagshaw	n		Unknown															hostile dogs, left without approaching
9 Bagshaw	У	LL	Unknown			17 T	0644983	4901378										will consult with husband
? Bagshaw	n	LL	drilled			17 T	0644878	4901564										
11 Bagshaw	У	LL	Unkown			17 T	0644968	4901368	No									afraid of contamination
13 Bagshaw	n	LL	Drilled			17 T	0644881	4901344										
14 Bagshaw	у	LL	Drilled			17 T	0644910	4901362										will consult with husband
15 Bagshaw	, n	L	Drilled	150	45.7	17 T	0644861	4901340	No				14	8				returned quetionnaire via email, no water level tak
17 Bagshaw	v	LL LL	Drilled	150	-3.7	17 T	0644823	4901373	Yes				14	U				returned quectornane via email, no water lever tak
			Drilled			17 T	0644817	4901401	Yes	12.62							0.70	
19 Bagshaw	У									12.02							0.70	
21 Bagshaw	У	LL	Drilled			17 T	0644818	4901438	No									extremely rude
23 Bagshaw	n	LL	Drilled			17 T	0644792	4901487										
27 Bagshaw	n	LL	Drilled			17 T	0644840	4901552										
																		very against the development, claims many homes alrea
25 Bagshaw	У	-	Drilled			17 T	0644799	4901536	No									water issues at times with multiple flushed toilet/ show
																		watering lawn and filling pool
28 Bagshaw		CI	Drilled		38.0	17 T	0644843	4901461	Yes	19.415			>14	10			1.1	occasional water pressure issues, incomplete see no
	У		Drilled		58.U				res	17.415			~14	10			1.1	occasional water pressure issues, incomplete see no
30 Bagshaw	n	LL	Unknown			17 T	0644898	4901547					1					
31 Bagshaw	n	LL	Unknown			17 T							1					
32 Bagshaw	v	LL	Drilled			17 T	0644931	4901556					1					will likely participate
2 Birdie Smith	y n		Unknown (assumed drilled)			17 T	0644963	4901538					1					will likely participate
2 Birdie Smith 4 Birdie Smith			Unknown (assumed drilled) Unknown (assumed drilled)			17 T	0644963	4901634 4901664					1					
	n																	
27 Linda	n	LL	Unknown			17 T	0644413	4902096										
31 Linda	n	LL	Unknown			17 T	0644406	4902098										
37 Linda	n	LL	Unknown			17 T	0644391	4902139										
40 Linda	n	LL	Unknown			17 T	0644369	4902212										
41 Linda	n	LL	Unknown			17 T	0644373	4902210										
689 Ravenshoe	n	11	Drilled			17 T	0644817	4901914										will look over information
	n							4901914 4901919										will look over information
687 Ravenshoe	n	u	Drilled			17 T	0644791	4901919										
685 Ravenshoe	y	CI	Drilled			17 T	0644774	4901855	Yes		4.57		47	9				water pressure issues, house built in 1971, high iron for
														-				two years
683 Ravenshoe	n	ш	Drilled			17 T	0644716	4901891	Yes						Steel	Good		Received e-mail response. Well became contaminated i A UV system and additional treatment methods were in after a few years to overcome contamination. Water
																		clean but the residents do not drink.
709 Ravenshoe	v	LL	Drilled			17 T	0645123	4902030										
705 Ravenshoe	'n	LL	Unknown			17 T	0645080	4902008										
701 Ravenshoe	v	LL	Drilled			17 T	0645058	1902001										
717 Ravenshoe	'n	LL	Unknown			17 T	0645274	4902083										
715 Ravenshoe	n	11	Drilled			17 T	0645248	4902085										
								4902064										
711 Ravenshoe	n	LL	Unknown			17 T	0645210											
10324 Ravenshoe	n	LL	Unknown			17 T	0645238	4902078										
10332 Ravenshoe	n	LL	Unknown			17 T	0645267	4902093										
10342 Ravenshoe	n	LL	Unknown			17 T	0645268	4902095										
10252 Regional Rd 1	n	LL	Unknown			17 T	0645042	4902022										
10256 Regional Rd 1	n	LL	Unknown			17 T	0645079	4902023										
10268 Regional Rd 1	n	LL	Dug			17 T	0645096	4902040					1					
10208 Regional Rd 1	v	LL LL	Drilled			17 T	0645128	4902045					1					concrete sealed
10292 Regional Rd 1	Y	11	Drilled			17 T	0645156	4902045					1					
	У												1					will consult with partner
10296 Regional Rd 1	n	LL	Drilled			17 T	0645178	4902067					1					
10300 Regional Rd 1	У	CI	Drilled			17 T	0645193	4902063	No			3.76	1					see sheet for info
10314 Regional Rd 1	n	LL	Unknown			17 T							1					
14750 Regional Rd 1	n	LL	Dug			17T	0645109	4901664					1		Concrete			newer well
14996 Regional Rd 1	n	LL	Drilled			17 T	0645019	4901933	Yes				1		Concrete	Good		Questionnaire emailed to us. Water 3.0 m down
14970 Regional Rd 1	n	LL	Unknown			17 T	0645018	4901931					1					
14975 Regional Rd 1	v	LL LL	Dug			17 T	0645027	4901931					1					Owners not present, left information packet with dau
14949 Regional Rd 1	y n		Dug			17 T	0645057	4901931					1					Gamers not present, iert information packet with dat
	n						0045057	4501904	v	45.55				10				
14925 Regional Rd 1	y	CI	Drilled			17 T			Yes	15.55			>20	10				very old well
14899 Regional Rd 1	У	LL	Dug			17 T	0645059	4901847					1					Will give letter to husband
14877 Regional Rd 1	n	LL	dug			17 T	0645097	4901817					1					
14853 Regional Rd 1	n	LL	Unknown			17 T	0645082	4901787					1					
14827 Regional Rd 1	n	LL	Dug			17 T	0645117	4901769					1					
14757 Regional Rd 1		L	Unknown			17 T	0645092	4901729					1					
14753 Regional Rd 1	n	11	Dug			17 T	0645092	4901729					1					
								4901717 4901687					1					Commentation to the second
14749 Regional Rd 1	У	LL	Dug			17 T	0645111						1					Concerned about damaging well, good water press
14720 Regional Rd 1	n	LL	Unknown			17 T	0645115	4901616					1					
14780 Regional Rd 1	У	LL	Dug			17 T	0645109	4901664					1					concrete sealed, newer well
14768 Regional Rd 1	У	LL	Drilled (assumed)			17 T	0645105	4901713					2					
14822 Regional Rd 1	n	LL	Drilled			17 T	0645065	4901718					11					good water pressure, will review docs
14870 Regional Rd 1	n	LL LL	Drilled			17 T	0645063	4901751					1					
		LL	Drilled	80	24.4	17 T	0645052	4901771					1					concerned about damage, good water pressure
14874 Regional Pd 1	y			30	24.4								1					concerned about damage, good water pressure
14874 Regional Rd 1		LL	Unknown	1		17 T	0645039	4901814					1					
14900 Regional Rd 1	n																	
14900 Regional Rd 1 14629 Regional Rd 1	n	LL	Unknown			17 T	0645309	4901476										
14900 Regional Rd 1			Unknown Drilled			17 T 17 T	0645309 0644989	4901476 4901945	Yes						Concrete	Good		Water is 3m down. Well is accesible for samplin Landlord not there. left information packet with tenar

C:\Users\GARY\Documents\Projects\2022\22012 Udora Rural Servicing\00 Udora D-5-4 & D-5-5\Tech\Table A-2 WW Survey Water Balance.xlsx

Table A-2 Water Well Reconnaissance Survey Project: J&J Developments Udora Water Balance Evaluation (22012.00) Hamlet of Udora, Durham Region

						1- Taken eith	er at the well or at t	he middle of the dri	ive way									
Address	Owner Present at Time of Site	Conduct Inspection (CI) or	Well Types	Well Depth	Well Depth	GPS	Coordinate	NAD 83 ¹	Consent to		Water Level		Well Age	Diameter	Type of	Casing	Stick Up	Comments
	Visit	Left Letters (LL)				Zone	Easting	Northing	Monitor	2018-09-25	2018-09-27	2018-03-10	1		Casing	Condition		
	(y/n)			(ft)	(m)					(m bTOP)	(m bTOP)	(m bTOP)	(years)	(inch)			(m)	
9 Victoria Rd	У	ш	Unknown			17 T	0644970	4902073	No									Dog barking agressively, owner not present, Left Informatio Packet with son
10 Victoria Rd	v	ш	Unknown			17 T	0644968	4902038					>30					wanted to wait for wife
14 Victoria Rd	'n	LL	Unknown			17 T	0644947	4902087										
16 Victoria Rd	n	LL	Unknown			17 T	0644952	4902107										
20 Victoria Rd	n	LL	Unknown			17 T	0644933	4902116										
22 Victoria Rd	n	LL	Unknown			17 T	0644927	4902129										
23 Victoria Rd	n	LL	Drilled			17 T	0644958	4902141										
25 Victoria Rd	У	ш	Unknown			17 T	0644942	4902167										Left Information Packet, underground well, will discuss wit husband
28 Victoria Rd	n	ш	Unknown			17 T	0644924	4902194										nastana
31 Victoria Rd	v	CI CI	Drilled	27	8.2	17 T	0644945	4902204	No	3.345			3	10				would not sign to give consent
32 Victoria Rd	, v	LL	Dug		0.2	17 T	0644919	4902202		5.545			>50	10				Good water pressure
36 Victoria Rd	y v	11	Dug			17 T	0644913	4902221					-50					Good water pressure, concrete sealed
37 Victoria Rd	y n	ш	Unknown			17 T	0644913	4902268										dood water pressure, concrete seared
38 Victoria Rd	n	ш	Unknown			17 T	064886	4902259										
40 Victoria Rd	n	LL	Unknown			17 T	0644890	4902239										
46 Victoria Rd	n	ш	Unknown			17 T	0644878	4902306										
48 Victoria Rd	n	LL	Drilled	100	30.5	17 T	0644864	4902308										2 wells earlier 4000 and day
52 Victoria Rd			Dug	100	50.5	17 T	0644832	4902345	Yes				>60		Concrete			2 wells, active =100ft, one dry sealed concrete, low water pressure
6 York	y	- CI	Drilled			1/1	0044652	4902555	Yes	3.84			200	10	concrete		0.69	sealed concrete, low water pressure
7 York	y n					17 T	- 0645016	- 4902096	res	3.84				10			0.69	
9 York	n	и и	Drilled Unknown			17 T	0645016	4902096										
						17 T	0645037											
10 York	n	11. 11.	Unknown					4901124										
16 York	n		Unknown			17 T	0645056	4902126										
19 York	У	LL	Unknown			17 T	0645097	4902141										in a rush, will read over and send documents
21 York	n	LL	Unknown			17 T	0645114	4902153			1 70							
25 York	У	CI	Drilled			17 T	0645123	4902153	Yes		1.79		>40	8			0.28	no water pressure issues
27 York	n	LL	Drilled			17 T	0645148	4902154										
28 York	У	ц 	Unknown			17 T	0645105	4902164										Does not want to consent because of impending change
32 York	У	ц 	Drilled			17 T	0645150	4902176										ownership
33 York	n	ш.	Drilled			17 T	0645190	4902181										
35 York	n	LL	Unknown			17 T	0645221	4902194										
36 York	n	LL	Unknown			17 T	0648196	4902178										
37 York	n	LL	Unknown			17 T	0645229	4902201										
40 York	n	LL	Unknown			17 T	0645237	4902242										
43 York	У	ш	Drilled			17 T	0645265	4902186										angry we did not provide envelopes, will review informat
45 York	n	LL	Drilled			17 T	0645288	4902210										will review information, does not believe the study will ma
49 York	У	u	Drilled			17 T	0645302	4902224										differene in the end
39/41 York	n	LL	Unknown			17 T	0645247	4902204										
ommunity Center, Lions Club	n	LL	Unknown			17 T	0644938	4902168										

Ministry of the Environmen and Climate Change	A2301	D52 Regulation	903 Ontario Wate	
Measurements recorded in:	Tag#:A 230	052	Page_	of
First Name Last Name / Organiz		E-mail Address		Well Constructed by Well Owner
Mailing Address (Street Number/Name)	Municipality	Province Postal Code		lo. (inc. area code)
Well Location	Richmondt	HILL ON ILLYICH	464169	418181601
Address of Well Location (Street Number/Name)	Township	Scott 35	Concession	
County/District/Municipality	City/Town/Village	JEOLE	Province	Postal Code
UTM Coordinates Zone Easting Northing	Uxbridge Municipal Plan and Sublo	t Number	Other	LIPIKL
NAD 8 3 17 144856490	Sealing Record (see instructions on the	a back of this form)		
General Colour Most Common Material	Other Materials	General Descriptio	n	Depth (<i>m/ft</i>) From To
lop Soil	< 0 cl	CINI		0 1
Brown Jand + Gravel	Stopes + Boulders	Hord		19 84
	a Gravel/Loyers of B	oken Lineston	c.	84 99
/	/ /			
)			
Annular Space Depth Set at (m/ft) Type of Sealant Us	A PARTY AND	and a second	Vell Vield Testing	Bassing
Depth Set at (<i>m/ft</i>) From To (Material and Type		After test of well yield, water was:	Time Water Level	
_ 20 Bestinite Slurry		Other, specify If pumping discontinued, give reason	(min) (m/ft) Static 3(19 ¹¹	(min) (m/ft)
/		1 1 0	Level	1
		Pump intake set at (m/ft)	2	2
Method of Construction	Well Use	Numping rate (Vmin / GPM)	3	3
Cable Tool Diamond Public Rotary (Conventional) Jetting Domestic	Commercial Not used	Duration of pumping	4	4
Rotary (Reverse) Driving Livestock Boring Digging Irrigation	Test Hole Monitoring	hrs + min	5	5
Air percussion	Cooling & Air Conditioning	Final water level end of pumping (m/	10	10
Other, specify Other, specify Other, specify Other, specify	Status of Well	If flowing give rate (I/min / GPM)	15	15
Diameter (Galvanized, Fibreglass, Thickness	Depth (m/ft) Water Supply	Recommended pump depth (m/ft)	20	20
(cm/in) Concrete, Plastic, Steel) (cm/in) From	m To Replacement Well Test Hole Q Q Recharge Well	Recommended pump rate (Vmin / GPM)	30	30
	Image: Constraint of the second sec		45 1 1 10"	40
Vith V-Pa Victor today	Monitoring Hole	Well production (Vmin / GPM)	50	50
5 1/2 Ft. slotted	Construction)	Disinfected?	60 67'6"	60
Construction Record - Screen	Abandoned, Poor		fell Location	and the factor of
Diameter (cm/in) (Plastic, Galvanized, Steel) Slot No. From	Depth (m/ft) Water Quality m To Abandoned, other, specify	Please provide a map below follow	ing instructions on th	he back. TN L
	Other, specify	Kavenshoe Ron	d	6
		18581		Cub
Water Details Water found at Depth Kind of Water: Presh Punter	ted Depth (m/ft) Diameter	1 we'	ollKn	Rec
Image: Second state Image: Second state Imag	From To (cm/in)			LOB .
(m/ft) Gas Other specify				2
Water found at Depth Kind of Water: Fresh Unter (m/ft) Gas Other, specify	sted <u>20 88 7</u> °			2 a
Well Contractor and Well Techni Business Name of Well Contractor	ician Information			
Baser Boschwall E. + 1+1	Well Contractor's Licence No.			
Business Address (Street Number/Name)	Municipality	Comments: Test Well	Г'ТА 7 1	
Province Postal Code Business E-mail				
Bus.Telephone No. (inc. area code) Name of Well Technicia	Wells (Chelhet, (a	Well owner's information package	Audit No -	ry Use Only
Well Technician's Licence No. Signature of Technician and/or	r Contractor Date Submitted	Date Work Completed	O D	C04750
	an 201417111214	ENO 201417109	d 8 Received	ner estado esta
	Contractor's Copy	A	© Queen's F	Printer for Ontario, 2014

© Queen's Printer for Ontario, 2014

Ontai	Ministry of and Clima	f the Environment te Change	Well Tag I	No. (Place Sticker an	d/or Print Below)	Well Record Regulation 903 Ontario Water Resources Act					
Measurements re	corded in: 🗌 Me	tric Fimperial		rag#:A257	079		Page	of			
Well Owner's I	Manual States - Maria	st Name / Organiza			E-mail Address			Well Co	Instructed		
	C	apris love	estment	s Inc.		Postal Code		by Well	Owner		
Mailing Address (S	Street Number/Name			hicipality Richmond Hi	N ON	LHCH		No. (inc. ar	659		
Well Location	15 x x x 1		(主义法)]	A State State		Lot	Concessio				
D. 1.	Smith Cre	er/Name)	Tov	Uxbrida	e	34	Concessio	6			
County/District/Mu	unicipality	-2.	Cit	y/Town/Village			Province Ontario		PDA9		
Durhan UTM Coordinates	Zone , Easting	, Northing	Mu	inicipal Plan and Subb	t Number		Other	LAP	LAFDAT		
NAD 8 3	176449	81490	1754								
Overburden and General Colour	Most Commo			d (see instructions on the r Materials		eral Description		Depth From	n (<i>m/ft</i>)		
Brown	Clay		Pebbles		Hard			D	38		
Grey	Clay		Stones		Hard			38	90		
Grey	Gravel		Silt Sar	d	Mixed			90	117		
Grey	Gravel		Chy San	d	Layered			FIL	137		
Grey	Limestone	e	/		Fracture	d		137	149		
Grey	Limestor	re-			Hard			149	159		
		Annular Space					ell Yield Testin	Contraction of the second seco			
Depth Set at (n From T	n/ft) To	Type of Sealant Us (Material and Type)		Volume Placed (m³/ft³)	After test of well yield		Draw Down Time Water Le		Water Level		
0 2	O Bense	al			Other, specify		(min) (m/ft)	(min)	(m/ft)		
					If pumping discontin	ued, give reason	Level 46	1	emai		
					Pump intake set at ((m/ft)	6	2	74		
					107		2 65	3			
Method of Cable Tool	of Construction	Public	Well Use	and the second se	Pumping rate (Vmin)	(GPM)	4 68	4	70		
Rotary (Conver	ntional) Jetting		Municipa	Dewatering	Duration of pumping	min	5 19	5	17		
Boring		Irrigation	Cooling &	Air Conditioning	Final water level end	-	01	10	13		
Air percussion		Industrial Other, spece	cify		If flowing give rate (1	(min / GPM)	15 71	15	-61		
Inside Op	Construction Re en Hole OR Material	and the second se	Depth (<i>m/it</i>)	Status of Well Water Supply			20 71	20	61		
Diameter (Ga (cm/in) Cor	Ivanized, Fibreglass, ncrete, Plastic, Steel)	Thickness (cm/in) From		Beplacement Well	Recommended pun	np deptn (m/n)	25 73	25			
1014 St	(99)	188 +2	137	Recharge Well	Recommended pun (Vmin / GPM)	np rate	30 74	30			
101/8 DO	en Hole	13	7 159	Dewatering Well Observation and/or	Well production (Vm	in / GPM)	40 75	40			
				Monitoring Hole	15 Disinfected?		50 710	50			
				(Construction)	Yes No		60 77	60			
Outside	Construction R			Insufficient Supply Abandoned, Poor Water Quality	Plance provide a p		Vell Location				
Diamotor	Material stic, Galvanized, Steel)	Slot No. Fro	Depth (<i>m/ît</i>) m To	Abandoned, other, specify	Please provide a n	hap below tollog	Looft	bell back	TN		
				Other, specify		Bin	P00.0				
						Y					
Water found at D	Water Det Depth Kind of Water	ails Fresh Unte		h (m/ft) Diameter							
159 (m/ft)	Gas Other, spe	cify	From	To (cm/in)	-11				T		
Water found at D (m/ft)		: Fresh Unte		20 10	-	F	Baashaw	Cress	ham Rd		
Water found at D	Depth Kind of Water	: Fresh Unte		137 15/8	-		Bagshaw		- may		
(m/ft)		or and Well Techr	137	159 6118					Ta		
	of Well Contractor	1 111		Il Contractor's Licence No	b.				L L		
Business Addres	Boodway E		Mu	nicipality	Comments:	Test W	ell TW19	-1			
P.D. Box	397 Sutt	Dusiness E-ma		York	-	I COL W		-1			
	LOEIR lo. (inc. area code) Na			ellact.ca	information	e Package Delive	Audit N	nistry Use	e Only		
90577	75362	Boadway	want		package delivered	61190	5949	-430	4131		
Well Technician's I	Licence No. Signature	of Technician and	or Contractor Da	te Submitted	Le Yes	01190		d			
0506E (2014/11)				Ministry's Cop	State of the local division of the local div			the second second second	for Ontario, 2014		

APPENDIX B

BOREHOLE LOGS

				WSP							
pro	ject	PART OF LOT 35 CONCESSIO	ON 6	6, U	DOF	RA, ONTA	RIO		projec	t no.	161-09454-00
cl	ient	TONI RISI, CAPRIS INVESTM	ENT	LT	D.	riç	j type	CME 75, track-mounted	date sta	rted	2016/07/25
	-	UDORA, ONTARIO					ethod	Hollow stem augers, 215 mm dia.	superv	EJP	
posi	tion	E: 644831 N: 4901800 (17T, G	eod	etic	-		oring		revi	ewer	DAO
Depth Scale (m)	Elev Depth (m)	SUBSURFACE PROFILE	Graphic Plot	Number	Type	MPLE SPT N-Va l ue Core Recovery	Elevation Scale (mASL)	Penetration Test Values (Blows / 0.3m) × Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane ♦ Pocket Penetrometer ■ Lab Vane 40 80 120 160 10 20 30	PID Readings	Well Details	DISTRIBUTION (%) (MIT)
- - -8		(continued) SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, COMPACT (continued)		9	SS	96 / 200mm	245	40 80 120 160 10 20 3	- 0 ppm		GR SA SI CL
- - - -9			9				- - 244 - -				
-				10	SS	87 / 225mm	-		- 0 ppm		
- 10 -			0 0				243 - - - -			Ţ	
- - 11 -		at 10.7 m, light brown sandy silt till, some to trace gravel, some to trace clay, trace cobbles, compact, moist to wet to 15.3 m	0	11	SS	50 / 50mm	242		– 0 ppm		
- - - 12 -				. 12	SS	50 / 50mm	241 - - -		- 0		
-09454-00_gint logs_sept.gpj 			0				- 240 – - -		ppm		
IIbrary: genivar - Ilbrary.glb report: gen log v 1 fille: 161-09454-00_gint logs_sept.gp/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0	13	SS	50 / 100mm	- 239 - - - -		– 0 ppm		
library: geniv I			o				238 -				

WSP LOG OF BOREHOLE MW1 project no. | 161-09454-00 project | PART OF LOT 35 CONCESSION 6, UDORA, ONTARIO rig type | CME 75, track-mounted client | TONI RISI, CAPRIS INVESTMENT LTD. date started | 2016/07/25 location | UDORA, ONTARIO method | Hollow stem augers, 215 mm dia. supervisor | EJP position | E: 644831 N: 4901800 (17T, Geodetic) coring n/a reviewer | DAO SUBSURFACE PROFILE SAMPLE Penetration Test Values (Blows / 0.3m) Lab Data Depth Scale (m) Readings Scale and Well Detai**l**s Graphic Plot SPT X Dynamic Cone Water Content (%) Elevation Sco (mASL) Comments 30 40 10 20 Elev Depth (m) Number N-Value & Plasticity Type Undrained Shear Strength (kPa) STRATIGRAPHY GRAIN SIZE DISTRIBUTION (%) (MIT) O Unconfined + Field Vane ● Pocket Penetrometer Lab Vane MC DD Core -**|** 30 Recovery 20 10 (continued) 40 80 120 160 GR SA SI CI 15 237.4 50 / 14 SS 15.3 BOREHOLE TERMINATED AT 15.3m 50mm BELOW GROUND SURFACE IN SANDY SILT TILL WATER LEVEL MONITORING Depth (m) 10<u>.</u>3 END OF BOREHOLE Date Elevation (m) Aug 3, 2016 242.4 Borehole was dry and open upon completion. 50 mm monitoring well installed. No. 10 screen installed.

	LOG OF BOREHOLE MW2														/SP
pro	ject	PART OF LOT 35 CONCESSIO	DN 6	3, L	IDOF	RA, ONTA	ONTARIO						o <mark>ject</mark> r	no.	161-09454-00
С	ient	TONI RISI, CAPRIS INVESTME	ENT	LT	D.	riç	g type	CME 75, track-mounted					e start	ed	2016/07/26
loca	tion	UDORA, ONTARIO				m	ethod	Hollow s	tem auge	ers, 218	5 mm dia	. su	pervis	or	EJP
posi	tion	E: 644966 N: 4901867 (17T, G	C	oring						review	/er	DAO			
(L)						MPLE SPT	<u>a</u> e	Penetration Te (Blows / 0.3m) X Dynamic C			Watar C		sgn	<u>s</u>	Lab Data and
Depth Scale (m)	Elev Depth	STRATIGRAPHY	Graphic Plot	Number	Type	N-Value	Elevation Scale (mASL)	1,0	20 30 ear Strength (k	40 Pa)	& Pla	ontent (%) asticity	Readings	Well Detai l s	Comments
	(m)		Graph	Nur	l F	Core Recovery	Eleva	 Unconfine Pocket Per 		Field Vane			뎹		GRAIN SIZE DISTRIBUTION (%) (MIT)
0 - -	253.5 253.3 0.2	GROUND SURFACE TOPSOIL: ODmm OF DARK BROWN TOPSOIL, SOME ORGANICS, MOIST SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO	<u>x1/</u>	1	SS	7	253 -						- 0 ppm		GR SA SI CL
- 1 -		WET, LOOSE TO COMPACT	0	2	SS	10		-					– 0 ppm		
- - -2 -	251.2		0	3	SS	11	- 232 -	-					– 0 ppm		SS3 chemistry: M&I
-	250.6 2.9	CLAYEY SILT: BROWN CLAYEY SILT, SOME SAND, TRACE GRAVEL, MOIST, LOOSE TO COMPACT, WET		4	SS	9	251 -						- 0 ppm		2 21 56 21 SS4 chemistry: PAHs
-3 - - -		SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT	÷	5	SS	21							– 0 ppm		SS5 chemistry: CCME(F1-F4), BTEX, VOCs, PHCs
- 4 -			0	6	SS	54	-	-					- 0 ppm		SS6 chemistry: PCBs
5			0	7	SS	83	249-	-					- 0 ppm		
51-09454-00_gint logs_se			0				248 -	-							
library: genivar - library.glb report: gen bg v1 file: 161-09454-00 gint logs_sept.gpi 			9	8	SS	50 / 75mm	247 -	-					- 0 ppm		
library: genivar - library.gll			9					-							

cli cat	ent ion	PART OF LOT 35 CONCESSI TONI RISI, CAPRIS INVESTM UDORA, ONTARIO E: 644966 N: 4901867 (17T, G	ENT	LT	D.	riç m	g type	CME 75, track-mounted Hollow stem augers, 215 mm dia. <i>n/a</i>	project no. date started supervisor reviewer	161-09454-0 2016/07/26 EJP DAO
Depth Scale (m)	Elev Depth (m)	SUBSURFACE PROFILE STRATIGRAPHY	Graphic Plot	Number	SA Type	MPLE SPT N-Va l ue Core Recovery	Elevation Scale (mASL)	Penetration Test Values (Blows / 0.3m) × Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane 40 80 120 160 10 20	sticity Bar Stricts	Lab Data and Comments GRAIN SIZE DISTRIBUTION (MIT)
3		(continued) <u>SANDY SILT TILL:</u> BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT (continued)		9	SS	50 / 25mm	246 - - - - - - - - - - - - - - - - - - -		- 0 ppm	GR SA SI
)				10	SS	50 / 25mm			- 0 ppm	
0			0	11	SS	50 / 75mm	- - 243 - - -		- 0 ppm	
2							- 242 - - -			
3		at 12.7 m, brown medium to coarse grained sand, some gravel, very dense, wet to 12.8 m	ė.	12,	SS ,	50 / 50mm	- 241		- 0 ppm	
4			0	13/	SS	50 / 25mm	- 240 - - -		- 0 ppm	

(continued next page)

				L	OG	G OF	BOF	REHOL	E MW2	2			Ņ	/SP
pro	ject	PART OF LOT 35 CONCESSIO	DN 6	3, U	IDOF	RA, ONTA	RIO				pro	oject	no.	161-09454-00
c	ient	TONI RISI, CAPRIS INVESTME	ΞΝΤ	LT	D.	riç	g type	CME 75, trac	k-mounted		date	star	ted	2016/07/26
loca	tion	UDORA, ONTARIO				m	ethod	Hollow stem	augers, 215	5 mm dia.	sup	oervi	sor	EJP
posi	tion	E: 644966 N: 4901867 (17T, G	eod	etic	;)	c	oring	n/a			r	eviev	ver	DAO
		SUBSURFACE PROFILE			SA	MPLE		Penetration Test Va (Blows / 0.3m)	ues			ω		Lab Data
Depth Scale (m)	Elev Depth (m)	STRATIGRAPHY (continued)	Graphic Plot	Number	Type	SPT N-Va l ue Core Recovery	Elevation Scale (mASL)	× Dynamic Cone <u>10</u> 20 Undrained Shear Str O Unconfined ● Pocket Penetrom 40 80	+ Field Vane	Water Conter & Plasticit PL MC I		PID Readings	Well Detai l s	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT)
- 15 - - - - 16 - -	236.6	SAND: BROWN MEDIUM TO COARSE GRAINED SAND, SOME GRAVEL,VERY DENSE, WET (continued)		14		50 / 50mm						- 0 ppm		GR SA SI CL
	16.9	BOREHOLE TERMINATED AT 16.9m BELOW GROUND SURFACE IN SAND, END OF BOREHOLE Borehole was dry and open upon completion. 50 mm monitoring well installed. No. 10 screen installed.				<u>75mm</u>	I	WA Date Aug 3, 2016 Aug 10, 2010			3	<u>↑ppm</u> / [™]		

SS3 chemistry: Md
SS3 chemistry: M
SS3 chemistry: Mk
SS3 chemistry: M
14 40 34

cli ocat	ent ion	PART OF LOT 35 CONCESSI TONI RISI, CAPRIS INVESTM UDORA, ONTARIO E: 644953 N: 4901706 (17T, G	IENT	LT	D.	riç m	g type	CME 75, track- Hollow stem au n/a			project no. date started supervisor reviewer	2016/07/25
Depth Scale (m)	Elev Depth (m)	SUBSURFACE PROFILE STRATIGRAPHY (continued)	Graphic Plot	Number	Type	MPLE SPT N-Value Core Recovery	Elevation Scale (mASL)	Penetration Test Values (Blows / 0.3m) X Dynamic Cone 10 20 3 Undrained Shear Streng O Unconfined Pocket Penetrometer 4,0 8,0 12	0 40 oth (kPa) ➡ Field Vane ■ Lab Vane	Water Content (% & Plasticity	Water level © on completion PID Readings Well Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (MIT) GR SA SI
3		SANDY SILT TILL: BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT (continued) at 7.7 m, brown medium to coarse grained sand lens, trace silt, trace clay, saturated to 8.0 m	0.000000000000000000000000000000000000	9	SS	58	252 -				- 0 ppm	GR SA SI
)			0				- 251 - -					
		at 9.1 m, brown medium to coarse grained sand lens, trace silt, trace clay, saturated to 9.4 m	0	10	SS	80 / 250mm					- 0 ppm	
0			<u>0</u>				250 -					
1		at 10.7 m, greyish brown medium to coarse grained sand lens, trace silt, trace clay, saturated to 10.8 m		11	SS	100 / 225mm	249-				- 0 ppm	
2			0				248 -					
3			9	12	SS	70	- 247 -				- 0	
4				13	SS	90 / 175mm	- - 246 -					
			0									

WSP LOG OF BOREHOLE MW3 project | PART OF LOT 35 CONCESSION 6, UDORA, ONTARIO project no. | 161-09454-00 date started | 2016/07/25 client | TONI RISI, CAPRIS INVESTMENT LTD. rig type | CME 75, track-mounted location | UDORA, ONTARIO method | Hollow stem augers, 215 mm dia. supervisor | EJP position E: 644953 N: 4901706 (17T, Geodetic) coring n/a reviewer | DAO SUBSURFACE PROFILE SAMPLE Penetration Test Values (Blows / 0.3m) Ē Lab Data Readings Scale and Plot SPT X Dynamic Cone Water Content (%) Well Detai**l**s Depth Scale Elevation Sco (mASL) Comments 30 40 10 20 Number N-Value & Plasticity Elev Depth (m) Type Graphic Undrained Shear Strength (kPa) STRATIGRAPHY GRAIN SIZE DISTRIBUTION (%) (MIT) O Unconfined + Field Vane ● Pocket Penetrometer Lab Vane мс Core DD Recovery 20 Г 10 (continued) 40 8.0 120 160 GR SA SI CI 15 <u>SANDY SILT TILL:</u> BROWN SANDY SILT TILL, SOME TO TRACE GRAVEL, SOME TO TRACE CLAY, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT Ā SS 14 74 0 (continued) ppn 244 244.0 15.9 BOREHOLE TERMINATED AT 15.8m BELOW GROUND SURFACE IN SANDY SILT TILL. WATER LEVEL MONITORING END OF BOREHOLE Elevation (m) Date Depth (m) Aug 3, 2016 Aug 10, 2016 7.0 252.8 252.6 Unstabilized water level at 15.5 m below ground surface; borehole was open upon completion.

genivar - library.glb report: gen log v1 file: 161-09454-00 gint logs sept.gpj

50 mm monitoring well installed. No. 10 screen installed.

wsp

BOREHOLE NO. MW17-1

PAGE 1 of 1

PROJECT NAME: UDORA PHASE TWO ESA

CLIENT: CAPRIS INV. INC.

BOREHOLE TYPE: SPLIT SPOON / HOLLOW STEM AUGER

GROUND ELEVATION: 250.2 mASL

DATE COMPLETED: Sep 20, 2017

PROJECT NO.: 161-09454-00

SUPERVISOR: DAO / JW

REVIEWER: SJD

			S			ŝ	SAMPL	E			NE ATION	v	VATER		
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETA I LS	TYPE	N VALUE	% WATER	% RECOVERY	PID/TOV (ppm)	"N" VA 10 20 SHEAR ST 50 100 → Intact → Remc	0 30 RENGTH 150 200 (MaX) Cu	CO	20 30	-	REMARKS
	0.4	SAND TOPSOIL:DARK BROWN SAND TOPSOIL, TRACE TO SOME SILT, TRACE ROOTLETS / ORCANICS, MOIST.	$\frac{\lambda^{1}l_{2}}{l_{2}\cdot\lambda^{1}l_{3}}$		SS1	4		0	0.0	•					
1.0		SAND FILL: ORANGY BROWN, SAND FILL, TRACE TO NO SILT, TRACE ROOTLETS, MOIST, LOOSE.			SS2	13		1	0.0						WATER LEVEL AT 0.82 mBGS ON SEPT. 20, 2017
	1.2 —	SILTY SAND TILL: GREYISH BROWN SILTY SAND TILL, TRACE GRAVEL, TRACE CLAY, MOIST TO WET, LOOSE.				-									
2.0	2.3 —			X E	SS3	8		0	0.0						WATER LEVEL AT 2.04 mBGS ON SEPT. 22, 2017
3.0		SILTY SAND TILL: GREYISH BROWN SILTY SAND TILL, SOME COBBLES, TRACE TO SOME CLAY, MOIST TO WET, LOOSE TO DENSE. - 0.1 m OF COBBLES FROM 2.63 m TO 2.74 m			SS4	17		1	0.0						
	-				SS5	26		1	0.0		4				
4.0															
5.0	4.6 —	SAND AND GRAVEL: BROWN, SAND AND FINE GRAVEL, SOME COBBLES, VERY DENSE, SATURATED.			SS6	50 for 3"		0	0.0						
V1 GD1 10/31/17	-				SS7	50 for 2"		0	0.0						
	6.7 —	BOREHOLE TERMINATED AT 6.7 m IN SAND AND GRAVEL.				-									
0.5 00000000000000000000000000000000000															
H (METRIC) 16															
WSP GEOTEC	-														

wsp

BOREHOLE NO. MW17-2

PAGE 1 of 1

PROJECT NAME: UDORA PHASE TWO ESA

CLIENT: CAPRIS INV. INC.

BOREHOLE TYPE: SPLIT SPOON / HOLLOW STEM AUGER

GROUND ELEVATION: 251.8 mASL

DATE COMPLETED: Sep 21, 2017

PROJECT NO.: 161-09454-00

SUPERVISOR: DAO / JW

REVIEWER: SJD

			S			ę	SAMPL	E			WATER	
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	PID/TOV (ppm)	"N" VALUE 10 20 30 SHEAR STRENGTH 50 100 150 200 → Intact (MaX) Cu → • Remoulded Cu	CONTENT %	REMARKS
	0.2 —	<u>SAND TOPSOIL:</u> SOME SILT, TRACE ORGANICS.	<u></u>					_				
		SAND: DARK BROWN, SAND, SOME SILT, TRACE TO SOME ORGANICS, MOIST, LOOSE.			SS1	5		0	0.0			
1.0	1.1 —	SILTY SAND TILL: BROWN, SILTY SAND TILL, TRACE CLAY, TRACE			SS2	9		0	0.0			
	1.5 —	GRAVEL, TRACE ORGANICS, MOIST, LOOSE.										
2.0	-	BROWN TO GREVISH BROWN, SILTY SAND TO SANDY SILT TILL, TRACE CLAY, TRACE GRAVEL, TRACE COBBLES, MOIST TO WET, LOOSE TO COMPACT.			SS3	12		0	0.0			
3.0					SS4	12		1	0.0			WATER LEVEL AT 5.67 mBGS ON SEPT. 21, 2017
	-				SS5	11		1	0.0			
4.0	-				SS6	20		1	0.0			
5.0	4.6	SANDY SILT TILL: SANDY SILT TILL, VARVED CLAY LAYERS, SOME CLAY, TRACE COBBLES, TRACE GRAVEL, VERY DENSE			SS7	59		1	0.0	8 <u>4</u>		
GDT 10/31/17	6.1 —	SANDY SILT TILL: LIGHT BROWN TO GREY SANDY SILT TILL, TRACE			SS8	60 for		0				WATER LEVEL AT 2.75 mBGS ON SEPT. 22, 2017
ENV_V1.GDT	6.7 —	TO SOME GRAVEL, TRACE COBBLES, MOIST, VERY DENSE. BOREHOLE TERMINATED AT 6.7 m IN SANDY SILT				3"		Ū				
WSP GEOTECH (METRIC) 161-09454-00 MW LOGS.GPJ WSP 66 6 6 6 6 6 6 6 6 7 7 9 9 6 6 6 6 7 7 9 9 7 9 9 6 6 6 7 7 9 9 7 9 9 7 9 9 7 9 7												

wsp

BOREHOLE NO. MW17-3

PAGE 1 of 1

PROJECT NAME: UDORA PHASE TWO ESA

CLIENT: CAPRIS INV. INC.

BOREHOLE TYPE: SPLIT SPOON / HOLLOW STEM AUGER

GROUND ELEVATION: 250.8 mASL

SUPERVISOR: DAO / JW

PROJECT NO.: 161-09454-00

DATE COMPLETED: Sep 20, 2017

REVIEWER: SJD

			S				S	AMPLE	Ξ		PENE	ONE TRATIC	N-	141	ATER	
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONI DET/	TOR AILS	TYPE	N VALUE	% WATER	% RECOVERY	PID/TOV (ppm)	10 SHEAR	00 150 act (Ma)	- 0 IGTH 200 () Cu	CON	20 30	REMARKS
	0.4 —	SAND TOPSOIL: BROWN, TRACE ROOTLETS, MOIST.	<u> </u>			SS1	8		0	0.0	•					
		SAND FILL: BROWN TO ORANGEY BROWN, SAND FILL, MOIST, LOOSE TO COMPACT.														
1.0	_					SS2	23		0	0.0						
2.0	1.5 —	SILTY SAND TO SANDY SILT TILL: GREYISH BROWN, SILTY SAND TO SANDY SILT TILL, TRACE CLAY, TRACE COBBLES, TRACE GRAVEL, MOIST TO SATURATED, COMPACT.				SS3	34		0	0.0						
3.0	3.1 —					SS4	19		1	0.0		/	/			WATER LEVEL AT 2.44 mBGS ON SEPT. 22, 2017 WATER LEVEL AT 2.7 mBGS ON SEPT. 20, 2017
		SANDY SILT TILL: GREYISH BROWN, SANDY SILT TILL, SOME COBBLES, TRACE CLAY, TRACE GRAVEL, VERY SATURATED.				SS5	10		0	0.0						
4.0	3.8 —	SILTY SAND TO SANDY SILT TILL: SILTY SAND TO SANDY SILT TILL, FINE GRAVEL, COMPACT TO DENSE, VERY SATURATED.				SS6	18		1	0.0			`			
5.0	4.6	BOREHOLE TERMINATED AT 4.6 m IN SILTY SAND TO SANDY SILT TILL.														
ENV_V1.GDT																
161-09454-00 MW LOGS.	-															
WSP GEOTECH (METRIC) 161-09454-00 MW LOGS.GPJ WSP 66 66 67 68 68 68 69 69 60 60 60 60 60 60 60 60 60 60 60 60 60																

P	H	D

Page 1 of 2

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: MW1-22 DATE COMPLETED: 31 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPT m BG	H STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH BGS	MONITOR INSTALLATION		1	SAMF	PLE	
m BG	S CHURCH COLOCIAL HOLTON ALL	BGS	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	TOPSOIL, organic SANDY SILT, trace organics, brown, dry SANDY SILT, trace gravel, brown, dry	0.06	Concrete	1		45	2	0.4
				2		75	14	0.3
				3		100	24	0.2
				4		100	21	0.9
				5		100	50	0.7
			Bentonite					
				6		100	57	0.8
				7		100	81	0.6
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO C	CURRENT ELEVATION TABLE					

(H	н)
5		2

Page 2 of 2

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: MW1-22 DATE COMPLETED: 31 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	MONITOR		1	SAMF	PLE	1
m BGS		BGS	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
- 7.5				8		100	58	0.6
8.5								
-9.0 -9.5			Sand Pack	9		100	85	0.0
- 10.0			Sand Pack					
- 10.5		10.97	Well Screen	10		100	70	0.
- 11.5	SAND, trace silt, grey, wet							
- 12.0	END OF BOREHOLE @ 12.19m BGS	12.19						
- 12.5			WELL DETAILS Screened interval: 9.14 to 12.19m BGS Length: 3.05m Diameter: 51mm					
- 13.0			Slot Size: #10 Material: PVC Sand Pack: 7.62 to 12.19m BGS Material: Silica					
- 13.5								
<u>N</u>	IOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	L CURRENT ELEVATION TABLE					1
	CHEMICAL ANALYSIS							

Æ	D
S	2

Page 1 of 2

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: MW2-22 DATE COMPLETED: 24 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH BGS	MONITOR		1	SAM	PLE	1
				NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	TOPSOIL, organic	1 0.06			\wedge			
	SILTY SAND, trace gravel, brown, dry, trace organics					45	10	0.3
0.5	-	0.46			$ / \setminus$			
	SILTY SAND, trace gravel, trace organics,							
	brown, dry				Λ /	1		
1.0				2	X	75	17	0.4
					$ / \rangle$			
1.5		1.52						
	SAND, trace gravel, brown, dry				\mathbb{N} /			
				3	X	100	40	0.4
2.0	SILTY SAND, trace gravel, brown, dry	1.98				4		
					<u> </u>	,		
2.5					$\left \right\rangle$			
				4		100	24	
3.0						7		
				5	$ \vee $	100	50	0.7
-3.5				5	$ \wedge $		50	0.7
4.0			Bentonite					
4.5								
				6		100	50/5	0.7
5.0					$ / \setminus$			
					/	Ì		
5.5								
6.0		6.10				7		
	SILT, trace sand, trace gravel, brown, dry				$\left \right\rangle /$			
-6.5				7	X	100	50/5	0.4
						4		
<u>N</u>	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE	; REFER TO (I		
	CHEMICAL ANALYSIS							

A	н	Б

Page 2 of 2

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: MW2-22 DATE COMPLETED: 24 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH BGS	MONITOR		1	SAMF	PLE	1
				NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
-7.5	- grey at 7.62m BGS			8		100	50/5	0.9
- 8.5 - - - 9.0						,		
			Sand Pack	9	\mid	100	50/5	0.8
- 10.5	SAND, trace silt, brown, wet	10.67	Well Screen	10		100	50/5	1.0
- 11.0 - - - - 11.5			Sand Pack			100	50/5	1.0
		12.19						
- 	END OF BOREHOLE @ 12.19m BGS		WELL DETAILS Screened interval: 9.14 to 12.19m BGS Length: 3.05m Diameter: 51mm					
- 			Slot Size: #10 Material: PVC Sand Pack: 7.62 to 12.19m BGS Material: Silica					
13.5 								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; I	REFER TO (CURRENT ELEVATION TABLE					

Æ:	D
\sim	\geq

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: BH3-22 DATE COMPLETED: 31 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH BGS BOREHOLE				SAMF	PLE	
m BGS		BGS		NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	TOPSOIL, organic, brown, wet SAND, brown, wet SANDY SILT, trace gravel, brown, moist	0.06 0.23		1		60	8	0
				2		60	9	0
				3		100	10	0
	- dry at 2.29m BGS		Bentonite	4		55	23	0
				5		100	34	0
	- grey/brown at 3.81m BGS				$\langle \rangle$			
4.0 	- boulder at 4.27m BGS	4.57		6	\square	100	69	0
5.0 	END OF BOREHOLE @ 4.57m BGS							
5 - - - - -								
6.0								
6.5								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO (CURRENT ELEVATION TABLE	<u> </u>				<u> </u>

Æ:	Б
\sim	\geq

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: BH4-22 DATE COMPLETED: 1 November 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	BOREHOLE			SAMPLE		
m BGS		BGS	BOREHOLL	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
				MUN	INTEF	REC	, N) DIA
_		0.12			\backslash			
-	SANDY SILT, trace gravel, brown, dry			$\begin{pmatrix} 1 \end{pmatrix}$	X	45	15	0
0.5								
- - - - - 1.0								
° 1.0				2		100	15	0.2
20- 					\square			
2.0				3		20	21	0
-	- wet at 2.29m BGS		Bentonite					
					$\mathbb{N}/$			
				4		80	8	0.2
3.0								
	- dry at 3.35m BGS			5	\mathbb{N}	80	17	0
ġ3.5						00	17	Ū
-4.0				6		100	19	0
	- sand lens, dry at 4.27m BGS				$ / \setminus$			
	END OF BOREHOLE @ 4.57m BGS	4.57						
2 - 5.0								
5.5								
6.0								
6.5								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (CURRENT ELEVATION TABLE					
	CHEMICAL ANALYSIS							

Æ:	D
\sim	\geq

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: BH5-22 DATE COMPLETED: 31 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPT m BG	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH BOREHOLE				SAMF	PLE	
m BG		BGS	BOREHOLE	К	VAL	(%)	Ine	(mq
				NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
				z	Ľ ⊇	Ľ	-	ā
F	TOPSOIL, organic, brown, dry	0.06			\mathbb{N}			
F				$\begin{pmatrix} 1 \end{pmatrix}$	X	55	12	0
-0.5								
					/			
 ₽1.0					$\left \right\rangle$			
				2	ΙŇ	100	17	0
				3	$ \setminus $	95	10	0
Ž⊢ ≤ − 2.0				5	$ \wedge $	90	10	0
-								
	haddee at 0.44m DOO		Bentonite					
g - 2.5	- boulder at 2.44m BGS			4	$ \rangle$	80	21	0
					$ /\rangle$			
2 								
	- grey/brown at 3.05m BGS							
				5	$ \rangle$	100	13	0
ë3.5					$ / \setminus$			
					(`			
<u>-</u> - - - -					\backslash			
				6	X	70	19	0
040-	SAND, trace silt, grey, wet	4.27			$/ \setminus$			
4.5		4.57						
	END OF BOREHOLE @ 4.57m BGS							
≝⊢ ⊔ — 5.0								
5.5								
≝– 6.0								
6.5								
≚⊢ ⊒⊢								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO (CURRENT ELEVATION TABLE					
	CHEMICAL ANALYSIS							
L [

		_
6	Т	ß
5		2
		_

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: BH6-22 DATE COMPLETED: 1 November 2022 DRILLING METHOD: SSA FIELD PERSONNEL: D. Blair

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	BOREHOLE		SAN			
	m BGS		BGS		NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
					MUN	INTE	REC	> . <u>v</u>) OIA
		TOPSOIL, organic				\backslash			
	-0.5						55	2	0.2
	0.0	SANDY SILT, trace gravel, brown, dry	0.67						
11/91	- 1.0					\mathbb{N}	75		
Date:					2		75	14	0.1
	- 1.5								
					3		25	24	0.1
- H	-2.0					\square			
VUV.GLB Keport:		SAND, trace silt, brown, wet	2.29	Bentonite					
/ .GLB	-2.5				4	X	55	34	0.2
		- boulder at 2.90m BGS				\square			
	-3.0								
FIIE: GH	-3.5				5		75	27	0.4
ary									
	-4.0	- boulder at 3.96m BGS				\mathbb{N}			
9.IM-54					6		95	64	0.1
ECH/GINI/12585643-MI.GPJ	-4.5	END OF BOREHOLE @ 4.57m BGS	4.57						
643/IEC	-5.0								
7968621									
200/2	-5.5								
	-6.0								
	0.0								
VIGHDNE I VGHDVCAVI OKON I OVPROJECI SV662/12585	-6.5								
		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (URRENT ELEVATION TABLE					
6: //GH									
FIE:		CHEMICAL ANALYSIS							

Æ:	D
\sim	\geq

Page 1 of 2

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: MW1-22 DATE COMPLETED: 31 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

	DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH BGS	MONITOR INSTALLATION		:	SAMF	PLE	
	m BGS		BGS	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
					MUN	INTE	REC	∧.∧	PID (
E			0.06	Concrete		\backslash			
F		SANDY SILT, trace organics, brown, dry SANDY SILT, trace gravel, brown, dry	0.30		$\begin{pmatrix} 1 \end{pmatrix}$	X	45	2	0.4
F	-0.5								
11/22									
ite: 16	- 1.0				2	X	75	14	0.3
						$ \land$			
	- 1.5								
					3	X	100	24	0.2
	-2.0					\square			
GHD_ENVIRO_V07.GLB_Report: OVERBURDEN_LOG_Date: 16/11/22				Concrete					
	-2.5				4		100	21	0.9
						\square			
	-3.0								
影					5		100	50	0.7
Library File:	-3.5					$/ \setminus$			
Librar									
GP -	-4.0			Bentonite					
643-MI									
1 1	-4.5								
					6		100	57	0.8
	-5.0								
28564									
662/12	-5.5								
ECTS									
PRO.	-6.0								
21N02					-	$ \rangle $	100	04	0.6
	-6.5				7		100	81	0.6
File: \\GHDNE \GHDNE \\GHD\CA\ O\PKOJEC S\\662\12585643\1ECH\G N \12585643-M .GPJ		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO C	CURRENT ELEVATION TABLE					
e: \\G		CHEMICAL ANALYSIS							
īL									

СĿ	כיו
	\sim

Page 2 of 2

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: MW1-22 DATE COMPLETED: 31 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	MONITOR		1	SAMF	PLE	
m BGS		BGS	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
				8		100	58	0.6
- - - - - - -			Sand Pack	9		100	85	0.6
- 10.0								
- 10.5 	SAND, trace silt, grey, wet	10.97	Well Screen	10		100	70	0.9
- 11.0								
- 12.0 - 12.5	END OF BOREHOLE @ 12.19m BGS	12.19	WELL DETAILS Screened interval:					
- 13.0			9.14 to 12.19m BGS Length: 3.05m Diameter: 51mm Slot Size: #10 Material: PVC Sand Pack:					
- 13.5			7.62 to 12.19m BGS Material: Silica					
<u>N</u>	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO (CURRENT ELEVATION TABLE	<u> </u>	<u> </u>			<u> </u>

Æ:	Б
\sim	2

Page 1 of 2

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: MW2-22 DATE COMPLETED: 24 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	MONITOR			SAMF	PLE	
m BGS		BGS	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	TOPSOIL, organic SILTY SAND, trace gravel, brown, dry, trace organics	0.06	Concrete	1		45	10	0.3
0.5	SAND, brown, dry SILTY SAND, trace gravel, trace organics, brown, dry	0.53						
				2		75	17	0.4
	SAND, trace gravel, brown, dry	1.52		3		100	40	0.4
	SILTY SAND, trace gravel, brown, dry	1.98						
2.5 				4	\square	100	24	
				5	\square	100	50	0.7
					\square			
4.0 			Bentonite					
				6	\square	100	50/5	0.7
5.0 					\square			
5.5								
	SILT, trace sand, trace gravel, brown, dry	6.10		7		100	50/5	0.4
					\square		2010	3.7
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO C	URRENT ELEVATION TABLE					
	CHEMICAL ANALYSIS							

(ല:	D)

Page 2 of 2

PROJECT NAME: Phase Two Environmental Site Assessment PROJECT NUMBER: 12585643

CLIENT: 2695867 Ontario Inc.

LOCATION: Part of Lot 35, Conc. 6, Udora, Ontario

HOLE DESIGNATION: MW2-22 DATE COMPLETED: 24 October 2022 DRILLING METHOD: HSA FIELD PERSONNEL: D. Blair

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH BGS	MONITOR			SAMF	PLE	1
				NUMBER	INTERVAL	REC (%)	'N' Value	(muu) OIO
7.5	- grey at 7.62m BGS							
8.0 8.5				8	$\left \right\rangle$	100	50/5	0
9.0						,		
9.5			Sand Pack	9	\mid	100	50/5	0
10.0								
10.5	SAND, trace silt, brown, wet	10.67	Well Screen					
11.0				10		100	50/5	1
11.5								
12.0	END OF BOREHOLE @ 12.19m BGS	12.19						
- 12.5			Screened interval: 9.14 to 12.19m BGS Length: 3.05m Diameter: 51mm					
13.0			Slot Size: #10 Material: PVC Sand Pack: 7.62 to 12.19m BGS Material: Silico					
- 13.5			Material: Silica					
 NC	DTES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO	CURRENT ELEVATION TABLE					1
	CHEMICAL ANALYSIS							

CONSUL	TANTS LTD			L	.0G	of e	BORE	IOLE	BH	/ M \	N24	4-1										1	OF 2
PROJ	ECT: Capris Subdivision Udora																		REF.	NO.	: 22-	0223a	
	NT: J&J Development Group							Method	l: Hol	low S	Stem	Auge	er						ENC				
PROJ	IECT LOCATION: Udora, ON							Diamet	er: 18	52 m	m								ORIG	SINA	TED	BY SH	I
	IM: Geodetic							Date: I	Mar-0	8-20	24 1	o Ma	ar-08-1	2024					СОМ	IPILE	D BY	r PD)
BHLC	DCATION: N 4901797.173 E 644983.6	09						Equipm	nent:	Pont	il Dri	lling	CME						CHE	CKEI) BY	RB	5
	SOIL PROFILE		5	SAMPL	ES							ace											DI/O
						GROUND WATER CONDITIONS			PID		-i		CG			PLAST LIMIT	TIC NAT MOIS CON	URAL STURE	LIQUIE	z	NATURAL UNIT WT (kN/m ³)	REMA AN	
(m)		LOT			S F	WAT	z	((ppm				(ppr			W _P		W	WL	POCKET PEN. (Cu) (kPa)	L UNI	GRAIN	
ELEV DEPTH	DESCRIPTION	TAF	BER		BLOWS 0.3 m		ATIC			_				,				0		Culture Culture	TUR⊅ (kh	DISTRIB (%	
		STRATA PLOT	NUMBER	TYPE	z	SROL SONE	ELEVATION	10	20 3	_		10	20	30 (, 10		TER C		IT (%) 30		₹		
256.2 - 25 8.2	Ground Surface – TOPSOIL: 76 mm	0)	2	-	-	00	ш	-	+		_	+		+			1		+			GR SA	SICL
2001	SANDY SILT: trace gravel, brown,						256	-				_	_	-			-						
	moist, loose		1																				
				SS				-															
			1	33				-															
Ē								-															
							255	-															
			<u> </u>		-			-															
			1					-															
2			1																				
			2	SS			254	-															
-			2	33			_0.	-															
E								-															
								-															
-253.2	SANDY SILT TILL: trace gravel,		-																				
-	light brown, moist		3	SS	40		253				_	_	_	-			-						
F			ľ					-															
			-				-Bento	nite															
4			1					-															
			1				252	-															
			·				252																
-251.7	SILTY SAND TILL: some gravel,							-															
	light brown, moist		4	SS	59			-															
-						∇		-															
			i					51.1 m	-								-						
-							iviar uc	, 2024															
-								-															
- 								-															
- 6.1	SANDY SILT TILL: trace gravel,		-		99/		250	-															
	brown, moist		. 5	SS	275mr	r	250	-															
-			-																				
E								-															
7		. •						-															
							249																
248.6			1																				
7.6	SILTY SAND: brown, wet				100/	日	· ·	-															
8		招	6	SS	225mr	∎ ا	:	-															
MARCH								-															
- WX24-1		臣	i			I E	248	-															
		臣臣	1				:																
1		臣]			目		-															
 247.1		11	1			同	Sand																
9.1	SILTY SAND: trace clay, grey, wet	怙	:			に目	Scree	ר 			\dashv	-+	+	+	-		-	-	-				
AND CI		臣	7	SS	76	目	:	[
Ned Old		園	<u> </u>																				
ONIM 10]]L	1				:											L					
	Continued Next Page					<u>GRA</u> PH	3	Х ³ : Ni	umber	s refe	r	. 8	=3% s	New Jon		ilure							
GROUN	IDWATER ELEVATIONS 1st 2nd 3rd 4th					<u>GRAPH</u> NOTES	Τ,	∩ · to	Sensi	tivity		J	5	a an a	а∟га	nure							

ENVISION CONSULTANTS LTD

	LOG	OF
--	-----	----

	ISION Litants Ltd			L	.OG (OF B	ORE	HOL	E	BH	/MV	N24	4-1										2 OF 2		
	JECT: Capris Subdivision Udora NT: J&J Development Group							Moth	hod.		04/5	Stor	n Aug										0223a		
								Diar					i Aug	lei					ENCL NO.: ORIGINATED BY SH						
	JECT LOCATION: Udora, ON JM: Geodetic												to M	ar-08-	2024				COMPILED BY PD						
	OCATION: N 4901797.173 E 644983.6	09												CME					CHECKED BY RB						
DITE	SOIL PROFILE	03	s	AMPL	FS									Vap											
				, E		ER					louu		1000	CG			PLAST	IC NATI	URAL STURE	LIQUIE LIMIT	z	T W T	REMARKS AND		
(m)		STRATA PLOT			S E	GROUND WATER CONDITIONS	z			ppm)			(pp			Wp		N	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	GRAIN SIZE		
ELEV DEPTH	DESCRIPTION	TAP	NUMBER		BLOWS 0.3 m		ELEVATION						4		•		I		o		CCK CU	TURA (kn	DISTRIBUTION (%)		
		TRA	IUME	ТҮРЕ	ž	SROL	ILEV.	10		0 30	∡) 40		10	20	30 4	• 10		rer co 10 2	20 3			A			
-	Continued SILTY SAND: trace clay, grey,		2	F	-	::⊟::	ш	-			-			-		1	-			<u> </u>			GR SA SI CL		
-	wet(Continued)	招					246		_			_	_		_										
È		臣臣																							
- <u>245.6</u> 10.7						<u>∴⊟∴</u>		-	_			-	_		-						-				
	Notes:																								
	1) 50 mm dia. monitoring well was installed upon completion of drilling, screened from 7.62 m to 10.67 m.																								
	screened from 7.62 m to 10.67 m.																								
	Water Level Readings: Date W.L. Depth (mbgs)																								
	March 8, 2024 5.15																								
1																									
GPJ 24-																									
CH 2024																									
-1 - MAR																									
BHM W/24																									
-0223A - L																									
FR02 22																									
M)-2016																									
CGD(PF																									
BWIRD PID(PPM) AND COD (PPM)-2016-R02 22-02234																									
DID(PI																									
ENVIF																									
GROUM	NDWATER ELEVATIONS				9	GRAPH	+ 3,	√3.	Nur	nbers	s refer	r	~	s =3%	. .										

ENVISION

APPENDIX C

WATER BUDGET

TABLE C-1: INFILTRATION FACTORS

Project: Udora Estates Water Balance Evaluation Part Lots 24 & 35, Con. 6 TWP Uxbridge (22012.00)

Desription of Area/Development Site		Pre-deve	elopment	Post-development	
TOPOGRAPHY	Factor	Description	Factor	Description	Factor
Flat lying, average slope < 0.6m/km	0.3				
Rolling land average slope of 2.8-3.8m	0.2	Hilly land	0.1	Hilly land	0.1
Hilly land, average slopes of 28-47 metres	0.1				
SOILS					
Tight impervious Clay	0.1	Madium		Med. Loam - Sandy Loam	0.35
Medium combinations of clay and loam	0.2	 Medium Loam to Sandy Loam 	0.35	Impermeable Surfaces	0
open sandy loam	0.4	Sandy Loann			
COVER			-		
Cultivated land	0.1	Shrubs	0.15	Urban Lawn	0.15
Woodland	0.2	Siliubs	0.15	UIDAIILAWII	0.15
Total Infiltration factor for pervious areas with medium loam to sandy loam pre-development and post-development.			0.6	Med. Loam to Sandy Loam	0.6
Total Infiltration factor for impermeable surfaces			Not applicable	Driveways and Rooftops	0

MOECC 1995 Hydrogeological Technical Information Requirements (page 4-62)

TABLE C-2: PRE-DEVELOPMENT AND POST-DEVELOPMENT WATER BUDGETS Project: Udora Estates Water Balance Evaluation Part Lots 24 & 35, Con. 6 TWP Uxbridge (22012.00)

PRE-DEVELOPMENT WATER BUDGET	
Water Surplus (mm/yr) Average Silt Loam to F.Sandy Loam)	315.0
Infiltration Areas (m2)	17,055
Pre-Development Infiltration Factor	0.6
Infiltration Rate (mm/yr)	189
Total Recharge m3/yr	3,223
Total Recharge mm/yr	189
Runoff m3/year	2,149

POST-DEVELOPMENT RECHARGE RATES	Urban Lawn	7 Roof tops	Seven Driveways	Totals
Total Precipication (mm/yr)	897	897		897
Water Surplus (mm/yr) (Avg Silt Loam to Fine Sandy Loam)	321			
Areas (m2)	14,751	1931	370	17,052
Infiltration Factor	0.6	0	0	
Infiltration Rate (mm/yr)	193			
Recharge m3/yr	2,841	-	-	2,841
Runoff m3/year = 90% Total Precipitation for driveways/Rooftops or difference between water surplus and infiltration for permeable areas	1,894	1,559	370	3,823
Recharge Deficit (A-B) m3/year				382

Assumptions:

Α

Г F=D 2025-01-2 *Impervious areas include: Driveways and Dwellings, Runoff from Driveways not be used for mitigation

Table C-3: Recharge Mitigation

					Available
		Area (m2)	Flash	Total Precip	Recharge from
	Source of Recharge		Evaporation	(mm/yr)	source (m3/year)
C	Total Recharge from Rooftop Runoff on Lots 1-2 only.	594	0.9	897	480
	Excess Surplus in Recharge from Rooftops (m3/year) after mitigation				97
218:10	http://www.comments/Frojects/2022/22012 Udora Rural Servicing/00 Udora D-3-4 & D-3-3/Te	chiver 7-lots 2025	Tables C-1 to C-3 W		

APPENDIX D

GROUNDWATER CHEMISTRY

TABLE D-1: SHALLOWS GROUNDWATER QUALITY RESULTS PROEJECT: Udora Estates Water Balance Evaluation (22012.00)

MW17-1 MW17-2 **Parameters** MW17-3 ODWQS⁽¹⁾ UNIT Sample Date 20-Feb-19 20-Feb-19 20-Feb-19 **Calculated Parameters** Anion Sum 7.55 8.92 me/L 8.92 Bicarb. Alkalinity (calc. as CaCO3) 517 mg/L 510 436 Calculated TDS mg/L 500 473 451 531 Carb. Alkalinity (calc. as CaCO3) mg/L 30-500 <10 <10 <10 Cation Sum me/L 7.58 8.81 10.6 -Hardness (CaCO3) mg/L 80-100 369 430 517 Ion Balance (% Difference) % 85 117 119 Langelier Index N/A 0.7 0.6 0.6 Saturation pH N/A 6.66 6.65 6.54 Inorganics Total Ammonia-N mg/L 0.01 < 0.010 0.014 -Conductivity 710 824 umho/cm -600 Dissolved Organic Carbon 5 7.04 7.31 mg/L 6.38 < 0.0030 Orthophosphate (P) mg/L 0.019 < 0.0030 -7.35 7.25 7.12 рΗ рΗ 6.5-8.5 Dissolved Sulphate (SO4) 7.91 mg/L 500 14.114.1 Alkalinity (Total as CaCO3) 30-500 510 436 517 mg/L Dissolved Chloride (Cl) mg/L 250 8.05 2.524.14 1^{1} Nitrite (N) 0.01 < 0.010 < 0.010 mg/L 10^{1} 0.302 2.12 0.201 Nitrate (N) mg/L Nitrate + Nitrite (N) 0.312 2.12 0.201 mg/L 10 Metals Dissolved Aluminum (Al) < 0.0050 < 0.0050 < 0.0050 mg/L 0.1 < 0.00010 Dissolved Antimony (Sb) 0.006^{1} < 0.00010 < 0.00010 mg/L Dissolved Arsenic (As) 0.01^{1} 0.00013 0.00039 0.00025 mg/L 1^{1} Dissolved Barium (Ba) 0.0518 0.0532 0.0536 mg/L Dissolved Beryllium (Be) < 0.00010 < 0.00010 < 0.00010 mg/L 0.004 5^1 Dissolved Boron (B) 0.03 0.1 0.051 mg/L 0.05^{1} Dissolved Cadmium (Cd) mg/L < 0.000010 < 0.000010 0.000032 125 153 174 Dissolved Calcium (Ca) mg/L Dissolved Chromium (Cr) 0.05¹ 0.00051 0.00097 < 0.00050 mg/L 0.0038 < 0.00010 < 0.00010 < 0.00010 Dissolved Cobalt (Co) mg/L Dissolved Copper (Cu) mg/L 1 0.00326 0.00103 0.00463 Dissolved Iron (Fe) mg/L 0.3 < 0.010 < 0.010 < 0.010 Dissolved Lead (Pb) 0.01 0.00015 < 0.000050 0.000108 mg/L Dissolved Magnesium (Mg) mg/L 14 11.7 20.1 Dissolved Manganese (Mn) 0.05 < 0.00050 0.0005 0.00071 mg/L 0.07 0.00008 0.000144 0.000067 Dissolved Molybdenum (Mo) mg/L

C:\Users\GARY\Documents\Projects\2022\22012 Udora Rural Servicing\00 Udora D-5-4 & D-5-5\Tech\Water Balance\Table D-1Shallow GW Quality W20239808002.5490 PM

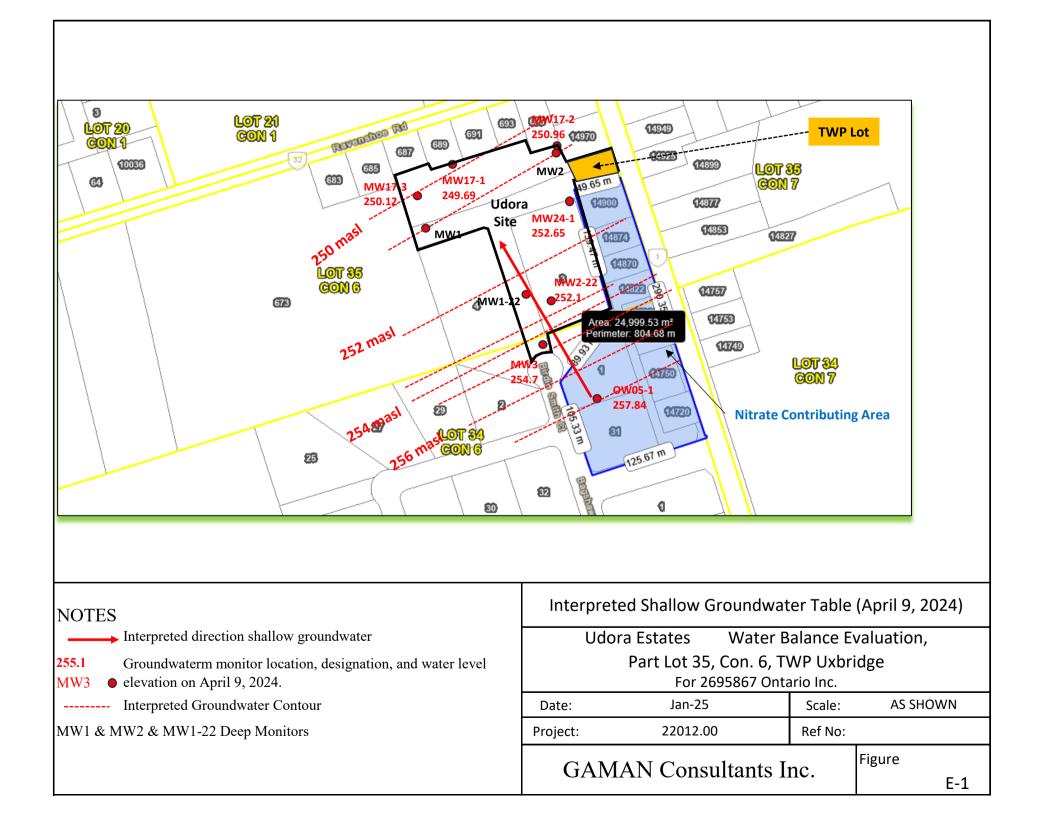
TABLE D-1: SHALLOWS GROUNDWATER QUALITY RESULTS

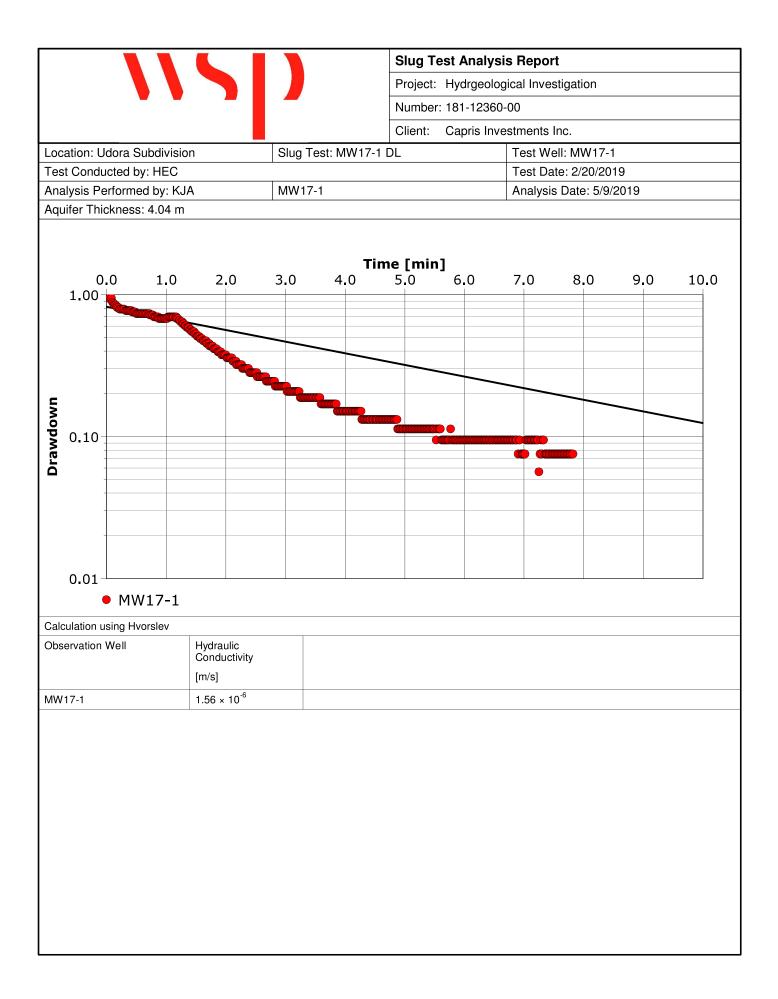
PROEJECT: Udora Estates Water Balance Evaluation (22012.00)

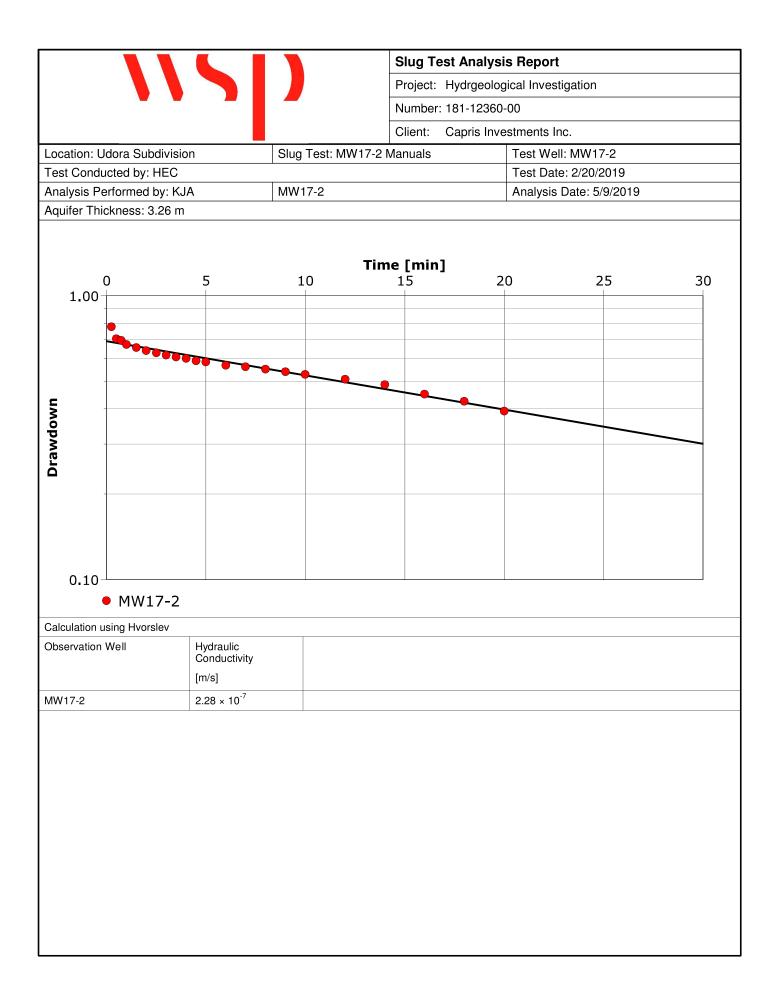
Parameters		(1)	MW17-1	MW17-2	MW17-3	
Sample Date	UNIT	ODWQS ⁽¹⁾	20-Feb-19	20-Feb-19	20-Feb-19	
Calculated Parameters						
Dissolved Nickel (Ni)	mg/L	0.1	< 0.00050	< 0.00050	0.00075	
Dissolved Phosphorus (P)	mg/L	-	< 0.050	< 0.050	<0.050	
Dissolved Potassium (K)	mg/L	-	0.728	0.855	0.819	
Dissolved Selenium (Se)	mg/L	0.05 ¹	0.000261	0.00062	0.000205	
Dissolved Silicon (Si)	mg/L	-	6.34	6.93	7.67	
Dissolved Silver (Ag)	mg/L	0.0015	< 0.000050	< 0.000050	<0.000050	
Dissolved Sodium (Na)	mg/L	200	4.24	4.52	6.55	
Dissolved Strontium (Sr)	mg/L	-	0.244	0.278	0.327	
Dissolved Thallium (Tl)	mg/L	0.002	< 0.000010	< 0.000010	< 0.000010	
Dissolved Titanium (Ti)	mg/L	-	<0.00030	< 0.00030	<0.00030	
Dissolved Uranium (U)	mg/L	0.02 ¹	0.000305	0.000362	0.000342	
Dissolved Vanadium (V)	mg/L	0.0062	<0.00050	0.00075	<0.00050	
Dissolved Zinc (Zn)	mg/L	5	0.003	0.0012	0.0146	

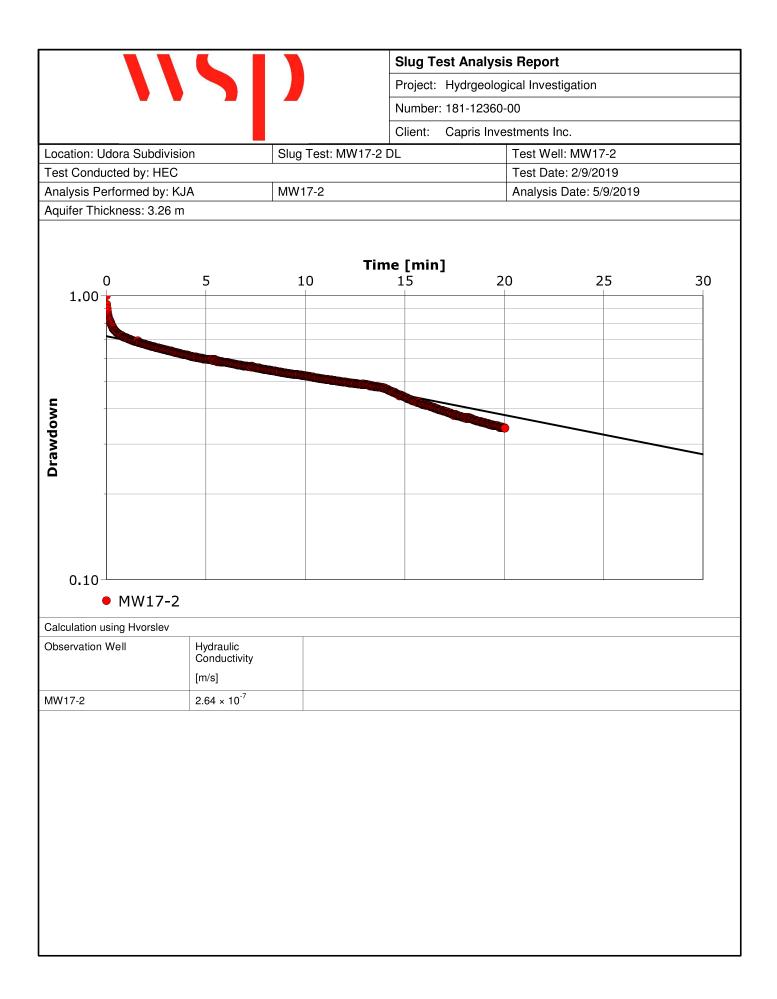
NOTES

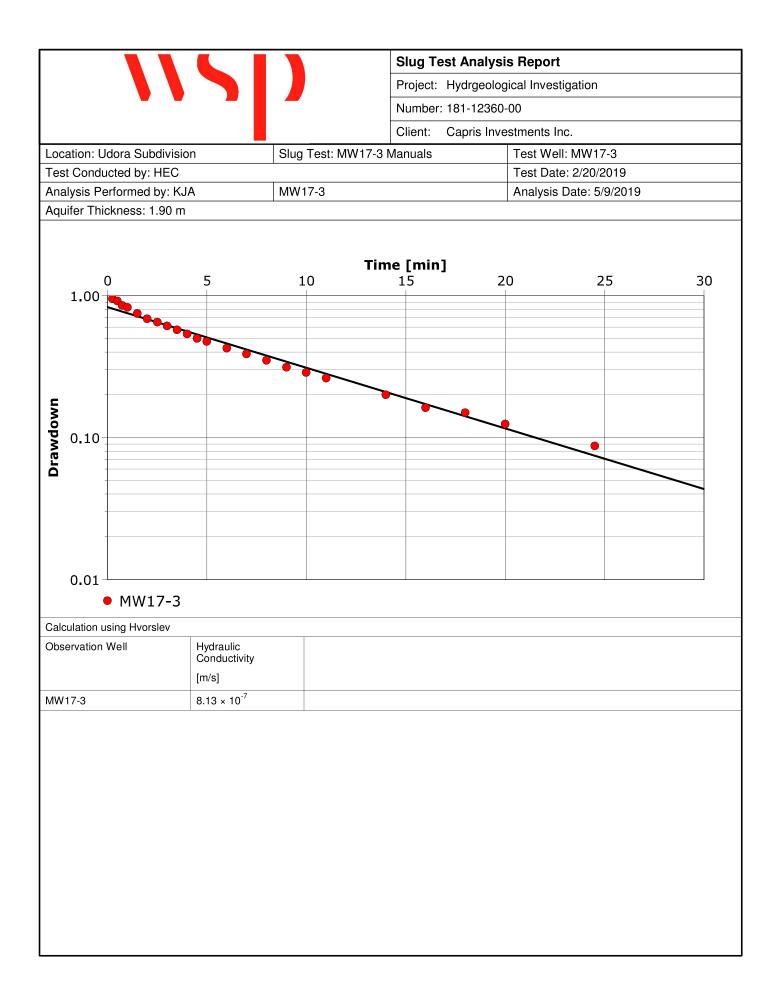
1) Superscript indicated a MAC, other values are AO.

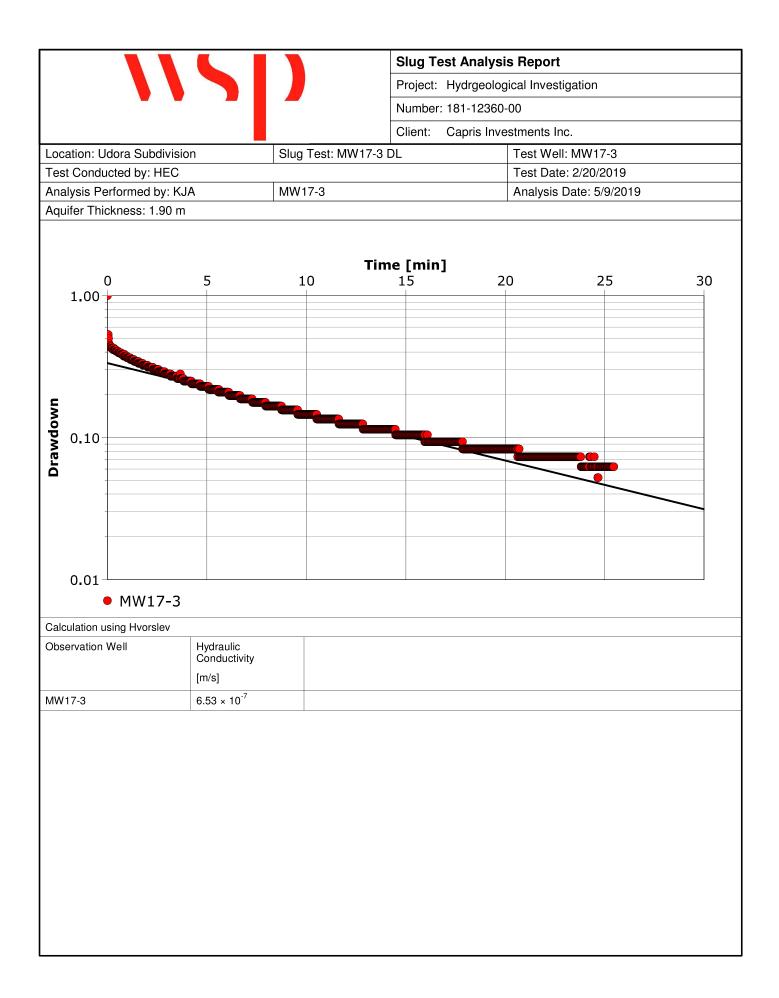

2) Yellow shading indicates parameter reportable detection limit exceeds ODWQS

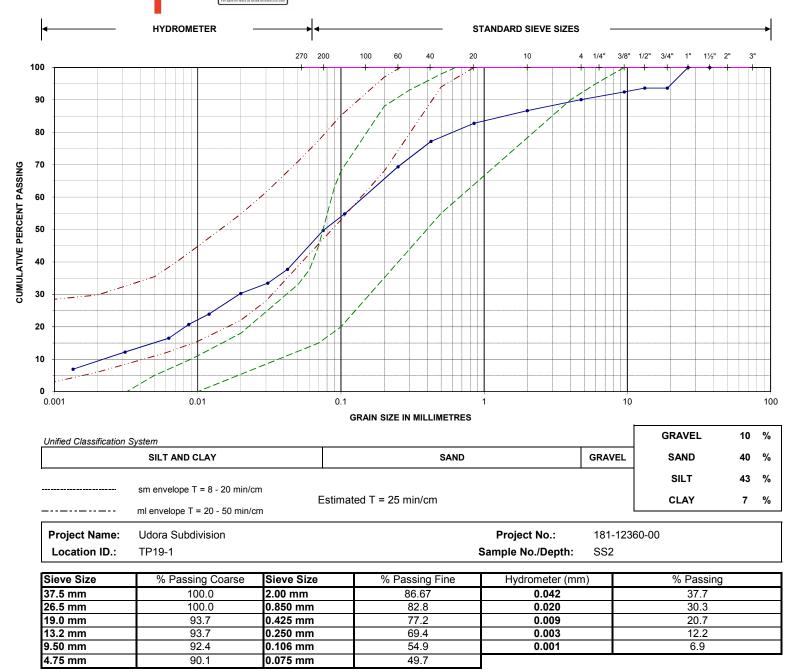


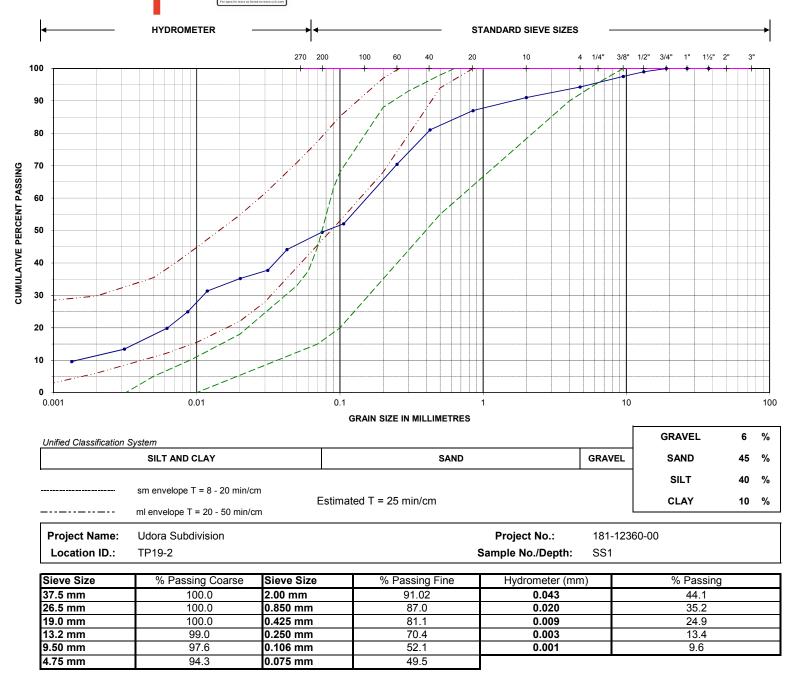

3) Ontario Drinking Water Quality Standard for use under O.Reg. 169/03 of the Safe Drinking Water Act (2002).

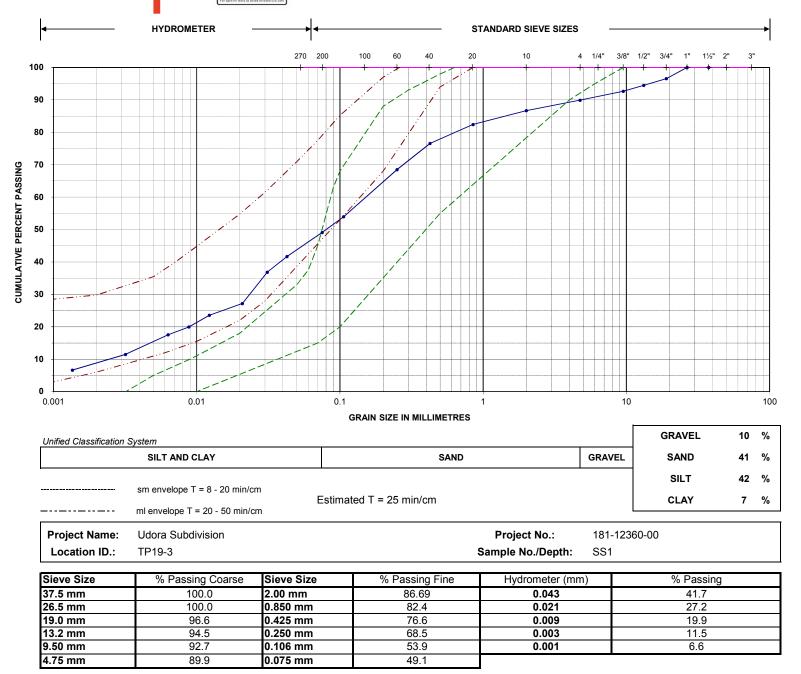

APPENDIX E

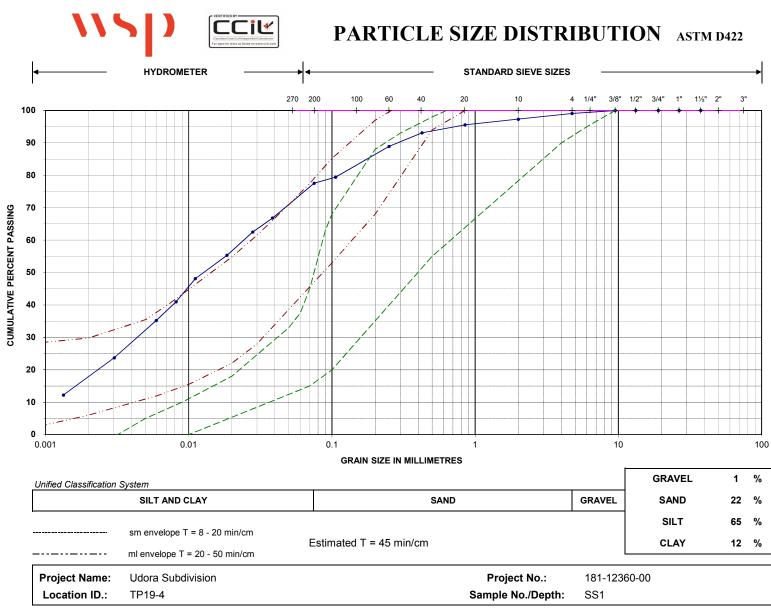

SHALLOW SOILS AND GROUNDWATER

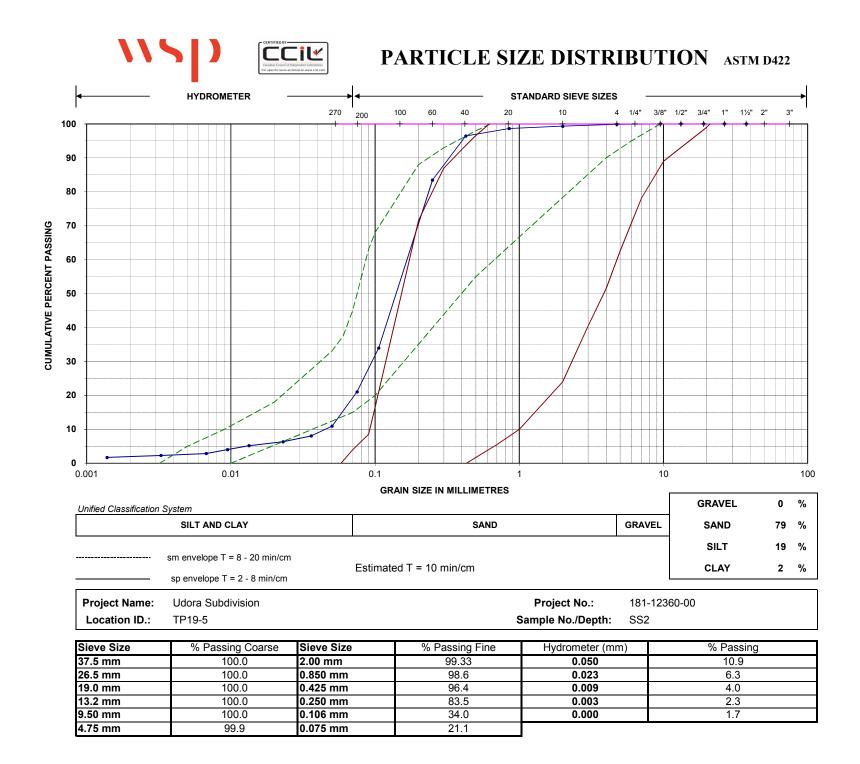


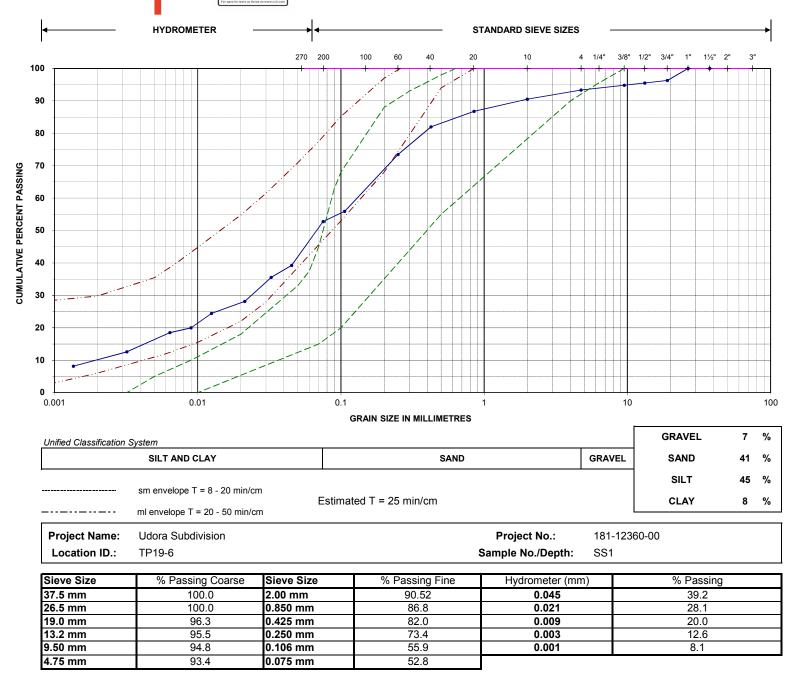




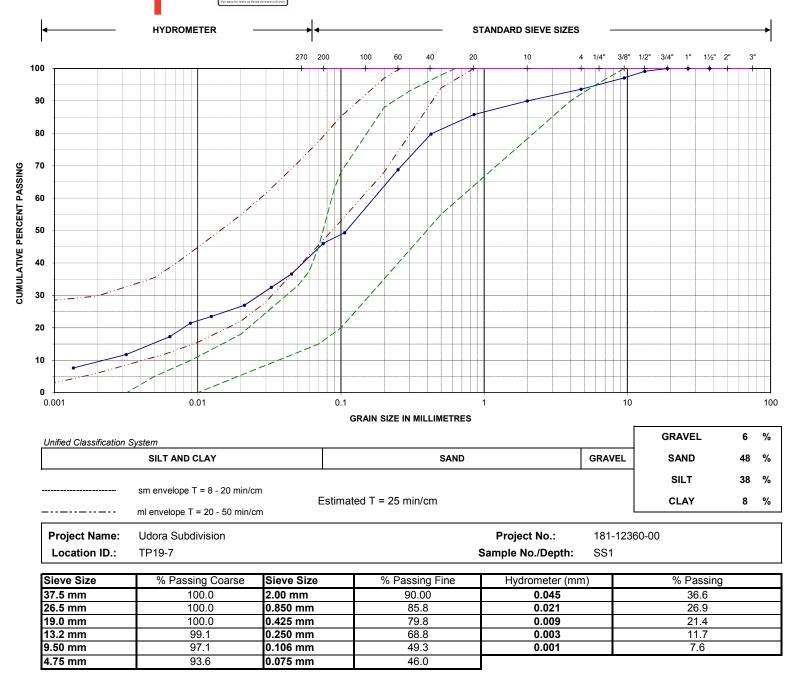




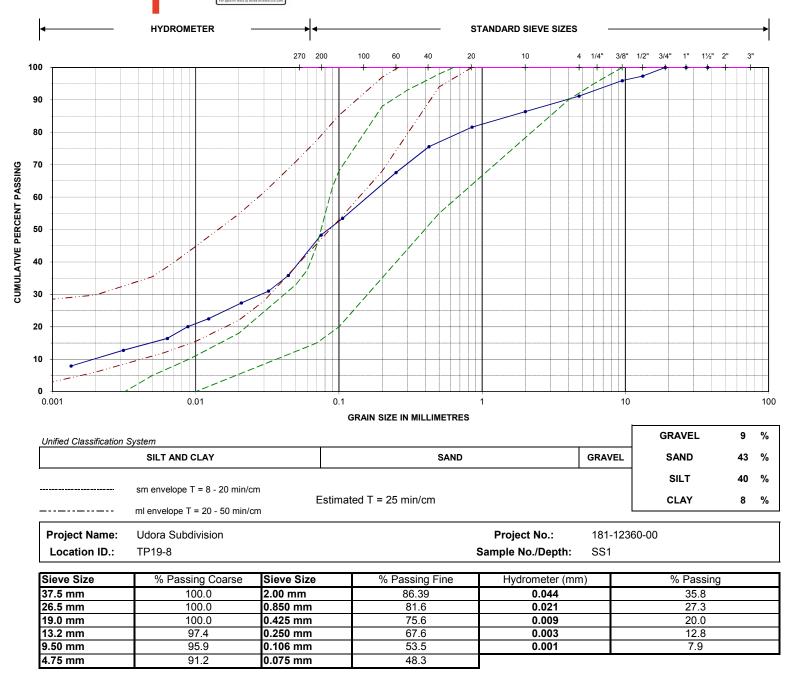


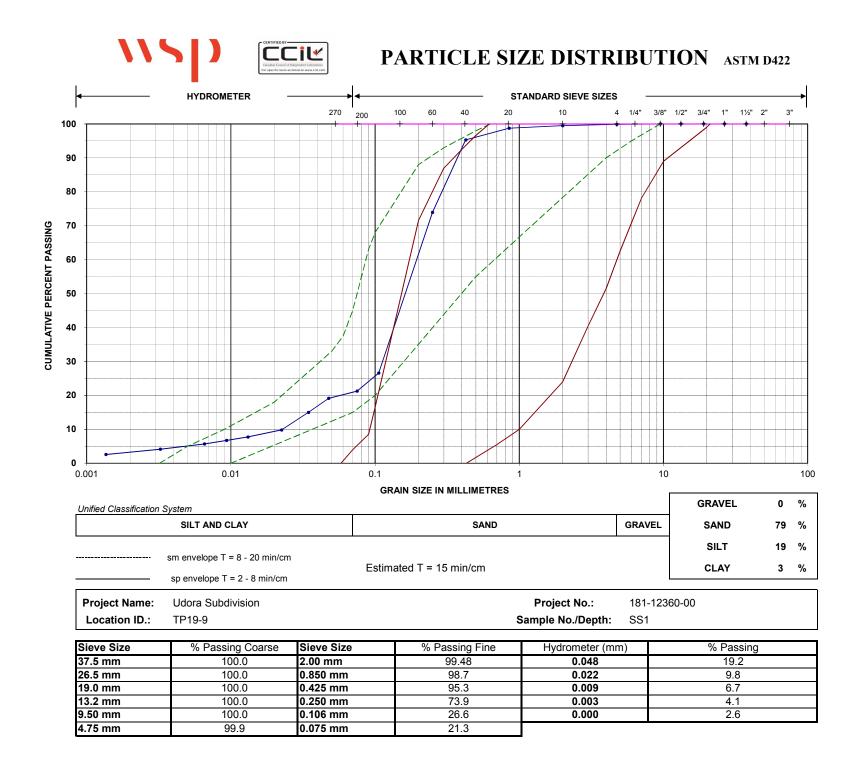


Sieve Size	% Passing Coarse	Sieve Size	% Passing Fine	Hydrometer (mm)	% Passing
37.5 mm	100.0	2.00 mm	97.32	0.038	66.8
26.5 mm	100.0	0.850 mm	95.6	0.018	55.3
19.0 mm	100.0	0.425 mm	93.1	0.008	41.0
13.2 mm	100.0	0.250 mm	88.9	0.003	23.7
9.50 mm	100.0	0.106 mm	79.4	0.001	12.2
4.75 mm	99.1	0.075 mm	77.6		



PARTICLE SIZE DISTRIBUTION ASTM D422





PARTICLE SIZE DISTRIBUTION ASTM D422

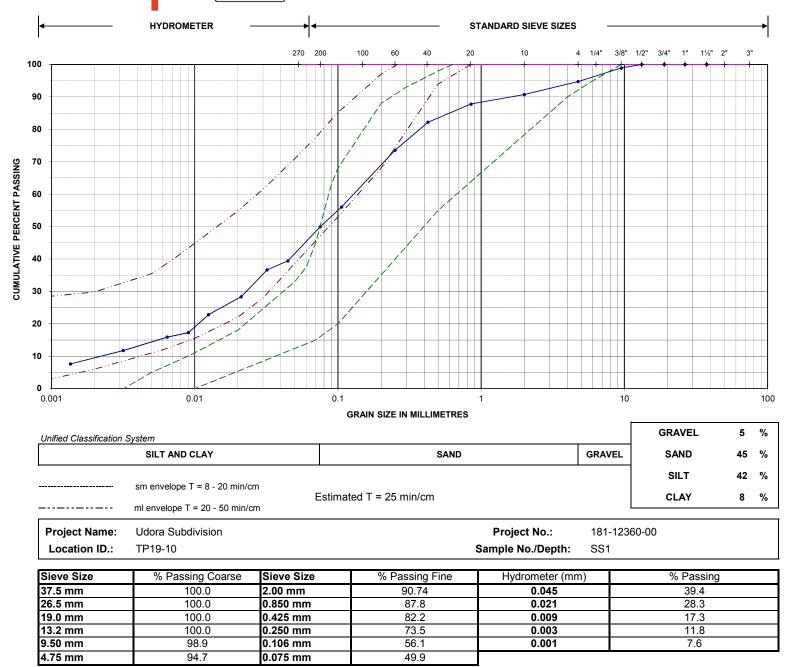


TABLE E-1: TEST PIT LOGS

181-12360-00 Udora Subdivision Capris Investments Inc. May 3, 2019

Depth	Description
TP19-1	
0.00 – 0.20 m	Black topsoil, silt, some sand, trace gravel, with organic material, compact, and wet.
0.20 – 0.50 m	Grey sandy silt fill, some clay and gravel, compact and wet.
0.50 – 0.80 m	Black topsoil, silt, some sand, trace gravel, with organic material, compact, and wet.
0.80 – 2.00 m	Silt and sand, some gravel and clay, boulders, compact and wet.
	 Sample SS1 taken at 0.40 m Sample SS2 taken at 2.00 m Test pit open and wet at 2.00 m Groundwater seepage encountered at 1.80 m
TP19-2	
0.00 – 0.50 m	Black topsoil, trace gravel and boulders, with organic material, wet and loose.
0.50 – 1.20 m	Grey sand and silt, some clay and gravel, orange mottling, compact and wet.
1.20 – 2.00 m	Grey, silty gravel, some boulders, wet and loose.
	 Sample SS1 taken at 1.00 m Sample SS2 taken at 2.00 m Test pit caving and wet at 2.00 m Groundwater seepage encountered at 0.70 m

TP19-3

0.00 – 1.00 m	Black topsoil, silt, trace sand, with organic material, wet, loose, some debris present.

1.00 – 1.10 m Concrete slab.

1.10 – 2.00 m Grey silt and sand, some gravel and clay, trace boulders, orange mottling, compact and wet.

- Sample SS1 taken 2.00 m
- Test pit caving and wet at 2.00 m
- Groundwater seepage encountered at 1.00 m

TP19-4

0.00 – 0.20 m Black topsoil, silt, trace sand, with organic material, compact and wet.

- 0.20 2.00 m Grey silt and sand, some gravel and clay, orange mottling, compact and wet, debris encountered at top of layer.
 - Sample SS1 taken at 2.00 m
 - Test pit caving and wet at 2.00 m
 - Groundwater seepage encountered at 0.30 m
 - Car debris encountered at 0.30 m

TP19-5

0.00 – 0.25 m Dark brown topsoil, silty sand, with organic material, loose, wet, debris present.

0.25 – 2.00 m Half of the test pit found to be grey, gravelly silt, trace clay, compact and wet. Other half of the test pit found to be brown sand, some silt, trace clay, loose and wet.

- Sample SS1 taken at 2.00 m
- Sample SS2 taken at 2.00 m
- Test pit caving and wet at 2.00 m
- Groundwater seepage encountered at 1.50 m

TP19-6

0.00 – 0.20 m Brown topsoil, silty sand, some gravel, with organic material, debris present.

- 0.20 2.00 m Silt and sand, trace clay and gravel, some boulders, compact and dry;
 - Sample SS1 taken at 2.00 m
 - Test pit open and dry at 2.00 m

TP19-7

0.00 – 0.30 m	Black topsoil, silty sand w	with organic material, loose and wet.
---------------	-----------------------------	---------------------------------------

- 0.30 2.00 m Grey silty sand, trace clay and gravel, some boulders, compact and dry.
 - Sample SS1 taken at 2.00 m
 Test pit open and dry at 2.00 m

TP19-8

0.00 – 0.40 m	Black topsoil, silty sand with organic material, loose and wet.	
---------------	---	--

- 0.40 2.00 m
- Sample SS1 taken at 2.00 m
- Test pit caving and wet at 2.00 m
- Groundwater seepage encountered at 0.40 m

TP19-9

- 0.00 0.30 m Black topsoil, silty sand with organic material, loose, moist.
- 0.30 0.70 m Brown sand with some silt, trace clay, loose and moist.
- 0.70 2.00 m Grey gravelly silt, trace sand and clay, orange mottling, compact and wet.
 - Sample SS1 taken at 0.70 m
 - Sample SS2 taken at 2.00 m
 - Test pit caving and wet at 2.00 m
 - Groundwater seepage encountered at 0.70 m

TP19-10

- 0.00 0.30 m Black topsoil, silty sand with organic material, loose and dry.
- 0.30–2.00 m Gravelly sand and silty, trace clay and gravel, some boulders, orange mottling, compact and wet.

Grey sand and silt, trace gravel and clay, some boulders, compact and dry.

- Sample SS1 taken at 2.00 m
- Test pit open and wet at 2.00 m

TABLE E-2 GROUNDWATER LEVELS

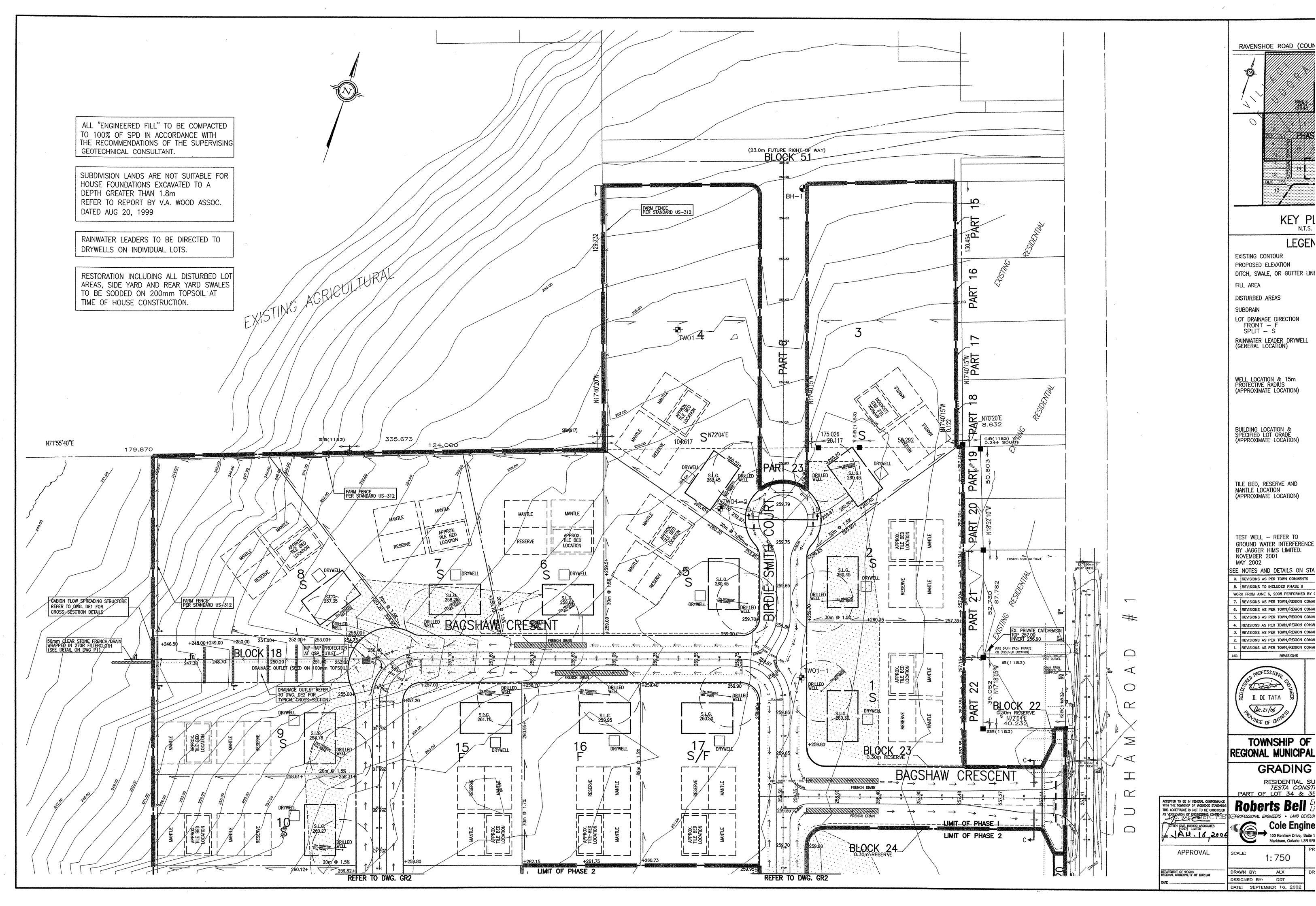
Project: Udora Estates Water Balance Evaluation (22012.00)

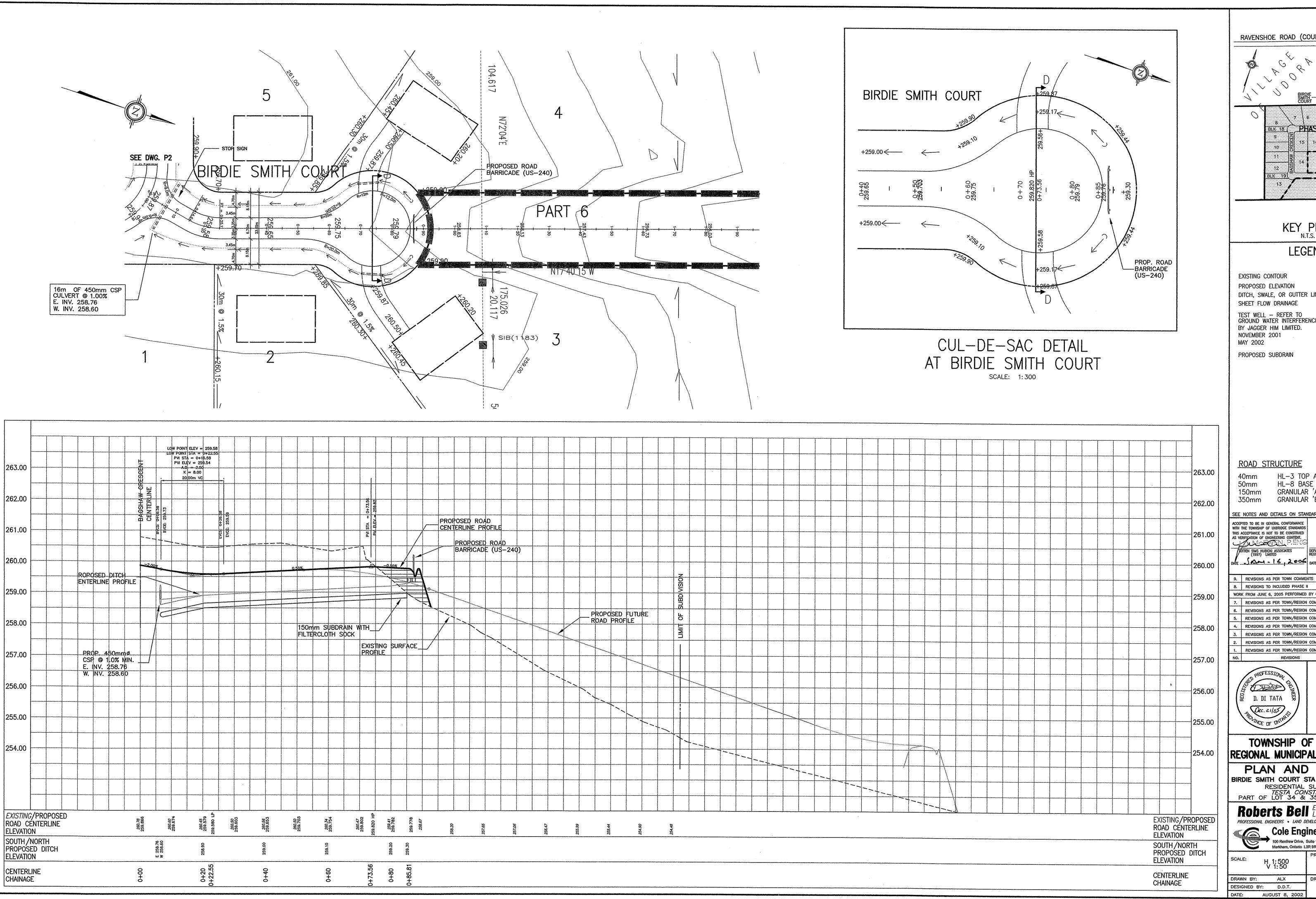
	MW1	7-1 (A -2	35172)*		MW17-2			MW17-3		MW	/1 (A-206	394)		MW2			MW3	
	Water	Water	Water	Water	Water	level	Water	Water	level	Water	Water	level	Water	Water	level	Water	Water	level
	level	level	level Elev.	level	level	Elev.	level	level	Elev.	level	level	Elev.	level	level	Elev.	level	level	Elev.
Date	(mbtoc)	(mbgl)	(masl)	(mbtoc)	(mbgl)	(masl)	(mbtoc)	(mbgl)	(masl)	(mbtoc)	(mbgl)	(masl)	(mbtoc)	(mbgl)	(masl)	(mbtoc)	(mbgl)	(masl)
10-Dec-22	2.65	1.84	248.10	3.71	2.85	248.91	2.81	1.99	249.11	10.32	9.37	243.1	12.39	11.48	240.3	8.06	7.17	252.1
20-Mar-23	1.20	0.39	249.54	1.63	0.81	250.99	1.82	1.00	250.10	10.61	9.66	242.8	11.40	10.49	241.3	5.49	4.60	254.6
20-Apr-23	1.08	0.27	249.66	1.65	0.70	250.97	2.15	1.33	249.77	10.52	9.57	242.9	11.16	10.25	241.6	5.10	4.21	255.0
19-May-23	1.83	1.02	248.91	2.13	1.22	250.49	2.52	1.70	249.40	10.89	9.94	242.6	11.54	10.63	241.2	5.58	4.69	254.5
20-Jul-23	2.62	1.81	248.12	na	na	na	3.04	2.22	248.88	dry	na	na	na	na	na	6.89	6.00	253.2
4-Nov-23	4.13	3.32	246.61	5.27	4.51	247.35	4	3.18	247.92	12.42	11.47	241.0	12.75	11.84	240.0	8.50	7.61	251.6
16-Mar-24	1.05	0.24	249.69	1.72	0.72	250.90	1.67	0.85	250.25	11.09	10.14	242.4	11.52	10.61	241.2	6.14	5.25	254.0
9-Apr-24	1.06	0.25	249.69	1.66	1.66	250.96	1.8	0.98	250.12	10.94	9.99	242.5	11.26	10.35	241.5	5.39	4.50	254.7
6-May-24	1.10	0.29	249.64	0.69	0.69	251.93	2	1.18	249.92	11.73	10.78	241.7	11.02	10.11	241.7	5.05	4.16	255.1
27-Jul-24	2.09	1.28	248.65	2.39	2.39	250.23	2.63	1.81	249.29	11.25	10.30	242.2	11.44	10.53	241.3	6.70	5.81	253.4
30-Sep-24	3.32	2.51	247.42	4.03	4.03	248.59	3.36	2.54	248.56	12.14	11.19	241.3	12.28	11.37	240.4	7.54	6.65	252.6
9-Nov-24	3.72	2.91	247.02	4.77	4.77	247.85	3.71	2.89	248.21	7.23	6.28	246.2	12.56	11.65	240.2	8.13	7.24	252.0

TABLE E-2 GROUNDWATER LEVELS

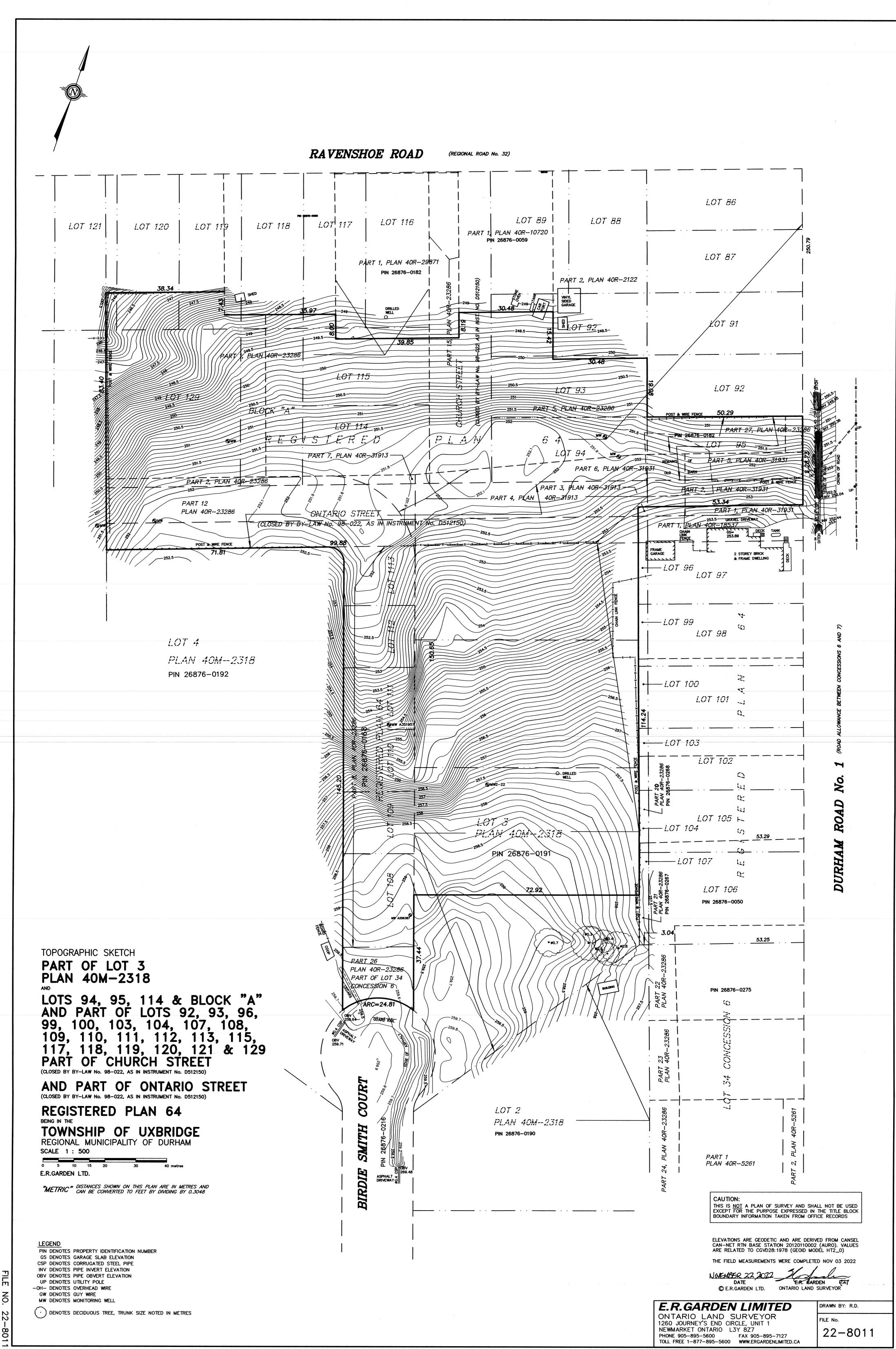
Project: Udora Estates Water Balance Evaluation (22012.00)

	MW1	-22 (A-35	51957)		MW2-2	2		MW24-1			OW5-1			
	Water	Water	level	Water	Water									
	level	level	Elev.	level	level	Water level	Water level	Water level	Water level	Water level	Water level	Water level		
Date	(mbtoc)	(mbgl)	(masl)	(mbtoc)	(mbgl)	Elev. (masl)	(mbtoc)	(mbgl)	Elev. (masl)	(mbtoc)	(mbgl)	Elev. (masl)		
10-Dec-22	6.51	5.75	248.88	9.56	8.56	249.31								
20-Mar-23	4.74	3.98	250.65	6.93	5.93	251.94								
20-Apr-23	4.57	3.81	250.82	6.08	5.08	252.80								
19-May-23	4.80	4.04	250.59	6.54	5.54	252.33								
20-Jul-23	5.84	5.08	249.55	9.04	8.04	249.83								
4-Nov-23	7.05	6.29	248.34	9.57	8.57	249.30								
16-Mar-24	5.67	4.91	249.72	7.43	6.43	251.44	6.11	5.22	251.91	1.33	0.63	257.91		
9-Apr-24	5.44	4.68	249.95	6.78	5.78	252.09	5.37	4.48	252.65	1.40	0.70	257.84		
6-May-24	5.03	4.27	250.36	6.05	5.05	252.82	4.71	3.82	253.31	1.50	0.80	257.74		
27-Jul-24	5.87	5.11	249.52	7.06	6.06	251.81	5.90	5.01	252.12	1.96	1.26	257.28		
30-Sep-24	7.88	7.12	247.51	8.56	7.56	250.31	7.42	6.53	250.60	2.85	2.15	256.39		
9-Nov-24	7.23	6.47	248.16	9.35	8.35	249.52	8.10	7.21	249.92	3.30	2.60	255.94		


	Mon	itor Detail	S	
		Casing	PVC	
	Well Depth	Stickup	Casing	Ground
Monitor	(mbgl)	(magl)	Elev.	Elev.
MW17-1				
(A-235172)	6.10	0.81	250.74	249.93
MW17-2	6.10	0.86	252.62	251.76
MW17-3	4.60	0.82	251.92	251.10
MW1	15.30	0.95	253.45	252.50
MW2	16.90	0.91	252.71	251.80
MW3	15.90	0.89	260.12	259.23
MW1-22				
(A-351957)	12.19	0.76	255.39	254.63
MW2-22	12.19	1.17	258.87	257.70
OW05-1	8.62	0.7	259.24	258.54
MW24-1	10.67	0.89	257.13	256.24

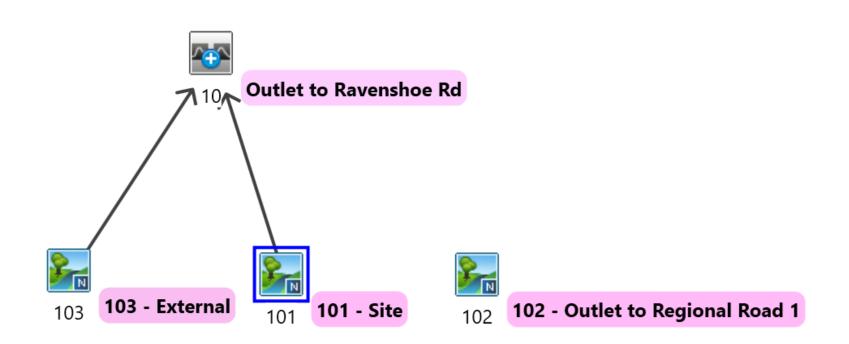

Table E-3 Monitor Well DetailsProject: Udora Estates Water Balance Evaluation (22012.00)

GPS Survey 2024 (Envision Consultants)



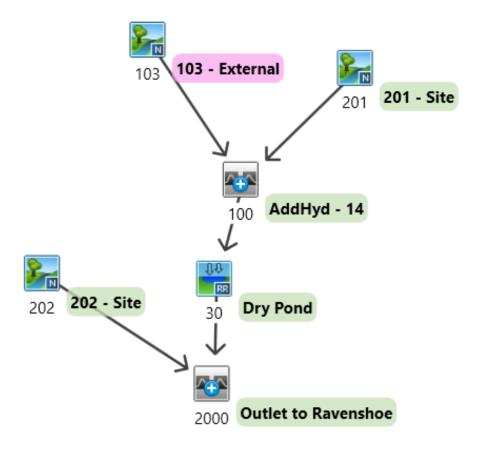
DRAFT PLAN NO.: ??T-????? REGION FILE NO.: ZBA 2010-006

RAVENSHOE ROAD (COUL
C C R R
BIRDIE SMITH COURT
BLK 18 PHAS 9 22 15 11 10 23 15 11
11 12 12 13
KEY P
LEGEN
EXISTING CONTOUR PROPOSED ELEVATION DITCH, SWALE, OR GUTTER LII
SHEET FLOW DRAINAGE TEST WELL – REFER TO GROUND WATER INTERFERENCI BY JAGGER HIM LIMITED.
NOVEMBER 2001 MAY 2002 PROPOSED SUBDRAIN
ROAD STRUCTURE
40mm HL-3 TOP A 50mm HL-8 BASE 150mm GRANULAR 'A
350mm GRANULAR 'E SEE NOTES AND DETAILS ON STANDAF
ACCEPTED TO BE IN GENERAL CONFORMANCE WITH THE TOWNSHIP OF UXBRIDGE STANDARDS THIS ACCEPTANCE IS NOT TO BE CONSTRUED AS VERIFICATION OF ENGINEERING CONTENT.
DATE SIMS HUBICKI ASSOCIATES (1997) LIMITED DATE SAME - 16, 2006 DATE
9. REVISIONS AS PER TOWN COMMENTS 8. REVISIONS TO INCLUDED PHASE II
WORK FROM JUNE 6, 2005 PERFORMED BY 4 7. REVISIONS AS PER TOWN/REGION COM 6. REVISIONS AS PER TOWN/REGION COM
5. REVISIONS AS PER TOWN/REGION COM 4. REVISIONS AS PER TOWN/REGION COM
3. REVISIONS AS PER TOWN/REGION COM 2. REVISIONS AS PER TOWN/REGION COM 1. REVISIONS AS PER TOWN/REGION COM
NO. REVISIONS
D. DI TATA
Roy Dec. 21/05
TOWNSHIP OF
REGIONAL MUNICIPAL
PLAN AND BIRDIE SMITH COURT STA RESIDENTIAL SL TESTA CONST. PART OF LOT 34 & 35
Roberts Bell <i>E</i>
PROFESSIONAL ENGINEERS • LAND DEVELO Cole Engine 100 Renfrew Drive, Suite
SCALE: H 1:500 V 1:50
V 1:50 DRAWN BY: ALX DR DESIGNED BY: D.D.T.



Appendix C Hydrology Modelling

VO6 model is being provided in the following secure link: https://filesafecloud.scsconsultinggroup.com/url/xj3q3gmyvhzzddfy



Udora Estates Project Number: 2328 Date: January 2025

LEGEND

SYMBOL	SOIL TYPE	GREAT GROUP	SOIL MATERIALS	DRAINAGE	TOPOGRAPHY AND SURFACE STONINESS
Psl	PONTYPOOL sandy loam	Grey-Brown Podzolic	Calcareous sand	Good	Rolling to hilly and few stones

11 A 11

DESIGN FLOOD ESTIMATION

· ·

DESIGN	CHAR	rs	
CHART	H2	-	6A
	nt'd		

Soils Series	Soil Texture	Hyd. Soil Grp.	Soils Series	Soil Texture	Hyd. Soil Grp.	Soils Series	Soil Texture	Hyd. Soil Grp.
Lockport London " Lovering " Lovers Macton	C 1 sil sic 1 C C 1 1 1	D BC BC C D CD B B B	Mountain Muck Murray Napanee Neebing Nepean Newburgh	s 1 m si 1 /f s c /si 1 s /si s s 1	AB E B C B AB A	" " " Petherwick Phipps "	1 si 1 si c 1 c 1 c si 1 si c 1 c 1	C CD CD CD CD BC C C
Magnetawan Mallard "	sil s s l	BC AB AB	Newcastle	sil l c l	BC BC C	Piccadilly "	s 1 1 si 1	B BC BC
Malton Mannheim Manotick	c l s	C B AB	Newton Nelson	si l s l c	BC B D	Pike Pike Lake Plainfield	c l s	D B A A
Maplewood Marionville " Martin	sil s sl s/g	BC B B AB	New lisk. Niagara Nipissing	si c c c s /si	C C D B	Pontypool " Powassan Preston	s s 1 s 1 s 1	AB BC B

CHART H2-6A - continued

Existing Conditions VO6 Parameter Summary

Udora Estates Project Number: 2328 Date: December 2024 Designer Initials: J.S.

<u>NASHYD</u>

Number	101	102	103
Description			
DT(min)	1	1	1
Area (ha)	1.69	0.34	1.94
CN*	54.0	58.0	59.0
IA(mm)	8.3	8.0	7.7
TP Method	Uplands	Uplands	Uplands
TP (hr)	0.07	0.04	0.10

Total Area = 3.97 ha

P:\2328 Udora Estates\Design\SWM\FSP\Hydrology\VO6\2328-VO6 Model Parameters Pre.xlsm

Existing Conditions CN Calculations

Site Soils: (per OMAFRA County Soils Mapping)

Soil Type Pontypool Sandy Loam Hydrologic Soil Group AB

		TABLE	OF CURVE	NUMBERS (CN's)**				
Land Use		Manning's	Source						
	A	AB	В	BC	С	CD	D	'n'	
Meadow "Good"	30	44	58	64.5	71	74.5	78	0.40	MTO
Woodlot "Fair"	36	48	60	66.5	73	76	79	0.40	MTO
Gravel	76	80.5	85	87	89	90	91	0.30	USDA
Lawns "Good"	39	50	61	67.5	74	77	80	0.25	USDA
Pasture/Range	58	61.5	65	70.5	76	78.5	81	0.17	MTO
Crop	66	70	74	78	82	84	86	0.13	MTO
Fallow (Bare)	77	82	86	89	91	93	94	0.05	MTO
Low Density Residences	57	64.5	72	76.5	81	83.5	86	0.25	USDA
Streets, paved	98	98	98	98	98	98	98	0.01	USDA

MTO Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers
 USDA (1986), Urban Hydrology for Small Watersheds, Table 2.2-Runoff Curve Numbers for Urban Areas

	HYDROLOGIC SOIL TYPE (%) - Existing Conditions											
	Hydrologic Soil Type											
Catchment	А	A AB B BC C CD D										
101	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100				
102	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100				
103	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100				
								1				

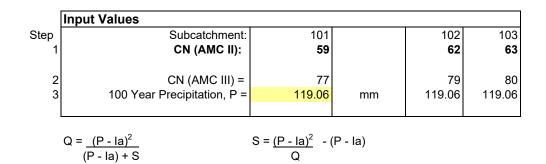
		HYDRO	LOGIC SOIL	TYPE (%) -	Existing Co	nditions					
	Hydrologic Soil Type										
Catchment	А	A AB B BC C CD D									
101		100						100			
102		100						100			
103		100						100			

	LAND USE (%) - Existing Conditions											
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences	Impervious	Total		
101	0.0	17.2	0.0	0.0	82.8	0.0	0.0	0.0	0.0	100.0		
102	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	100.0		
103	0.0	4.8	0.0	0.0	88.9	0.0	0.0	0.0	6.3	100.0		

Note: Where STANDHYD command used (shaded), impervious fraction is not considered in CN determination, since %Imp directly input in STANDHYD command

	LAND USE (%) - Existing Conditions										
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total	
					Range		(Bare)	Residences			
101		17.2			82.8					100.0	
102					100.0					100.0	
103		4.8			88.9				6.3	100.0	

n directly input in STANDHYD c


	CURVE NUMBER (CN) - Existing Conditions												
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Weighted			
					Range		(Bare)	Residences		CN			
101	0.0	8.3	0.0	0.0	50.9	0.0	0.0	0.0	0.0	59			
102	0.0	0.0	0.0	0.0	61.5	0.0	0.0	0.0	0.0	62			
103	0.0	2.3	0.0	0.0	54.7	0.0	0.0	0.0	6.2	63			

** AMC II assumed

Existing Conditions CN Calculations

Udora Estates Project Number: 2328 Date: December 2024 Designer Initials: J.S.

Q = rainfall excess or runoff, mm

S = potential maximum retention or available storage, mm

CN = <u>25400</u>	S = <u>25400</u> - 254
S + 254	CN

CN* = modified SCS curve # that better reflects Ia conditions in Ontario

	Output Values				
	Subcatchment:	101		102	103
	S _{III} =	75.87	mm	67.52	63.50
	SCS Assumption of 0.2 S = Ia =	15.17	mm	13.50	12.70
4	Q ₁₁₁ =	60.04	mm	64.38	66.60
	Preferred Initial Abstraction, Ia =	8.3	mm	8.0	7.7
5	S* _{III} =	93.45	mm	80.53	74.80
6	CN* _{III} =	73.10	mm	75.93	77.25
	CN* _{III} =	73	Rounded	76	77
7	CN* ₁₁ =	54	convert	58	59

Explanation of Procedure

- 1 Determine CN based on typical AMC II conditions (attached)
- 2 Convert CN from AMC II to AMC III conditions (standard SCS tables)
- 3 Get precipitation depth P for 100 year storm
- 4 Using CN_{III} with Ia = 0.2S, compute Q_{III} for 100 year precipitation
- 5 For the same Q_{III} , compute S^*_{III} using Ia=1.5mm (or otherwise determined)
- 6 Compute CN* III using S* III
- 7 Calculate CN*_{II} using SCS conversion table

Existing Conditions IA Calculations

	LAND USE (%) - Existing Conditions											
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total		
	4.07	3.63	2.38		Range		(Bare)	C				
101		17.2			82.8					100.0		
102					100.0					100.0		
103		4.8			88.9				6.3	100.0		

	IA VALUES (mm) - Existing Conditions											
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total		
					Range		(Bare)	Residences				
IA (mm)	8	10	2	5	8	8	3	2	2			
101		1.7			6.6					8.3		
102					8.0					8.0		
103		0.5			7.1				0.1	7.7		

* IA values based on LRSCA guidelines

Existing Conditions Time to Peak Calculations

Udora Estates Project Number: 2328 Date: December 2024 Designer Initials: J.S.

Uplands Method:

Catchment ID	High Elevation	Low Elevation	Length (m)	Slope (%)	Land Cover Type	Velocity (m/s)	Time of Concentration (s)	Time of Concentration (hr)	Time to Peak (hr)
101a	259.12	249.58	181	5.26	Pasture	0.50	360.5	0.10	0.07
101									0.07
102a	258.90	254.50	101	4.36	Pasture	0.46	221.0	0.06	0.04
102									0.04
103a	259.69	256.66	64	4.73	Pasture	0.48	134.3	0.04	0.02
103b	256.66	252.76	78	5.00	Woodland	0.34	231.2	0.06	0.04
103c	252.76	251.99	47	1.64	Pasture	0.28	168.5	0.05	0.03
103									0.10

Proposed Conditions VO Parameter Summary

Udora Estates Project Number: 2328 Date: January 2025 Designer Initials: J.S.

NASHYD				
Number	103	201	202	203
Description				
DT(min)	1	1	1	1
Area (ha)	1.94	1.37	0.52	0.14
CN*	55.0	53.0	44.0	53.0
IA(mm)	6.8	4.4	4.8	4.3
TP Method	Uplands	Uplands	Uplands	Uplands
TP (hr)	0.05	0.04	0.01	0.02

Total Area = 3.97 ha

Proposed Conditions CN Calculations

Udora Estates Project Number: 2328 Date: January 2025 Designer Initials: J.S.

Site Soils: (per OMAFRA County Soils Mapping)

Soil Type	
Pontypool Sandy Loam	

Hydrologic Soil Group

TABLE OF CURVE NUMBERS (CN's)**										
Land Use				Hyc	Irologic Soil 7	Гуре			Manning's	Source
		А	AB	В	BC	С	CD	D	'n'	
Meadow "Good	d"	30	44	58	64.5	71	74.5	78	0.40	MTO
Woodlot "Fair"	1	36	48	60	66.5	73	76	79	0.40	MTO
Gravel		76	80.5	85	87	89	90	91	0.30	USDA
Lawns "Good	d"	39	50	61	67.5	74	77	80	0.25	USDA
Pasture/Range		58	61.5	65	70.5	76	78.5	81	0.17	MTO
Crop		66	70	74	78	82	84	86	0.13	MTO
Fallow (Bare)		77	82	86	89	91	93	94	0.05	MTO
Low Density Resid	ences	57	64.5	72	76.5	81	83.5	86	0.25	USDA
Streets, paved		98	98	98	98	98	98	98	0.01	USDA

1. MTO Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers

2. USDA (1986), Urban Hydrology for Small Watersheds, Table 2.2-Runoff Curve Numbers for Urban Areas

	HYDROLOGIC SOIL TYPE (%) - Proposed Conditions										
	Hydrologic Soil Type										
Catchment	А	AB	В	BC	С	CD	D	TOTAL			
103	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100			
201	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100			
202	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100			
203	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100			

	HYDROLOGIC SOIL TYPE (%) - Proposed Conditions										
			Hyd	Irologic Soil 7	Гуре						
Catchment	А	AB	В	BC	С	CD	D	TOTAL			
103		100						100			
201		100						100			
202		100						100			
203		100						100			

Proposed Conditions CN Calculations

			L	AND USE (%	6) - Propose	d Condition	s			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences	Impervious	Total
103	0.0	4.8	0.0	29.0	60.0	0.0	0.0	0.0	6.3	100.0
201	0.0	0.0	0.0	79.9	0.0	0.0	0.0	0.0	20.1	100.0
202	0.0	0.0	0.0	92.4	0.0	0.0	0.0	0.0	7.6	100.0
203	0.0	0.0	0.0	76.8	0.0	0.0	0.0	0.0	23.2	100.0
Note: Where STA	ANDHYD comm	and used (shade	ed), impervious f	raction is not co	nsidered in CN d	etermination, si	nce %Imp direc	tly input in STAN	OHYD command	
			L	AND USE (%	6) - Propose	d Condition	S			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total
					Range		(Bare)	Residences		
103		4.8		29.0	60.0				6.3	100.0
201				79.9					20.1	100.0
202				92.4					7.6	100.0
203				76.8					23.2	100.0
lote: Where STA	NDHYD comm	and used (shade	ed), impervious f	raction is not co	nsidered in CN d	etermination, si	nce %Imp direc	tly input in STAN	OHYD command	
			CUR	/E NUMBER	(CN) - Prop	osed Condi	tions			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences	Impervious	Weighted CN
					<u>v</u>					
103	0.0	2.3	0.0	14.5	36.9	0.0	0.0	0.0	6.2	60

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

19.7

7.5

22.7

60

54

61

** AMC II assumed

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

40.0

46.2

38.4

201

202

203

Inp	out Values					
Step	Subcatchment:	103		201	202	203
1	CN (AMC II):	60		60	54	61
2	CN (AMC III) =	78		78	73	78
3	100 Year Precipitation, P =	<mark>119.06</mark>	mm	119.06	119.06	119.06
Q =	= <u>(P - la)²</u> S =	= <u>(P - la)²</u> - (P - Ia)			
	(P - la) + S	Q				

Q = rainfall excess or runoff, mm

S = potential maximum retention or available storage, mm

CN = <u>25400</u>	S = <u>25400</u> - 254
S + 254	CN

CN* = modified SCS curve # that better reflects Ia conditions in Ontario

Γ	Output Values					
	Subcatchment:	103		201	202	203
	S _{III} =	71.64	mm	71.64	93.95	71.64
	SCS Assumption of 0.2 S = Ia =	14.33	mm	14.33	18.79	14.33
4	Q _{III} =	62.19	mm	62.19	51.77	62.19
	Preferred Initial Abstraction, Ia =	6.8	mm	4.4	4.8	4.3
5	S* ₁₁₁ =	90.25	mm	96.74	138.02	96.99
6	CN* _{III} =	73.78	mm	72.42	64.79	72.37
	CN* _{III} =	74	Rounded	72	65	72
7	CN* _{II} =	55	convert	53	44	53

Explanation of Procedure

- 1 Determine CN based on typical AMC II conditions (attached)
- 2 Convert CN from AMC II to AMC III conditions (standard SCS tables)
- 3 Get precipitation depth P for 100 year storm
- 4 Using CN_{III} with Ia = 0.2S, compute Q_{III} for 100 year precipitation
- 5 For the same Q_{III}, compute S*_{III} using la=1.5mm (or otherwise determined)
- 6 Compute CN* using S* using S*
- 7 Calculate CN*_{II} using SCS conversion table

	LAND USE (%) - Proposed Conditions											
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences		Total		
103		4.8		29.0	60.0				6.3	100.0		
201				79.9					20.1	100.0		
202				92.4					7.6	100.0		
203				76.8					23.2	100.0		

			IA	VALUES (m	m) - Propos	ed Conditio	ns			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total
					Range		(Bare)	Residences		
IA (mm)	8	10	2	5	8	8	3	2	2	
103		0.5		1.4	4.8				0.1	6.8
201				4.0					0.4	4.4
202				4.6					0.2	4.8
203				3.8					0.5	4.3

* IA values based on LSRCA guidelines

Proposed Conditions Time to Peak Calculations

Udora Estates Project Number: 2328 Date: January 2025 Designer Initials: J.S.

Uplands Method:

Catchment ID	High Elevation	Low Elevation	Length (m)	Slope (%)	Land Cover Type	Velocity (m/s)	Time of Concentration (s)	Time of Concentration (hr)	Time to Peak (hr)
103	258.85	249.47	279	3.36	Small Upland Gullies and Paved Areas	1.11	250.5	0.07	0.05
103									0.05
201	251.24	250.76	96	0.50	Small Upland Gullies and Paved Areas	0.43	221.7	0.06	0.04
201									0.04
202	252.22	249.14	39	7.90	Pasture	0.62	63.2	0.02	0.01
202									0.01
203	251.24	251.17	35	0.20	Small Upland Gullies and Paved Areas	0.27	127.3	0.04	0.02
203									0.02

Appendix D Phosphorus Budgets

Existing Phosphorus Budget

Watershed Pefferlaw/Uxbridge Brook

To: Ravenshoe Ditch								
Land Cover	TP Loading (kg/ha/yr)	Area (ha)	TP Loading (kg/yr)					
Transitional	0.04	1.44	0.06					
Forest	0.03	0.29	0.01					
	Total	1.73	0.07					

				Ph	osphor	us Exp	ort (kg	/ha/yr))			
	73	e	Golf	High In Develo		sity ent		oad		Ę		er
Subwatershed	Cropland	Hay-Pasture	Sod Farm/Golf Course	Commercial /Industrial	Residential	Low Intensity Development	Quarry	Unpaved Road	Forest	Transition	Wetland	Open Water
		I	Monito	red Sub	watersł	neds						
Beaver River	0.22	0.04	0.01	1.82	1.32	0.19	0.06	0.83	0.02	0.04	0.02	0.26
Black River	0.23	0.08	0.02	1.82	1.32	0.17	0.15	0.83	0.05	0.06	0.04	0.26
East Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Hawkestone Creek	0.19	0.10	0.06	1.82	1.32	0.09	0.10	0.83	0.03	0.04	0.03	0.26
Lovers Creek	0 16	0 07	0 17	1 82	1.32	0 07	0.06	0.83	0.06	0.06	0.05	0 26
Pefferlaw/Uxbridge Brook	0.11	0.06	0.02	1.82	1.32	0.13	0.04	0.83	0.03	0.04	0.04	0.26
Whites Creek	0.23	0.10	0.42	1.82	1.32	0.15	0.08	0.83	0.10	0.11	0.09	0.26
		Uı	nmonit	tored Su	Ibwater	sheds						
Barrie Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
GeorginaCreeks	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Hewitts Creek	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Innisfil Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Maskinonge River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Oro Creeks North	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Oro Creeks South	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Ramara Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Talbot/Upper Talbot River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
West Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26

Proposed Conditions Phosphorus Budget

Watershed Pefferlaw/Uxbridge Brook

				BMP #1			BMP #2			BMP #3		
Land Cover	TP Loading (kg/ha/yr)	Area (ha)	TP Loading (kg/yr)	BMP	TP Removal Rate (%)	TP Export (kg/yr)	BMP	TP Removal Rate (%)	Mitigated P _{load} (kg/year)	BMP	TP Removal Rate (%)	TP Export (kg/yr)
Low Intensity Development	0.13	0.40	0.05	Infiltration Trenches	60%	0.02	Sand or Media Filters	45%	0.01	Dry Detention Ponds	10%	0.01
Low Intensity Development	0.13	0.65	0.09	Sand or Media Filters	45%	0.05	Dry Detention Ponds	10%	0.04	None	0%	0.04
Low Intensity Development	0.13	0.11	0.01	Dry Detention Ponds	10%	0.01	None	0%	0.01	None	0%	0.01
Low Intensity Development	0.13	0.57	0.07	None	0%	0.07	None	0%	0.07	None	0%	0.07
	Total	1.73	0.23								Total	0.14

Lake Simcoe Phosphorous Offsetting Policy Calculation

Phosphorus Export =	0.07 kg/yr
Offset Ratio =	<mark>2.5</mark> :1
Offsetting Value =	\$ 35,770.00 /kg/year
Offsetting Cost =	\$ 6,505.30
Administration Fee =	<mark>15%</mark>
	\$ 975.80
TOTAL PHOSPHORUS OFFSETTING FEE =	\$ 7,481.10

Appendix E Stormwater Management Pond Sizing Calculations

Weighted Impervious Calculation

Catchment ID	Total Area	Imperviousness	Impervious Area
	(ha)	(%)	(ha)
103	1.94	6	0.12
201	1.37	20	0.27
Total	3.31	12	0.40

Dry Pond Water Quality and Extended Detention Sizing

Udora Estates Project Number: 2328 Date: January 2025 Designer Initials: J.S.

EXTENDED DETENTION Level of Protection = Basic (Level 3) Weighted Impervious = 12 % Drainage Area = 3.31 ha SWMP Type = 5. Dry Pond (Continuous Flow)

Required Water Quality Storage Volume

TABLE 3.2 - WATER QUALITY STORAGE REQUIREMENTS FOR DRY PONDS

	(I KOM MOE SWM FLANNING AND DESIGN MANGAE - 2003)									
Protection	SWMP Type	Storage Volume (m ³ /ha) for Impervious Level								
Level	owini rype	35%		70%	85%					
Basic	5. Dry Pond (Continuous Flow)	90	150	200	240					
(Level 3)	5. Dry Fond (Continuous Flow)	90	150	200	240					

Using the 40 mm - 4 hour Chicago Storm

Erosion Control Volume (V) = Runoff Depth (mm) x Drainage Area (ha) x 10 (m³) / (mm)(ha)

13.4 m³/ha

Erosion Control Volume (V) = $\frac{4.68}{1000}$ mm x 3.31 ha x 10 m³ / mm·ha

Erosion Control Volume (V) = 155 m^3

Using Water Quality Storage Volume 13.4 m3/ha

Extended Detention Volume (V) = 13.4 m3/ha x Drainage Area (ha)

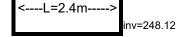
Extended Detention Volume (V) = 13.4 m³/ha 3.31 ha

Extended Detention Volume (V) = 44 m³

Governing Volume (V) = 155 m³

P:\2328 Udora Estates\Design\SWM\FSP\Design Calculations\SWM Pond Design\2328-Stage Storage-Extended Detention-Dry Facilities.xlsm

CONTROL STRUCTURE SUMMARY


Orifice 1

Invert =	247.24	m
Size =	0.075	m
Orifice Coefficient, C =	0.62	
Obvert =	247.315	m

Broad Crested Weir (Weir 2)

Length =	2.40	m
Elevation =	248.12	m
Crest Breadth =	0.20	m

OUTFLOW SUMMARY

Udora Estates Project Number: 2328 Date: January 2025 Designer Initials: J.S.

Starting Water Level (m) = 247.64 Elevation Increment (m) = 0.02

Shading represents Storage-Discharge pairings used in VO modelling

Upstream	Orifice 1	Orifice 2	Total	Storage	Detention				
Elevation	Outflow	Outflow	Flow	(3)	Time	Chicago 4hr	SCS 6hr	SCS 12hr	SCS 24hr
(m)	(cms)	(cms)	(cms)	(m³)	(hrs)				
247.64 247.66	0.015 0.015	0.000 0.000	0.015 0.015	0 5	0.0 0.0				
247.68	0.015	0.000	0.015	5 11	0.0				
247.08	0.015	0.000	0.015	16	0.0				
247.72	0.016	0.000	0.016	22	0.1				
247.72	0.017	0.000	0.010	28	0.2				
247.74	0.017	0.000	0.017	34	0.3	2 Year			
247.78	0.017	0.000	0.017	40	0.5	2 1001			
247.80	0.018	0.000	0.018	46	0.6				
247.82	0.018	0.000	0.018	53	0.7		2 Year		
247.84	0.018	0.000	0.018	59	0.8				
247.86	0.019	0.000	0.019	66	0.9			2 Year	
247.88	0.019	0.000	0.019	72	1.0				
247.90	0.019	0.000	0.019	79	1.1				2 Year
247.92	0.019	0.000	0.019	86	1.2				
247.94	0.020	0.000	0.020	93	1.3	5 Year			
247.96	0.020	0.000	0.020	100	1.4				
247.98	0.020	0.000	0.020	107	1.5				
248.00	0.021	0.000	0.021	115	1.6				
248.02	0.021	0.000	0.021	122	1.7				
248.04	0.021	0.000	0.021	130	1.8		5 Year		
248.06	0.021	0.000	0.021	138	1.9				
248.08	0.022	0.000	0.022	146	2.0	10 Year			
248.10	0.022	0.000	0.022	154	2.1	EXTENDE	D DETENTION	5 Year	
248.12	0.022	0.000	0.022	162	2.2				
248.14	0.023	0.000	0.033	170	2.3		10 Year		5 Year
248.16	0.023	0.000	0.053	178	2.3	25 Year		10 \/	
248.18	0.023	0.000	0.078	187	2.4			10 Year	
248.20 248.22	0.023 0.024	0.000 0.000	0.107 0.141	195 204	2.4 2.4		OF Veer		10 Veer
248.22	0.024	0.000	0.141	204	2.4	100 Year	25 Year		10 Year
248.26	0.024	0.000	0.170	213	2.4	100 real	50 Year	25 Year	
248.28	0.024	0.000	0.219	231	2.4		50 real	25 real	25 Year
248.30	0.025	0.000	0.309	240	2.5				20108
248.32	0.025	0.000	0.358	249	2.5		100 Year		
248.34	0.025	0.000	0.421	259	2.5		100 1001	100 Year	
248.36	0.025	0.000	0.477	268	2.5			100 100	100 Year
248.38	0.025	0.000	0.535	278	2.5				
248.40	0.026	0.000	0.595	288	2.5				
248.42	0.026	0.000	0.657	298	2.5				
248.44	0.026	0.000	0.778	308	2.5				
248.46	0.026	0.000	0.850	318	2.5				
248.48	0.027	0.000	0.923	328	2.5				
248.50	0.027	0.000	0.999	338	2.5				
248.52	0.027	0.000	1.120	349	2.5				
248.54	0.027	0.000	1.203	360	2.5				
248.56	0.027	0.000	1.288	370	2.5				
248.58	0.028	0.000	1.375	381	2.5				
248.60	0.028	0.000	1.465	392	2.5				
248.62	0.028	0.000	1.572	403	2.5				
248.64	0.028	0.000	1.666	414	2.5				
248.66	0.029	0.000	1.762	426	2.5				

Actual	Stage	e/Storage	Table:
	_		

Elevation	Area
(m)	(m2)
247.64	265
248.66	570

Expanded Stage/Storage Table:

Stage	Incremental	Total	Incremental	Total
(m)	Area	Area	Volume	Storage
247.64	Αισα	265.1	Viullie	otorage
247.66	- 5.97	203.1	5.36	5.36
247.68	5.97	277.1	5.48	10.84
247.00	5.97	283.1	5.60	16.45
247.70	5.97	289.0	5.72	22.17
		295.0		
247.74	5.97		5.84	28.01
247.76	5.97	301.0	5.96	33.97
247.78	5.97	306.9	6.08	40.04
247.80	5.97	312.9	6.20	46.24
247.82	5.97	318.9	6.32	52.56
247.84	5.97	324.9	6.44	59.00
247.86	5.97	330.8	6.56	65.56
247.88	5.97	336.8	6.68	72.23
247.90	5.97	342.8	6.80	79.03
247.92	5.97	348.8	6.92	85.94
247.94	5.97	354.7	7.04	92.98
247.96	5.97	360.7	7.15	100.13
247.98	5.97	366.7	7.27	107.41
248.00	5.97	372.7	7.39	114.80
248.02	5.97	378.6	7.51	122.31
248.04	5.97	384.6	7.63	129.95
248.06	5.97	390.6	7.75	137.70
248.08	5.97	396.6	7.87	145.57
248.10	5.97	402.5	7.99	153.56
248.12	5.97	408.5	8.11	161.67
248.14	5.97	414.5	8.23	169.90
248.16	5.97	420.5	8.35	178.25
248.18	5.97	426.4	8.47	186.72
248.20	5.97	432.4	8.59	195.31
248.22	5.97	438.4	8.71	204.02
248.24	5.97	444.4	8.83	212.84
248.26	5.97	450.3	8.95	221.79
248.28	5.97	456.3	9.07	230.86
248.30	5.97	462.3	9.19	240.04
248.32	5.97	468.3	9.31	249.35
248.34	5.97	474.2	9.42	258.77
248.36	5.97	480.2	9.54	268.32
248.38	5.97	486.2	9.66	277.98
248.40	5.97	492.1	9.78	287.76
248.42	5.97	498.1	9.90	297.66
248.44	5.97	504.1	10.02	307.69
248.46	5.97	510.1	10.14	317.83
248.48	5.97	516.0	10.26	328.09
248.50	5.97	522.0	10.20	338.47
248.52	5.97	528.0	10.50	348.97
248.54	5.97	534.0	10.62	359.59
248.56	5.97	539.9	10.02	370.33
240.50 248.58	5.97	539.9	10.74	381.19
240.50 248.60	5.97	545.9 551.9	10.86	392.16
			10.98	
248.62	5.97	557.9		403.26
248.64	5.97	563.8	11.22	414.48
248.66	5.97	569.8	11.34	425.82

P:\2328 Udora Estates\Design\SWM\FSP\Design Calculations\SWM Pond Design\2328-Multiple Outlet Design - Stage Storage Discharge sizing iteration.xlsm Appendix F LID Sizing

TABLE C1: APPROXIMATE RELATIONSHIPS BETWEEN HYDRAULIC CONDUCTIVITY, PERCOLATION TIME AND INFILTRATION RATE (FROM LOW IMPACT DEVELOPMENT STORMWATER MANAGEMENT PLANNING AND DESIGN GUIDE - 2010)

Hydraulic Conductivity, K _{fs} (centimeters/second)	Percolation Time, T (minutes/centimetre)	Infiltration Rate, 1/T (millimetres/hour)
0.1	2	300
0.01	3	150
0.001	4	75
0.0001	12	50
0.00001	20	30
0.000001	50	12
Hydraulic Conductivity (K _{fs})	0.000026	centimetres/second
Hydraulic Conductivity Upper Limit (K _{fsu})	0.0001	centimetres/second
Hydraulic Conductivity Lower Limit (K _{fsl})	0.00001	centimetres/second
Percolation Time Upper Limit (T _u)	12	minutes/centimetre
Percolation Time Lower Limit (T _I)	20	minutes/centimetre
filtration Rate Upper Limit $(1/T_u)$	50	millimetres/hour
nfiltration Rate Lower Limit (1/T _i)	30	millimetres/hour
nterpolated Infiltration Rate (1/T)	33.56	millimetres/hour

1. Hydraulic Conductivity per Hydrogeological Assessment prepared by (Gaman Consultants Inc., 2024)

TABLE C1: APPROXIMATE RELATIONSHIPS BETWEEN HYDRAULIC CONDUCTIVITY, PERCOLATION TIME AND INFILTRATION RATE (FROM LOW IMPACT DEVELOPMENT STORMWATER MANAGEMENT PLANNING AND DESIGN GUIDE - 2010)

Hydraulic Conductivity, K _{fs} (centimeters/second)	Percolation Time, T (minutes/centimetre)	Infiltration Rate, 1/T (millimetres/hour)
0.1	2	300
0.01	3	150
0.001	4	75
0.0001	12	50
0.00001	20	30
0.000001	50	12
Hydraulic Conductivity (K _{fs})	0.00016	centimetres/second
lydraulic Conductivity Upper Limit (K _{fsu})	0.001	centimetres/second
Hydraulic Conductivity Lower Limit (K _{fsl})	0.0001	centimetres/second
ercolation Time Upper Limit (T _u)	4	minutes/centimetre
Percolation Time Lower Limit (T _I)	12	minutes/centimetre
filtration Rate Upper Limit (1/T _u)	75	millimetres/hour
nfiltration Rate Lower Limit (1/T _I)	50	millimetres/hour
nterpolated Infiltration Rate (1/T)	51.67	millimetres/hour

1. Hydraulic Conductivity per Hydrogeological Assessment prepared by (Gaman Consultants Inc., 2024)

Infiltration Drawdown

Udora Estates Project Number: 2328 Date: January 2025 Designer Initials: J.S.

	Units	Total to Infiltration Trench	Notes
P - Percolation Rate	mm/h	33.6	per Hydrogeological Assessment prepared by Gaman Consultatns Inc., 2024)
SF - Safety Factor		3.50	
n - Media Porosity		0.40	
t - Detention Time	h	48	
D - Maximum Depth of Infiltration Trench	m	1.152	$D = \frac{P * t}{SF * n * 1000}$

Weighted Impervious Calculation

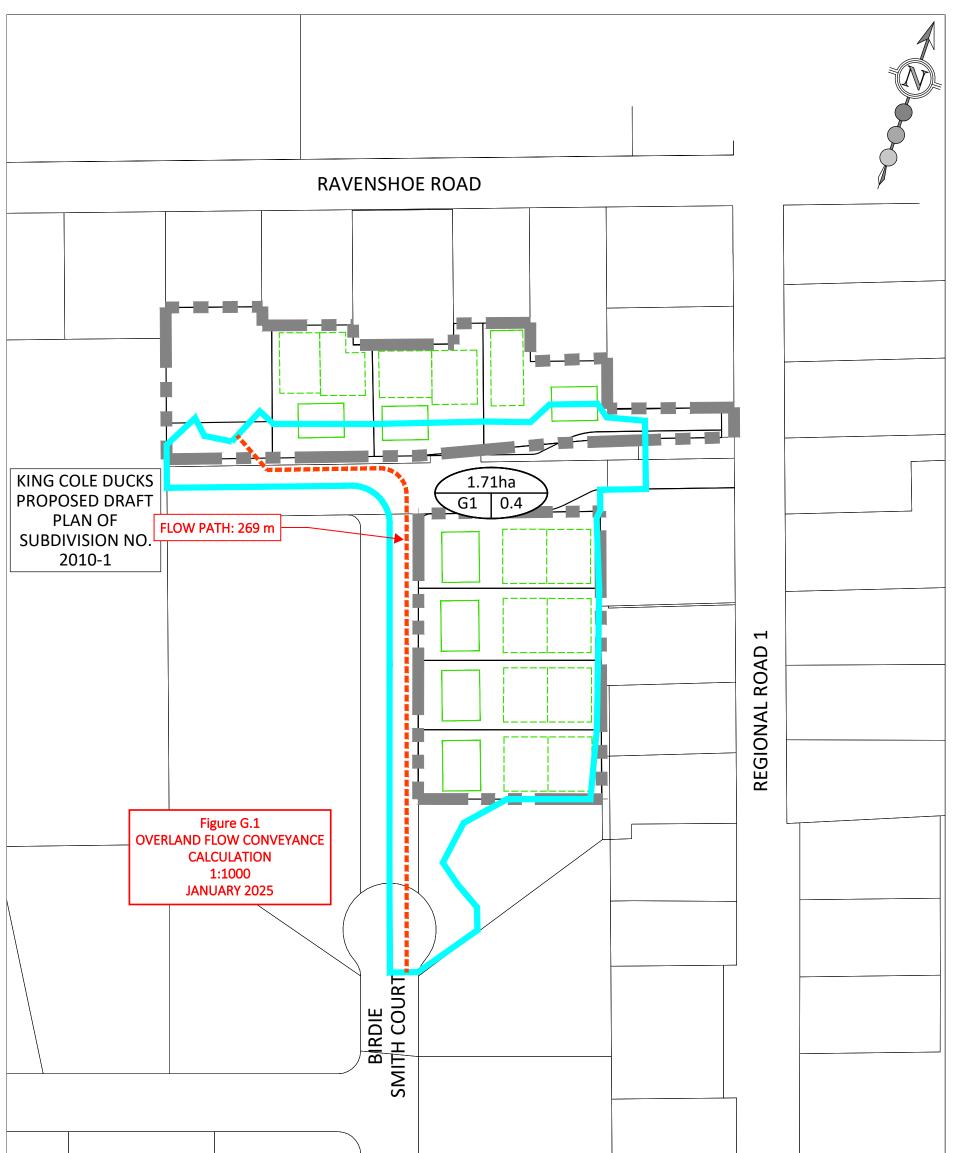
Coverage Type	Total Area	Imperviousness	Impervious Area
	(ha) (%)		(ha)
A1	0.61	26	0.16
A2	1.24	30	0.37
A3	0.75	11	0.08
Total	2.60	24	0.61

Required LID Treatment Volumes

Water Quality Volume			
Level o	f Protection =	Enhanced	(Level 1)
Weighted	Impervious =	24	%
Dra	ainage Area =	2.60	ha
S	WMP Type =	1. Infiltration	
Required Volume	per hectare =	22.5	m³/ha
Required Water Qual	Required Water Quality Volume =		m ³
Volume Control Volume			
	<u>Minimum</u>		Target
Required Depth of Retention (mm) =	5	12.5	25
Impervious Area (ha) =	0.61	0.61	0.61
Required Volume Control Volume (m ³) =	30.7	76.6	153.3

TABLE 3.2- WATER QUALITY STORAGE REQUIREMENTS(FROM MOE SWM PLANNING AND DESIGN MANUAL - 2003)

Protection	SWMP Type	Storage Volume (m ³ /ha) for Impervious Level				
Level		35%	55%	70%	85%	
	1. Infiltration	25	30	35	40	
Enhanced	2. Wetlands	80	105	120	140	
(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	195	
(Level 1)	4. Wet Pond	140	190	225	250	
	1. Infiltration	20	20	25	30	
Normal	3. Hybrid Wet Pond/Wetland	75	90	105	120	
(Level 2)	4. Wet Pond	90	110	130	150	
	1. Infiltration	20	20	20	20	
Basic	3. Hybrid Wet Pond/Wetland	60	70	75	80	
	4. Wet Pond	60	75	85	95	
(Level 3)	5. Dry Pond (Continuous Flow)	90	150	200	240	


Enhanced Swale Infiltration Trench						
Length of Bioswales =	167.8	m				
Width of Bioswales =	1.40	m				
Depth of Bioswales =	0.45	m				
Porosity =	0.40					
Total Infiltration Volume =	42.30	m ³	(a)			
Enhanced Sw	/ale Filtratio	n Trench				
		IT HENCH				
Length of Bioswales =	403.4	m				
Length of Bioswales = Width of Bioswales =						
6	403.4	m				
Width of Bioswales =	403.4 1.40	m m				
Width of Bioswales = Depth of Bioswales =	403.4 1.40 0.45	m m				
Width of Bioswales = Depth of Bioswales =	403.4 1.40 0.45	m m	(b)			

Total Provided

Total Provided Volume =	143.96	m ³	(a+b)
Volume Control Depth Provided =	23.48	mm	

Appendix G Overland Conveyance Calculation

P:\2328 Udora Estates\Drawings\FSP\Fig\Report Figures\2024 12(Dec) 02 - Overland Flow Figure\2328P-STRM-PROP-2.2.dwg

Catchment areas and imperviousness per Figure G.1

Catchment G1	100 Year Return Period Factor =		1.25
			Weighted Runoff
	Runoff Coefficient	Area (ha)	Coefficient (100 Year)
Estate Residential	0.40	1.71	0.50
TOTAL		1.71	0.50

	Return Period	
Major System	100 Year	
Area (ha)=	1.71	
Runoff Coeff. =	0.50	
T _c (min)=	17.24	(Assumes an initial Tc of 15 mins and 269 m flowing at 2 m/s)
a =	1799	
b =	5	
c =	0.810	
Intensity (mm/hr) =	145.82	
Runoff (m³/s) =	0.346	

*Area and Runoff coefficient per Figure G.1

*Runoff Coefficient and IDF parameters per Town of Uxbridge

Required 100 Year Conveyance Capacity Q_{100yr} (m³/s) = 0.346

CONVEYANCE CAPACITY CALCULATION

Ditch/Enhanced Grassed Swale Capacity Calculation (Refer to Figures 6.1 and 6.2)

(Refer to Figures 6.1 and 6.2)					
Required Channel C	apacity(m³/s)=		0.346		
Mannings' Equatior	1		TRAPEZOIDAL		
Flow Depth (m) =	0.32		CHANNEL		
Side Slope Ratio (H:V) =	3.0	/1	Top width 1.912		
Bed Width (m)=	0.00		Hyd. Rad, 'R'		
Area (m²)=	0.305		0.151194722 m		
Wetted Perimeter (m)=	2.016	m	Friction Slope Sf		
Slope (%) =	1.00		0.0100 m/m		
Manning 'n' =	0.025		Velocity		
Channel Capacity, Q =	0.346	m3/sec	1.135 m/s		

Appendix H Utilities Correspondence

Song, Jessie

From:	SWANTON Tyler <tyler.swanton@hydroone.com></tyler.swanton@hydroone.com>
Sent:	January 22, 2025 10:45 AM
То:	Song, Jessie
Cc:	PROV LINE SUBDIVISION; Subdivision Project Management
Subject:	RE: Proposed Draft Plan of Subdivision - Uxbridge

CAUTION: This email originated from an **EXTERNAL SOURCE**. Please use caution when opening attachments, clicking on links or responding. When in doubt, contact our IT Department.

Good morning Jessie,

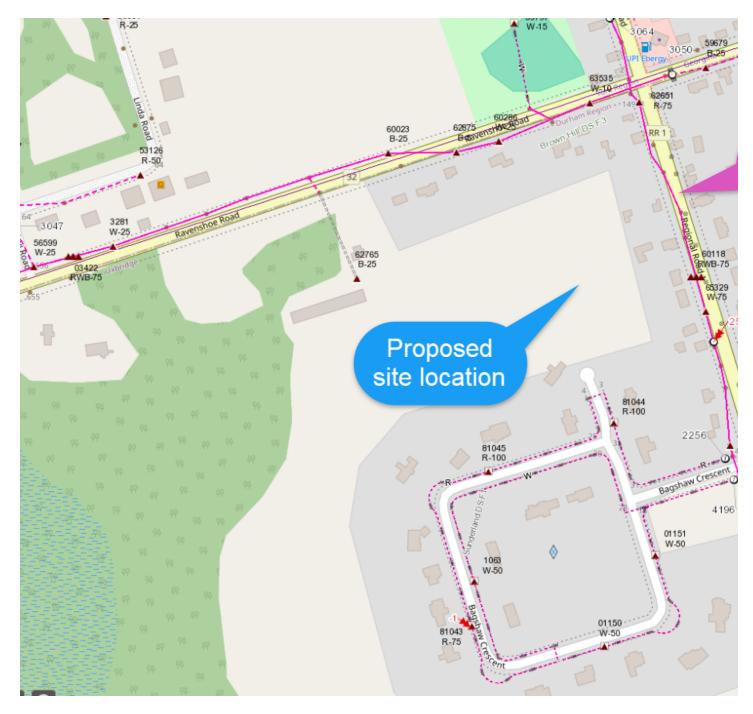
Pleas see Response below from our planning department. Let me know if you have any questions or concerns.

Thanks, Tyler Swanton (705)790-1305

Hi Tyler,

I apologize for the delayed response, please forward our below response to the consultant.

Thank you for your inquiry regarding the available capacity for a potential connection to Hydro One Networks Inc.'s ("**Hydro One**") distribution system for a proponent described at a high level below:


Civic Address and City:	Ravenshoe Rd, Uxbridge
GPS Coordinates:	GPS 44.2554, -79.1833
Load Requested by Customer (MW):	0.147 MW (Assuming Electric heat estate lots)
Type of Load:	Residential
Station & Feeder Designation:	Brown Hill DS – F3
Location of site (map screenshot):	See below

As of January 22, 2025, there is sufficient capacity available in the area to accommodate a 0.147 MW load connection. A System Impact Study (SIA) would need to be performed by Hydro One in order to determine if the existing distribution system has the capability to supply each specific load connection, within Hydro One's operating limits. The SIA would also provide the proponent with the specific requirements for connection, including, any upstream work that may be needed to be performed. At a high level, below is the option we can consider to supply the requested load:

Option 1 – Existing Brown Hill DS – F3 (4.8/8.32kV Feeder)

- No expansion costs expected

Map:

Please be aware that this information is based on the current information and condition of the distribution system, and can change without notice. The timing and funding required for connection will be determined once the official connection request is received by Hydro One and will be in accordance with Hydro One's Conditions of Service, which you can find located on our website at <u>www.hydroone.com</u>.

Finally, please note that Hydro One does not reserve capacity and the capacity is allocated based on a first come/first serve basis once we receive the formal load connection request. This request is not considered to be a formal load connection request.

Thank you,

Song, Jessie

From: Sent: To: Cc: Subject: Tom Erskine <Tom.Erskine@enbridge.com> December 16, 2024 12:08 PM Song, Jessie Heather Whitten RE: Proposed Draft Plan of Subdivision - Uxbridge

Good morning Jessie,

Currently, there isn't any natural gas infrastructure at this location. This would require a gas main extension from HWY 12 and Brock Concession Rd. 7. As the nearest available gas main.

Thank you,

Tom Erskine GPI

Sr. Advisor, Construction & Project Management New Business Projects GTA West

ENBRIDGE GAS INC. CELL: 437-992-3766 101 Honda Blvd, Markham, ON L6C 0H9

enbridgegas.com Safety. Integrity. Respect. Inclusion. High Performance.

From: Song, Jessie <jsong@scsconsultinggroup.com>
Sent: Monday, December 16, 2024 11:21 AM
To: Tom Erskine <Tom.Erskine@enbridge.com>
Subject: [External] RE: Proposed Draft Plan of Subdivision - Uxbridge

CAUTION! EXTERNAL SENDER

Were you expecting this email? TAKE A CLOSER LOOK. Is the sender legitimate? DO NOT click links or open attachments unless you are 100% sure that the email is safe. Good morning Tom,

Just want to follow up on the below request.

Thank you,

Jessie Song, E.I.T

SCS Consulting Group Ltd.

30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 (T) 905.475.1900 Ext. 2248 (F) 905.475.8335 jsong@scsconsultinggroup.com www.scsconsultinggroup.com

From: Song, Jessie <jsong@scsconsultinggroup.com>
Sent: December 11, 2024 11:10 AM

Song, Jessie

From:	Jesse Gasteiger <jesse.gasteiger@corp.vianet.ca></jesse.gasteiger@corp.vianet.ca>
Sent:	December 11, 2024 10:28 AM
То:	Song, Jessie
Cc:	'planning@vianet.ca'; Trevor Nelson
Subject:	FW: [Vianet.ca #3057191] Proposed Draft Plan of Subdivision - Uxbridge
Attachments:	Site Plan Base nov 11.pdf

CAUTION: This email originated from an **EXTERNAL SOURCE**. Please use caution when opening attachments, clicking on links or responding. When in doubt, contact our IT Department.

Hi Jessie,

Vianet has existing capacity in the area to service this new development.

We'll need to have our ducts installed in the common telecom/hydro trench. Can you send me the proposed common trench location and we'll provide a markup with our proposed plant.

Thanks.

×	hang yan yang di sana di kaya na sa

Jesse Gasteiger Director of Operations

Vianet | 128 Larch St Suite 502 | Sudbury, Ontario | P3E 5J8 (705) 222-9996 ext 5204 | <u>jesse@vianet.ca</u> Toll Free 1-800-788-0363 | <u>www.vianet.ca</u>

This email and any attached files are privileged and may contain confidential information intended only for the person or persons named above. Any other distribution, reproduction, copying, disclosure, or other dissemination is strictly prohibited.

From: Song, Jessie via RT <noclocates@tickets.vianet.ca>
Sent: December-11-24 10:13 AM
Subject: [Vianet.ca #3057191] Proposed Draft Plan of Subdivision - Uxbridge

Wed Dec 11 10:13:27 2024: Request <u>3057191</u> was acted upon by jsong@scsconsultinggroup.com.

Transaction: Ticket created by jsong@scsconsultinggroup.com

Queue: NOC::Locates

Subject: Proposed Draft Plan of Subdivision - Uxbridge

Owner: Nobody

Requestors: jsong@scsconsultinggroup.com

Status: new

Ticket URL: https://tickets.vianet.ca/Ticket/Display.html?id=3057191

Good morning,

We are currently preparing a Functional Servicing Report for the attached proposed Draft Plan of Subdivision in Uxbridge. The project is bounded by Regional Road 1 on the east, Ravenshoe Road on the north, and Birdie Smith Court on the south.

Can you please confirm that there is capacity and whether there are any system upgrades required to service the proposed development?

Thank you,

Jessie Song, E.I.T

SCS Consulting Group Ltd. 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 (T) 905.475.1900 Ext. 2248 (F) 905.475.8335 jsong@scsconsultinggroup.com www.scsconsultinggroup.com

Computer viruses can be transmitted via email. Recipients should check this email and any attachments for the presence of viruses. The sender and sender company accept no liability for any damage caused by any virus transmitted by this email. The contents of this email transmission are the private property of SCS Consulting Group Ltd. and contain confidential information. Any copying, modifying, retransmission, or action taken with this email contents by anyone other than the intended recipients named above is strictly prohibited. If you are not an intended recipient, please delete all copies and notify us immediately. Thank you for your cooperation.

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335