

DISCLAIMER

DISCLAIMER This report was prepared by a third-party. It was not created by the Corporation of the Township of Uxbridge, its employees or elected officials ("Township"). This report is provided for information purposes only. The Township has not verified the information in this report. No data or information contained in the report is represented, warranted or guaranteed by the Township in any manner, including as to its completeness, accuracy, or fitness for a particular purpose, express or implied. Any comments or statements made in the reports do not necessarily reflect those of the Township, its employees or elected officials. The Township may have issued, and may in the future issue, other communications that are inconsistent with and reach difference conclusions from, the information presented in the report. Any interested persons should conduct their own investigation of the matters contained in the report. The Township, its employees and elected officials have no liability for the use of the report by any person.

Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario

Final Report

February 28, 2025

Prepared for: Township of Uxbridge 51 Toronto Street South Uxbridge ON L9P 1H1

Prepared by: Stantec Consulting Ltd. 200-835 Paramount Drive Stoney Creek ON N2L 0A4

Project Number: 122140392.300

Limitations and Sign-off

This report documents work that was performed in accordance with generally accepted professional standards at the time and location in which the services were provided. No other representations, warranties or guarantees are made concerning the accuracy or completeness of the data or conclusions contained within this report, including no assurance that this work has uncovered all potential liabilities associated with the identified property.

This report provides an evaluation of selected environmental conditions associated with the identified portion of the property that was assessed at the time the work was conducted and is based on information obtained by and/or provided to Stantec at that time. There are no assurances regarding the accuracy and completeness of this information. All information received from the client or third parties in the preparation of this report has been assumed by Stantec to be correct. Stantec assumes no responsibility for any deficiency or inaccuracy in information received from others.

The opinions in this report can only be relied upon as they relate to the condition of the portion of the identified property that was assessed at the time the work was conducted. Activities at the property subsequent to Stantec's assessment may have significantly altered the property's condition. Stantec cannot comment on other areas of the property that were not assessed.

Conclusions made within this report consist of Stantec's professional opinion as of the time of the writing of this report and are based solely on the scope of work described in the report, the limited data available and the results of the work. They are not a certification of the property's environmental or geotechnical condition. This report should not be construed as legal advice.

This report has been prepared for the exclusive use of the client identified herein and any use by any third party is prohibited. Stantec assumes no responsibility for losses, damages, liabilities or claims, howsoever arising, from third party use of this report.

This report is limited by the following:

- Conditions observed on-site at the time of the 2024 field work.
- Regulatory criteria in effect at the time the assessment was completed.
- Results pertain only to the locations as shown on Figure Nos. 4 and 5 in Appendix A and parameters listed in Tables III and IV in Appendix E.

The locations of any utilities, buildings and structures, and property boundaries illustrated in or described within this report, if any, including pole lines, conduits, water mains, sewers and other surface or sub-surface utilities and structures are not guaranteed. Before starting work, the exact location of all such utilities and structures should be confirmed and Stantec assumes no liability for damage to them.

Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario Limitations and Sign-off

February 28, 2025

The conclusions are based on the site conditions encountered by Stantec at the time the work was performed at the specific testing and/or sampling locations, and conditions may vary among sampling locations. Factors such as areas of potential concern identified in previous studies, site conditions (e.g., utilities) and cost may have constrained the sampling locations used in this assessment.

In addition, analysis has been carried out for only a limited number of chemical parameters, and it should not be inferred that other chemical species are not present. Due to the nature of the investigation and the limited data available, Stantec does not warrant against undiscovered environmental liabilities nor that the sampling results are indicative of the condition of the entire site. As the purpose of this report is to identify site conditions which may pose an environmental risk; the identification of non-environmental risks to structures or people on the site is beyond the scope of this assessment.

Should additional information become available which differs significantly from our understanding of conditions presented in this report, Stantec specifically disclaims any responsibility to update the conclusions in this report.

This document was prepared by Marissa Lusito, M.Env.Sc., B.Sc.H., and reviewed by Randy Sinukoff, M.A.Sc., P.Eng., QP_{ESA}.

Respectfully submitted,

STANTEC CONSULTING LTD.

Benazon, Netta Date: 2025.02.28 17:43:42 -05'00'

FOR Marissa Lusito, M.Env.Sc., B.Sc.H. Environmental Assessor Tel: 437 388 4832

Marissa.Lusito@Stantec.com

Distribution: PDF via email

Pandy Suntall Sinukoff, Randy

Randy Sinukoff, M.A.Sc., P.Eng., QPESA

Senior Associate Tel: 416 709 7662

Randy.Sinukoff@stantec.com

Executive Summary

Stantec Consulting Ltd. (Stantec) was retained by the Township of Uxbridge to conduct a Phase II Environmental Site Assessment (ESA) of the property located at 23 Brock Street West in Uxbridge, Ontario, hereinafter referred to as the "Site". The objective of this program was to assess soil and groundwater quality at the Site with respect to potential environmental concerns that were identified in the Phase I ESA conducted by Stantec (DRAFT Phase I Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario, dated November 26, 2024).

The Site is in a predominantly residential and commercial neighbourhood of Uxbridge, Ontario and occupies approximately 0.63 hectares (ha) of land. The Site is located on the north side of Brock Street West, approximately 80 metres (m) west of the intersection of Brock Street West and Concession Road 7. At the time of the Phase II ESA, the Site was occupied by a vacant building that was formerly used for commercial purposes, including a commercial autobody shop and gasoline service station. The site building was located on the southern portion of the Site. The Site is bounded by residential and commercial properties to the north and east. The Site is bounded by Toronto Street North to the west and Brock Street West to the south.

The scope of work for the Phase II ESA included the advancement of 13 boreholes (identified as MW1 to MW7, BH8, MW9 to MW10, BH11, MW12, and BH13) to a maximum depth of approximately 12.2 metres below ground surface (m BGS), with ten of the boreholes completed as monitoring wells (identified as MW1 to MW7, MW9 to MW10, and MW12). Soil samples collected as part of the Phase II ESA were submitted for laboratory analysis of volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), metals and other regulated parameters (ORPs) and petroleum hydrocarbon (PHC) fractions 1 to 4 (F1 to F4). Soil samples were also submitted for the analysis of pH and grain size. Groundwater samples were collected from the ten newly installed monitoring wells and submitted for laboratory analysis of VOCs, PAHs, metals and ORPs, and PHC F1 to F4.

The Ontario Regulation (O.Reg.) 153/04 Table 8 Generic site condition standards (SCS) for Use within 30 m of a Water Body in a Potable Groundwater Condition for a residential/parkland/institutional/industrial/commercial/community property use were considered applicable for the Site (Table 8 SCS).

Based on the elevation survey and depth to groundwater measured on November 5, 2024, the shallow groundwater flow was inferred to be towards the centre of the Site (towards the Uxbridge Brook), likely due to the presence of the culvert beneath the Site. Evidence of light non-aqueous phase liquid (LNAPL) was not measured in the newly installed monitoring wells during the November 5, 2024, monitoring event.

Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario Executive Summary

February 28, 2025

Electrical conductivity (EC) and/or sodium adsorption ratio (SAR) concentrations in soil and sodium and chloride concentrations in groundwater exceeded the Table 8 SCS at various sampling locations across the Site. The EC, SAR, sodium and chloride exceedances are likely attributed to the application of road salt for deicing purposes across the Site and nearby roadways. As per paragraph 1 of section 49.1 of Ontario Regulation 153/04, these parameters are not considered to be contaminants of concern in soil and groundwater if they are present due to the application of salt/de-icing compounds at the Site for the safety of vehicular and pedestrian traffic.

Exceedances of the Table 8 SCS were identified in the soil samples analyzed from across the Site for one of more of VOCs, PHC F1 to F4, metals and ORPs, and PAHs. The soil pH exceeded the applicable range for applying the SCS at one soil sample location. Furthermore, exceedances of the Table 8 SCS were identified in the groundwater samples analyzed from the southern portion of the Site for one or more of metals and ORPs, and PAHs. Fill was identified across the Site up to a maximum depth of 6.8 m BGS (MW2). The presence of fill is a likely contributor to the exceedances of the SCS and elevated pH in the soil and groundwater at the Site.

The source of the PHC exceedances identified in soil from MW6 and MW7 may be associated with the former gasoline service station located on the southern portion of the Site, including gasoline underground storage tanks and a pump island.

The monitoring wells installed on the Site by Stantec can be left in place in the event they may be required for future groundwater monitoring. If the monitoring wells are no longer required, they should be decommissioned according to provincial regulatory requirements.

It is Stantec's understanding that legal proceedings are ongoing regarding geotechnical, hydrogeological, and environmental issues, including the discovery of contaminated soil on the Site, encountered during the Brock Street culvert replacement project undertaken by the Township of Uxbridge in 2018 at the Site to mitigate flooding risk in downtown Uxbridge. Documentation associated with the legal proceedings was not made available to Stantec for review and, as such, the related information is not included in this report.

It is recommended that documentation related to contamination encountered during the Brock Street culvert replacement project be made available for review and interpretation to supplement the information presented in this report subject to Township of Uxbridge legal approval.

The statements made in this Executive Summary text are subject to the limitations included in **Section 5.0** and are to be read in conjunction with the remainder of this report.

Table of Contents

1	Introduction		
1.1	General		
1.2	Background		
	1.2.1	Site and Surrounding Land Use	2
	1.2.2	Topography and Drainage	2
1.3	Geolog	ic Setting	3
1.4	Regulatory Framework		
	1.4.1	Generic Soil Quality Standards	4
2	Field P	Program	5
2.1		ve	
2.2	Scope of Work		
	2.2.1	Pre-Field Activities	
	2.2.2	Field Activities	5
	2.2.3	Data Interpretation and Reporting	6
3	Results		
3.1	Stratigraphy		
3.2	Soil Headspace Vapour Concentrations		
3.3	Groundwater Monitoring		
3.4	Analytical Results		8
	3.4.1	Waste Classification	8
	3.4.2	Soil Chemistry	
	3.4.3	Groundwater Chemistry	
3.5	Quality Assurance / Quality Control		
	3.5.1	Blind Duplicate Samples	
	3.5.2	Laboratory QA/QC	
	3.5.3	QA/QC Conclusions	
4	Summary and Discussion		13
5	Recommendations		15
6	References		
•	1,01010		

List of Appendices

Appendix A	Figures
Appendix B	Generic Soil and Groundwater Quality Standard Selection Process
Appendix C	Methodology
Appendix D	Borehole Logs
Appendix E	Tables
Appendix F	Laboratory Certificates of Analysis

٧

1 Introduction

1.1 General

Stantec Consulting Ltd. (Stantec) was retained by the Township of Uxbridge to conduct a Phase II Environmental Site Assessment (ESA) of the property located at 23 Brock Street West in Uxbridge, Ontario, hereinafter referred to as the "Site". The general location of the Site is presented on **Figure No.1** in **Appendix A** and the boundaries of the Site and features are presented on **Figure No. 2** in **Appendix A**.

1.2 Background

This Phase II ESA was completed for due diligence purposes. It was completed in accordance with Canadian Standards Association (CSA) standard Z769-00 (R2023) for Phase II ESAs and does not follow the report format consistent with Ontario Regulation (O.Reg.153/04) for a Record of Site Condition (RSC). Should an RSC be required, additional investigation and/or data evaluation/reporting will be needed to meet the requirements of O.Reg.153/04.

The Phase I ESA conducted by Stantec (*DRAFT Phase I Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario*, dated November 26, 2024), identified the following environmental concerns at the Site:

- Former underground storage tanks (USTs) and fuel pumps on the southern portion of the Site.
- Former use of the Site as a commercial autobody on the southern portion of the Site.
- Hazardous waste generation at the Site, including the generation of light fuels, petroleum distillates, and oil skimmings and sludges.
- Impacted soil (petroleum hydrocarbons [PHCs], volatile organic compounds [VOCs], and zinc)
 previously identified across the Site.
- Impacted groundwater (PHCs and ethylbenzene) previously identified on the southern portion of the Site.
- Previous subsurface investigations conducted on the Site indicate that silty clay and silty sand fill was identified across the Site to a maximum depth of 6.6 m below ground surface (BGS).
- A former landfill was located approximately 65 m south of the Site.
- Fuel storage formerly present at 21 Brock Street West (immediately east of the Site).
- A historical dry cleaners present at 16 Brock Street West (30 m southeast of the Site).

Stantec recommended completing a Phase II ESA to assess the above-noted potential environmental concerns.

It is Stantec's understanding that legal proceedings are ongoing regarding geotechnical, hydrogeological, and environmental issues, including the discovery of contaminated soil on the Site, encountered during the Brock Street culvert replacement project undertaken by the Township of Uxbridge in 2018 at the Site to mitigate flooding risk in downtown Uxbridge. Documentation associated with the legal proceedings was not made available to Stantec for review and, as such, the related information is not included in this report.

1.2.1 Site and Surrounding Land Use

The Site is in a predominantly residential and commercial neighbourhood of Uxbridge, Ontario and occupies approximately 0.63 hectares (ha) of land. The Site is located on the north side of Brock Street West, approximately 80 metres (m) west of the intersection of Brock Street West and Concession Road 7. At the time of the Phase II ESA, the Site was occupied by a vacant building that was formerly used for commercial purposes, including a commercial autobody shop and gasoline service station. The site building was located on the southern portion of the Site. The Site is bounded by residential and commercial properties to the north and east. The Site is bounded by Toronto Street North to the west and Brock Street West to the south. The Site details are presented on **Figure No. 2** in **Appendix A**.

1.2.2 Topography and Drainage

The exterior surfaces surrounding the on-site building consist of asphalt parking and driveway areas with some grassed and landscaped areas on the western and northern portions of the Site. Stormwater at the Site flows to on-site catch basins, while excess stormwater likely drains by overland flow to adjacent catch basins located along Toronto Street North or Brock Street West.

Based on an available topographic map (MNRF 2019) reviewed during Stantec's 2024 Phase I ESA and the observed site topography, the inferred regional shallow groundwater flow direction is northerly towards Lake Simcoe, approximately 27 km north of the Site. The Uxbridge Brook is present immediately north and 90 m south of the Site and runs through the central portion of the Site underground in a culvert, running south-north. The local shallow groundwater flow pattern may be influenced by the culvert and other subsurface structures, such as building foundations, weeping tiles, underground utility corridors and trenches and are not always a reflection of regional or local groundwater flow or a replica of the Site or area topography.

Regional topography is indicated on **Figure No. 1** in **Appendix A**. The Site grade generally slopes towards the centre of the Site and to the north.

1.3 Geologic Setting

Based on an available surficial geology map, native surficial soils of the Site consist of sand, gravelly sand and gravel, nearshore and beach deposits. One well record that was available in the ERIS report for the Phase I ESA described wells at the Site. These wells were installed in 2019 and were listed as monitoring/test holes.

Based on an available bedrock geology map, bedrock around the Site consists of shale, limestone, dolostone and/or siltstone belonging to the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and/or Eastview Member.

1.4 Regulatory Framework

The roles and powers of the Ministry of the Environment, Conservation and Parks (MECP) when dealing with contaminated sites are outlined primarily in the Environmental Protection Act (R.S.O. 1990). The MECP has a mandate to deal with situations where there is an adverse effect, or the likelihood of an adverse effect, associated with the presence or discharge of a contaminant. O.Reg.153/04 provides guidance and information to property owners and consultants to use when assessing the environmental condition of a property, when determining whether restoration is required and in determining the kind of restoration needed to allow continued use or reuse of a property. *The Soil, Groundwater, and Sediment Standards for Use Under Part XV.I of the Environmental Protection Act* (MOE, 2011b) provide generic numerical Site Condition Standards (SCS) for soil, groundwater, and sediment quality as a function of land use, soil texture (medium and fine or coarse), groundwater usage (potable or non-potable), and remediation approach (full depth or stratified).

The assessment completed for this Site was undertaken following the requirements of the MECP's 2011 Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act document and generally followed the requirements of O.Reg.153/04, including the use of the SCS to assess soil and groundwater (if encountered) quality. The Phase II ESA program was not completed with the intent of filing a Record of Site Condition; therefore, some requirements of O.Reg.153/04, such as the prescribed report format, were not strictly adhered to.

1.4.1 Generic Soil Quality Standards

This section summarizes the selection process Stantec used to identify the appropriate standards for the Site based on a review of site-specific characteristics consistent with the requirements of O.Reg.153/04. The selection of the applicable SCS considered the following characteristics specific to the Site:

- Groundwater use
- Current/intended property use
- Depth to bedrock
- Proximity to water bodies
- Soil characteristics (e.g., grain size)
- Environmental sensitivity, including:
 - Soil pH
 - Proximity to areas of natural significance

These characteristics were used to determine the applicable soil and groundwater quality standards for use at the Site.

A detailed summary of the selection process for the Site is included in **Appendix B**. Considering the site characteristics described in **Appendix B**, the generic SCS considered applicable for the Site are the Table 8 Generic SCS for Use within 30 m of a Water Body in a Potable Groundwater Condition for a residential/parkland/institutional/industrial/commercial/community property use (Table 8 SCS).

2 Field Program

2.1 Objective

The objective of this program was to assess the soil and groundwater quality at the Site with respect to potential environmental concerns that were identified in Stantec's Phase I ESA report.

2.2 Scope of Work

A summary of the completed scope of work is presented below. A detailed methodology is presented in **Appendix C**.

The Phase II ESA was completed in conjunction with a geotechnical investigation, which will be reported under separate cover. The following activities were completed for this Phase II ESA:

2.2.1 Pre-Field Activities

Pre-field activities completed included the following tasks:

- Prepared a health and safety plan (HASP).
- Retained subcontractors for private underground utility location, borehole drilling and laboratory analytical services.
- Established data quality objectives (DQOs).

2.2.2 Field Activities

Field activities completed at the Site included the following tasks:

- Retained private utility locators (OnSite Locates Inc.) to locate private services in the work areas and requested utility clearances for public utilities (Ontario One Call).
- Retained a drilling contractor (Strata Drilling Group [Strata]) and observed the advancement of 13 boreholes (identified as MW1 to MW7, BH8, MW9 to MW10, BH11, MW12, and BH13) with 10 of the boreholes completed as monitoring wells (identified as MW1 to MW7, MW9 to MW10, and MW12).
- Collected and submitted select soil samples from the boreholes to Bureau Veritas Canada (2019) Inc.
 (BV) Laboratories for analysis of VOCs (including benzene, toluene, ethylbenzene, and xylenes
 [BTEX]), polycyclic aromatic hydrocarbons (PAHs), PHC fraction 1 to 4 (F1 to F4), metals, hydride metals, other regulated parameters (ORPs) and grain size.
- Conducted a groundwater monitoring and sampling program at newly installed groundwater monitoring wells.
- Submitted groundwater samples to BV for analysis of VOCs (including BTEX), PHC F1 to F4, PAHs, metals, hydride metals, ORPs.
- Completed an elevation survey at newly installed monitoring well and borehole locations.
- Submitted a composite soil sample to BV for waste characterization analysis.

2.2.3 Data Interpretation and Reporting

Data interpretation and reporting activities completed included the following tasks:

- Interpreted the observations and findings of the field work and the analytical results.
- Evaluated quality assurance/quality control (QA/QC).
- Prepared this report to document the investigation findings.

3 Results

3.1 Stratigraphy

Detailed descriptions of stratigraphy observed during borehole advancement are provided on the borehole records in **Appendix D**. The subsurface profile encountered in the boreholes generally consisted of fill (sand and gravel, silty sand, and/or silty clay with sand) up to 6.8 m BGS (MW2) overlying silt/sandy silt or clay/silty clay to the termination depth of the boreholes (12.0 m BGS [MW2 and MW9]). A layer of peat overlain by fill was observed in BH13 and MW1.

3.2 Soil Headspace Vapour Concentrations

Headspace soil vapour concentrations are a field screening tool to provide a qualitative indication of the presence of volatile Contaminants of Concern (COCs) (i.e., BTEX and PHC F1). There are no regulatory criteria for headspace soil vapour concentrations.

The combustible vapour concentrations (CVC) and total organic vapour (TOV) concentrations measured in the headspace of the soil samples recovered from the boreholes are provided on the borehole logs in **Appendix D**. A hydrocarbon odour was noted in soil sample MW7-4 (2.3 - 2.9 m BGS). No other visual or olfactory indications of subsurface impacts were observed.

The CVC measured in the soil samples collected from the boreholes ranged from less than (<) the detection limits of the instrument (5 parts per million by volume (ppm $_{\rm v}$)) at multiple locations to 980 ppm $_{\rm v}$ at MW7-4 at depths ranging from 2.3 – 2.9 m BGS. Similarly, the TOV measured in the soil samples collected from the boreholes were less than the detection limits of the instrument (0.02 ppm $_{\rm v}$) at several soil sample locations to 729 ppm $_{\rm v}$ at the soil samples identified as at MW7-4 at depths ranging from 2.3 – 2.9 m BGS.

3.3 Groundwater Monitoring

This section presents the results of the groundwater monitoring program, including vapour concentrations measured in the monitoring well headspace, water levels, and interpreted groundwater flow direction. Groundwater monitoring data are presented in **Table I** in **Appendix E**.

Depth to groundwater and headspace CVC and TOV were measured in the newly installed monitoring wells (identified as MW1 to MW7, MW9 to MW10, and MW12) on November 5, 2024.

As shown in **Table I** in **Appendix E**, headspace CVC measured in the monitoring wells ranged from less than the detection limit of the instrument (5 ppm_v) at various locations to 430 ppm_v at MW4. The headspace TOV measured in the monitoring wells ranged from less than the detection limits of the instrument (0.02 ppm_v) at various locations to 25 ppm_v at MW7.

The depth to groundwater ranged from 1.4 m BGS (at MW2) to 3.0 m BGS (at MW1), as shown in **Table I** in **Appendix E**.

Groundwater elevations and the inferred direction of groundwater flow measured on November 5, 2024, are illustrated on **Figure No. 3** in **Appendix A**. Based on the elevation survey and depth to groundwater measured on November 5, 2024, the shallow groundwater flow was inferred to be towards the centre of the Site (towards the Uxbridge Brook).

3.4 Analytical Results

3.4.1 Waste Classification

The results of the waste classification analysis are shown in **Table II** in **Appendix E**. The results indicated that the soil would be classified as a non-hazardous material for waste disposal purposes. Laboratory certificates of analysis are provided in **Appendix F**.

3.4.2 Soil Chemistry

Soil analytical results for samples collected from the boreholes are summarized in **Table III** in **Appendix E** and on **Figures No. 4a** and **4b** in **Appendix A**. Laboratory certificates of analysis are presented in **Appendix F**.

The concentrations/values of parameters analyzed in soil samples during this Phase II ESA were less than the Table 8 SCS except for the following:

- The SAR in the soil samples collected from boreholes MW1-2 (0.8 1.4 m BGS), MW2-1 (0 0.6 m BGS), MW4-9 (6.1 6.9 m BGS), MW6-5 (3.0 3.8 m BGS), MW6-8 (5.3 6.1 m BGS), MW7-4 and QC-2 (2.3 2.9 m BGS), BH8-3 and QC-1 (1.5 2.3 m BGS), MW9-6 (3.8 4.4 m BGS), BH11-2 (0.8 1.5 m BGS), MW12-2 (0.8 1.5 m BGS), and BH13-1 and BH13-2 (0 1.4 m BGS).
- Electrical conductivity in the soil samples collected from boreholes MW2-1 (0 0.6 m BGS), MW3-4 (2.3 3.0 m BGS), MW4-8 and MW4-9 (5.3 6.9 m BGS), MW6-5 (3.0 3.8 m BGS), MW6-8 (5.3 6.1 m BGS), MW7-4 and QC-2 (2.3 2.9 m BGS), MW9-6 (3.8 4.4 m BGS), MW10-5 (3.0 3.7 m BGS), BH11-2 (0.8 1.5 m BGS), MW12-2 (0.8 1.5 m BGS), BH13-1 and BH13-2 (0 1.4 m BGS), BH13-4 (2.3 2.9 m BGS), and BH13-6 (3.8 4.4 m BGS).
- Various metals (including one of more of the following of antimony, cadmium, chromium, copper, lead, mercury, silver, and/or zinc) in the soil samples collected from boreholes MW4-8 (5.3 6.1 m BGS), MW6-5 (3.0 3.8 m BGS), MW6-8 (5.3 6.1 m BGS), and BH13-4 to BH13-6 (2.3 4.4 m BGS).
- Xylenes in the soil samples collected from boreholes MW1-2 (0.8 1.4 m BGS), MW2-1 (0 0.6 m BGS), MW4-9 (6.1 6.9 m BGS), MW6-5 (3.0 3.8 m BGS), and MW9-5 (3.0 3.8 m BGS).
- PHC F1 in the soil samples collected from boreholes MW6-5 (3.0 3.8 m BGS), and MW7-4 and QC-2 (2.3 2.9 m BGS).

- PHC F2 in the soil samples collected from boreholes MW6-5 (3.0 3.8 m BGS), MW7-4 and QC-2 (2.3 2.9 m BGS), MW9-5 (3.0 3.8 m BGS), and MW9-13 (10.7 11.3 m BGS).
- PHC F3 in the soil samples collected from boreholes MW7-4 and QC-2 (2.3 2.9 m BGS), MW9-5 (3.0 3.8 m BGS), BH11-6 (3.8 4.6 m BGS), BH11-8 (5.3 6.1 m BGS), BH13-3 (1.5 2.1 m BGS), BH13-4 (2.3 2.9 m BGS), and BH13-7 (4.6 5.2 m BGS).
- PHC F4 in the soil samples collected from boreholes MW7-4 and QC-2 (2.3 2.9 m BGS), BH11-6 (3.8 4.6 m BGS), BH13-3 to BH13-5 (1.5 3.8 m BGS), and BH13-7 (4.6 5.2 m BGS).
- PHC F4 Gravimetric in the soil samples collected from boreholes MW7-4 and QC-2 (2.3 2.9 m BGS), BH13-3 (1.5 2.1 m BGS), BH13-4 (2.3 2.9 m BGS), and BH13-7 (4.6 5.2 m BGS).
- Mercury in the soil sample collected from MW9-6 (3.8 4.4 m BGS).
- Antimony in the soil sample collected from MW8-3 and QC-1 (1.5 2.3 m BGS).
- Ethylbenzene in soil sample collected from MW6-5 (3.0 3.8 m BGS).
- Various PAHs (acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b/j)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, fluoranthene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene) in the soil sample collected from MW8-3 and QC-1 (1.5 2.3 m BGS).
- Benzo(a)pyrene in the soil sample collected from MW7-4 and QC-2 (2.3 – 2.9 m BGS).
- Indeno(1,2,3-cd)pyrene in the soil sample collected from QC-2 (2.3 2.9 m BGS).
- Acetone in the soil sample collected from borehole MW4-8 (5.3 6.1 m BGS).
- Hexane in the soil sample collected from borehole MW6-5 (3.0 3.8 m BGS).

The analysis for pH was conducted on 28 soil samples, including seven soil samples recovered from the surface (<1.5 m depth) and 21 soil samples recovered from the subsurface (> 1.5 m depth). The results are presented on **Table III** in **Appendix E**. The corresponding certificates of analysis from BV Labs are presented in **Appendix F**. The pH values of soil samples analyzed were within the acceptable range for surface and/or subsurface soil as outlined in O.Reg. 153/04, with the exception of one soil sample from MW3-4 (2.3 – 3.0 m BGS).

Grain size analysis was conducted on two soil samples (identified as MW2-2 [0.8 – 1.4 m BGS], and BH13-2 [0.8 – 1.4 m BGS]) recovered from the fill at the Site. For these samples, 19% and 48% of the particles were less than 75 micrometers (µm) in diameter. Based on the results, the SCS for a coarse-textured soil were applicable, as outlined in O.Reg. 153/04 and as presented on **Table III** in **Appendix E**. The corresponding certificates of analysis from BV Labs are presented in **Appendix F**.

3.4.3 Groundwater Chemistry

Groundwater analytical results are summarized in **Table IV** in **Appendix E** and on **Figure No. 5** in **Appendix A**. Laboratory certificates of analysis are provided in **Appendix F**.

The concentrations of parameters analyzed in groundwater samples during this Phase II ESA were less than the Table 8 SCS except for the following:

- Chloride in the groundwater samples collected from monitoring wells MW1, MW2, MW4, MW6, MW7, and MW10.
- Sodium in the groundwater samples collected from monitoring wells MW2, MW4, MW6, MW7, and MW10.
- Benzo(a)pyrene in the groundwater samples collected from monitoring wells MW4, MW5, and MW6.
- Cobalt in the groundwater samples collected from monitoring wells MW5 and MW7.
- Barium in the groundwater sample collected from monitoring well MW7.

3.5 Quality Assurance / Quality Control

Stantec implemented the following quality assurance/quality control (QA/QC) program to promote the acquisition of soil data that were accurate and representative of conditions at the Site. This program consisted of, but was not limited to, the elements listed below:

- Proper containment, preservation, handling, and transport of soil samples.
- Use of an accredited laboratory.
- Use of reporting limits appropriate for the required soil analyses for comparison to the applicable SCS for the Site.

For sampling efforts, Stantec implemented the following elements for QA/QC:

- Project staff were properly trained and equipped to undertake the tasks involved in the project.
- Field equipment was in good working order and properly calibrated.
- Performance of sampling procedures and field activities was properly documented.
- Field and analytical data were evaluated and interpreted by the project scientific and management
- Independent checks of scientific calculations, figures, and tables were conducted.
- Field duplicate soil samples were analyzed.
- The relative percent difference (RPD) for the sample duplicate pairs was calculated to assess the precision of the sampling and analytical procedures.
- Laboratory QA/QC results, including laboratory replicate analyses and surrogate standard recoveries, were reviewed.

The data quality objective (DQO) for the soil analytical program was to provide data that were reproducible and of a suitable quality for comparison with the applicable regulatory SCS.

As a check on the laboratory analytical methods and on sample precision, the following QC samples were submitted:

- One blind field duplicate soil sample (identified as QC-1 [parent sample BH8-3]) submitted for analysis of PAHs, metals, and ORPs.
- One blind field duplicate soil sample (identified as QC-2 [parent sample MW7-4]) submitted for analysis of VOCs, PHCs, PAHs, metals, and ORPs.
- One blind field duplicate soil sample (identified as QC-3 [parent sample MW5-5]) submitted for analysis of VOCs and PHCs.
- One blind field duplicate groundwater sample (identified as QC-01 [MW4]) submitted for analysis of VOCs, PHCs, PAHs, metals, and ORPs.
- One field blank groundwater sample (identified as QC-02) was submitted for analysis of VOCs, and PHCs
- One trip blank groundwater sample (identified as TRIP BLANK) was submitted for analysis of VOCs, and PHCs.

The blind field duplicate samples were used to assess the precision of the sampling and analytical procedures. Typically, the RPD is calculated for the concentrations in the original sample and its duplicate. The RPD was calculated using the following formula:

$$RPD = \frac{|C_1 - C_2|}{(C_1 + C_2)/2} \times 100$$

Where:

C1 is the concentration in the original sample; and C2 is the concentration in the sample duplicate.

If the results for either or both the original sample and the duplicate were less than the laboratory RLs, the RPD was not calculated. RPDs were only calculated if the analytical result was greater than five times the RL.

3.5.1 Blind Duplicate Samples

The analytical results for the field duplicate soil samples and the calculated RPDs are presented on **Table III** in **Appendix E**.

Soil

The RPDs, where calculated, ranged between 0% and 34%. RPDs exceeding the quality objective of 30% were calculated for the following samples:

- BH8-3 and QC-1 Acenaphthylene; RPD of 34%
- BH8-3 and QC-1 Benzo(a)pyrene; RPD of 33%
- BH8-3 and QC-1 Benzo(b/j)fluoranthene; RPD of 34%
- BH8-3 and QC-1 Dibenzo(a,h)anthracene; RPD of 31%
- BH8-3 and QC-1 Indeno(1,2,3-cd)pyrene; RPD of 33%

BH7-4 and QC-2 – PHC F4; RPD of 34%

The exceedance of the quality objective of 30% at BH8-3 and its duplicate sample QC-1 and at BH7-4 and its duplicate sample QC-2 is likely due to soil heterogeneities. Since both the parent and duplicate samples at both locations were above the applicable SCS for one or more parameter, the exceedance of the quality objective of 30% has no material impact on the interpretation of the results.

Groundwater

The RPDs, where calculated, were between 0% and 7% and within the acceptable quality objective of 30%.

3.5.2 Laboratory QA/QC

In addition to Stantec's assessment of blind field duplicate samples, BV Labs followed internal QA/QC protocols, which included laboratory replicates, process blanks, process recovery and matrix spike analyses.

BV Labs reported that the results of their QA/QC procedures were within their applicable limits and met their overall QA/QC acceptability criteria, with the following exceptions:

BV Job #C4Y8641

- The recovery for the extraction surrogate compound was above the upper control limit for soil sample MW4-8 (5.3 6.1 m BGS) and MW4-9 (6.1 6.9 m BGS).
- The detection limit was raised due to matrix interference for ethylbenzene in soil sample QC-2.
- The detection limit was raised due to matrix interference for chromium VI in soil sample BH13-7 (4.6 – 5.2 m BGS).

BV Job #C4Z1246

 Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly for chromium VI in groundwater samples MW2, MW6, MW7, and MW10. Detection limits were adjusted accordingly for phenanthrene in groundwater sample MW9 and chloroform in MW2.

These QA/QC items are not anticipated to affect the interpretation of the analytical results.

3.5.3 QA/QC Conclusions

Based on the QA/QC evaluation, it was concluded that the DQO for this assessment was satisfied, and the data were considered acceptable for use in this report.

4 Summary and Discussion

Stantec Consulting Ltd. (Stantec) was retained by the Township of Uxbridge to conduct a Phase II Environmental Site Assessment (ESA) for the property municipally described as 23 Brock Street West in Uxbridge, Ontario. The objective of this program was to assess the soil and groundwater quality at the Site with respect to the potential environmental concerns that were identified in Stantec's Phase I ESA report.

Thirteen boreholes (identified as MW1 to MW7, BH8, MW9 to MW10, BH11, MW12, and BH13) were advanced to depths ranging from 6.1 m BGS (various) to 12.2 m BGS (MW2). Ten of the 13 boreholes were completed as monitoring wells (identified as MW1 to MW7, MW9 to MW10, and MW12).

The Table 8 SCS for Use within 30 m of a Water Body in a Potable Groundwater Condition for a residential/parkland/institutional/industrial/commercial/community property use were determined to apply for the comparison of soil and groundwater data from the Site.

Based on the elevation survey and depth to groundwater measured on November 5, 2024, the shallow groundwater flow was inferred to be towards the centre of the Site (towards the Uxbridge Brook), likely due to the presence of the culvert beneath the Site. Evidence of light non-aqueous phase liquid (LNAPL) was not identified in the newly installed monitoring wells during the November 5, 2024, monitoring event.

Electrical conductivity (EC) and/or sodium adsorption ratio (SAR) concentrations in soil and sodium and chloride concentrations in groundwater exceeded the Table 8 SCS at various sampling locations across the Site. The EC, SAR, sodium and chloride exceedances are likely attributed to the application of road salt for deicing purposes across the Site and nearby roadways. As per paragraph 1 of section 49.1 of Ontario Regulation 153/04, these parameters are not considered to be contaminants of concern in soil and groundwater if they are present due to the application of salt/de-icing compounds at the Site for the safety of vehicular and pedestrian traffic.

Exceedances of the Table 8 SCS were identified in the soil samples analyzed from across the Site for one or more of VOCs, PHC F1 to F4, metals and ORPs, and PAHs. One location also exceeded the applicable pH range for applying the SCS. Furthermore, exceedances of the Table 8 SCS were identified in the groundwater samples analyzed from the southern portion of the Site for one or more of metals and ORPs, and PAHs. Fill was identified across the Site up to a maximum depth of 6.8 m BGS (MW2). The presence of fill is a likely contributor to exceedances of the SCS and elevated pH in the soil and groundwater at the Site.

The source of the PHC exceedances identified in soil from MW6 and MW7 may be associated with the former gasoline service station located on the southern portion of the Site, including gasoline underground storage tanks and a pump island.

Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario 4 Summary and Discussion February 28, 2025

It is Stantec's understanding that legal proceedings are ongoing regarding geotechnical, hydrogeological, and environmental issues, including the discovery of contaminated soil on the Site, encountered during the Brock Street culvert replacement project undertaken by the Township of Uxbridge in 2018 at the Site to mitigate flooding risk in downtown Uxbridge. Documentation associated with the legal proceedings was not made available to Stantec for review and, as such, the related information is not included in this report.

5 Recommendations

Based on the conclusions of the current investigation of the Site, Stantec provides the following recommendations:

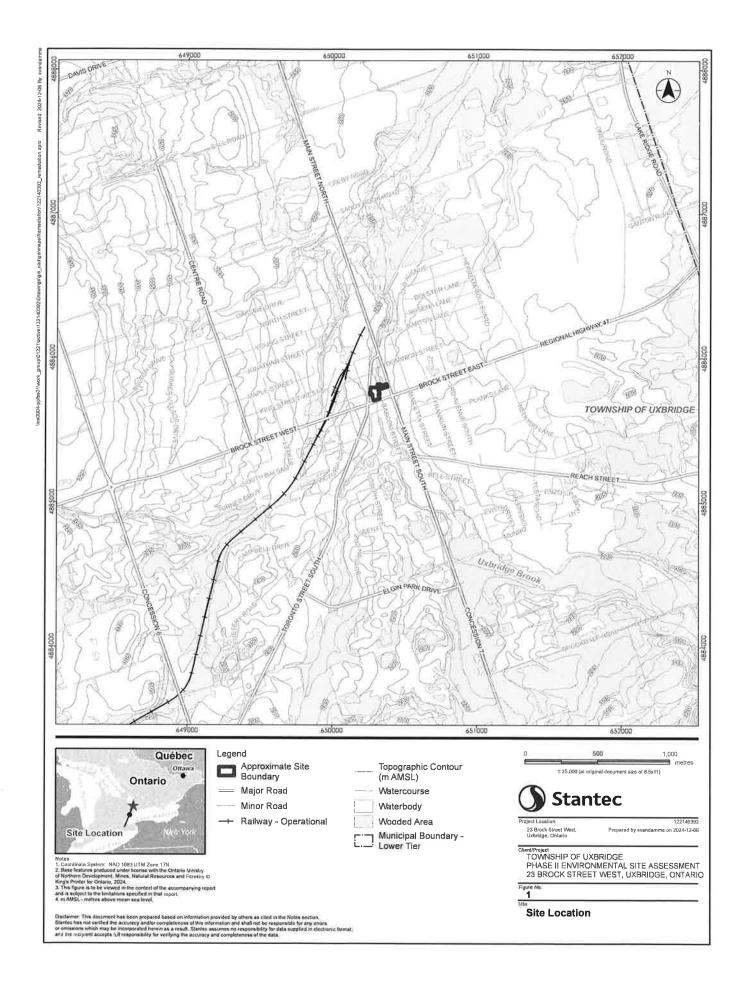
- The monitoring wells installed on the Site by Stantec can be left in place in the event they may be required for future groundwater monitoring. If the monitoring wells are no longer required, they should be decommissioned according to provincial regulatory requirements.
- It is recommended that documentation related to contamination encountered during the Brock Street culvert replacement project be made available for review and interpretation to supplement the information presented in this report subject to Township of Uxbridge legal approval.

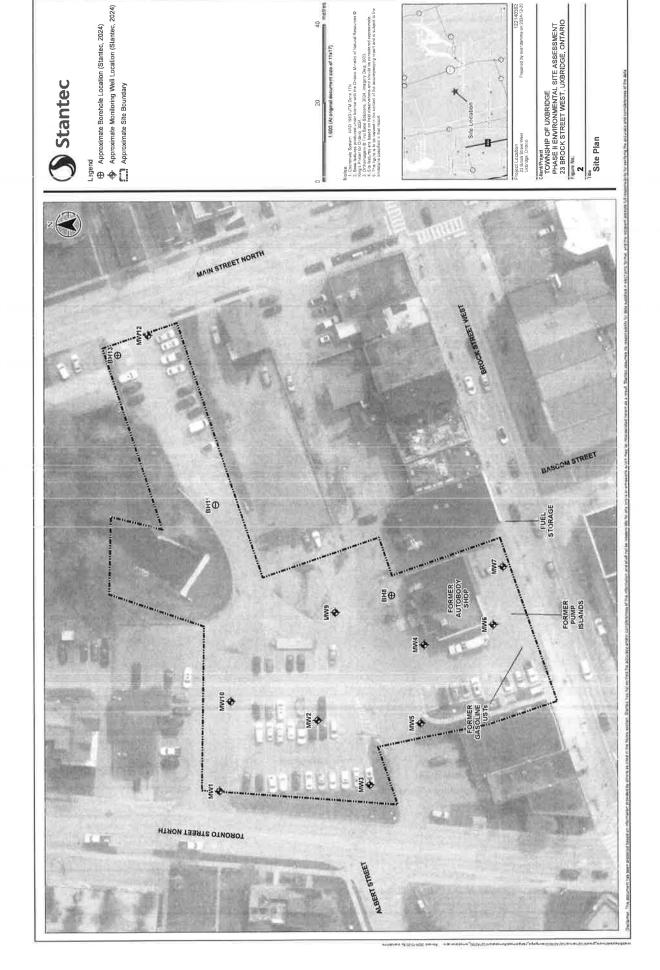
6 References

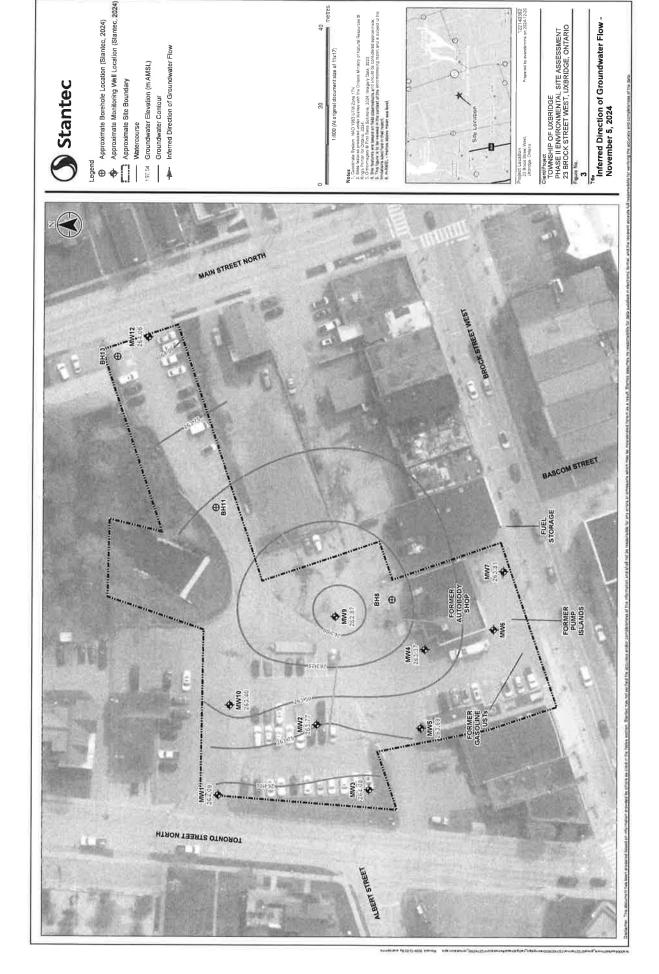
- CSA. (2000). CAN/CSA-Z769-00 (R2023) Phase II Environmental Site Assessment. Canadian Standards Association (CSA).
- MNRF. (2019). Topographic Mapping available from the Ontario Ministry of Natural Resources and Forestry (MNRF) online mapping. Ministry of Natural Resources (MNR), Queen's Printer for Ontario.
- MOE. (2011). Soil. Groundwater, and Sediment Standards for Use Under Part XV.I of the Environmental Protection Act. Ontario Ministry of the Environment (MOE).
- MOE. (2011a). Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment.
- MOEE. (1996). Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.

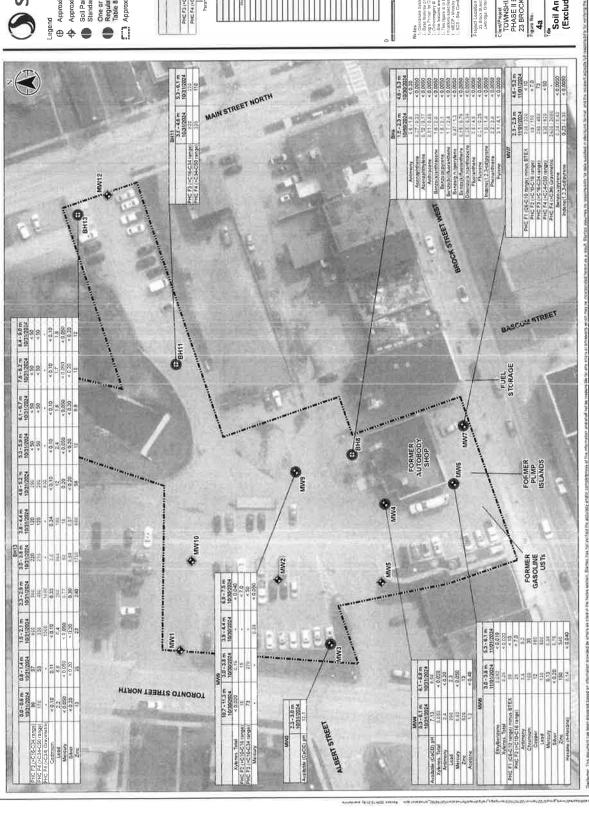
 Ministry of Environment and Energy. December 1996.
- OGS. (2003). Quaternary geology of Ontario, southern sheet, M2556, Scale 1:1,000,000. Ontario Geological Survey (OGS).
- OGS. (2011). Bedrock Geology of Ontario, Scale 1:250,000. Ontario Geological Survey (OGS), Miscellaneous Release—Data 126-Revision 1.
- Stantec. (2024). DRAFT Phase I Environmental Site Assessment, 23 Brock Street West, Uxbridge, ON, dated November 26, 2024.
- USEPA. (1996). EPA/540/S095-504 Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.
 United States Environmental Protection Agency (USEPA).

February 28, 2025


Appendices




Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario Appendix A Figures
February 28, 2025


Appendix A Figures

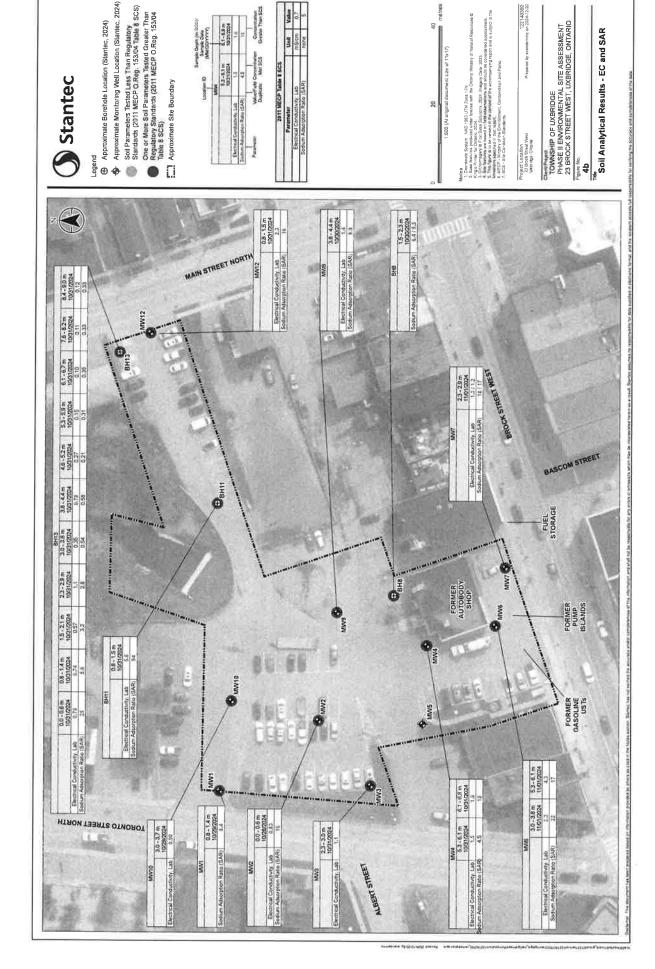
Lingend

(B) Approximate Borehole Location (Stantec, 2024)

(A) Approximate Monitoring Well Location (Stantec, 2024)

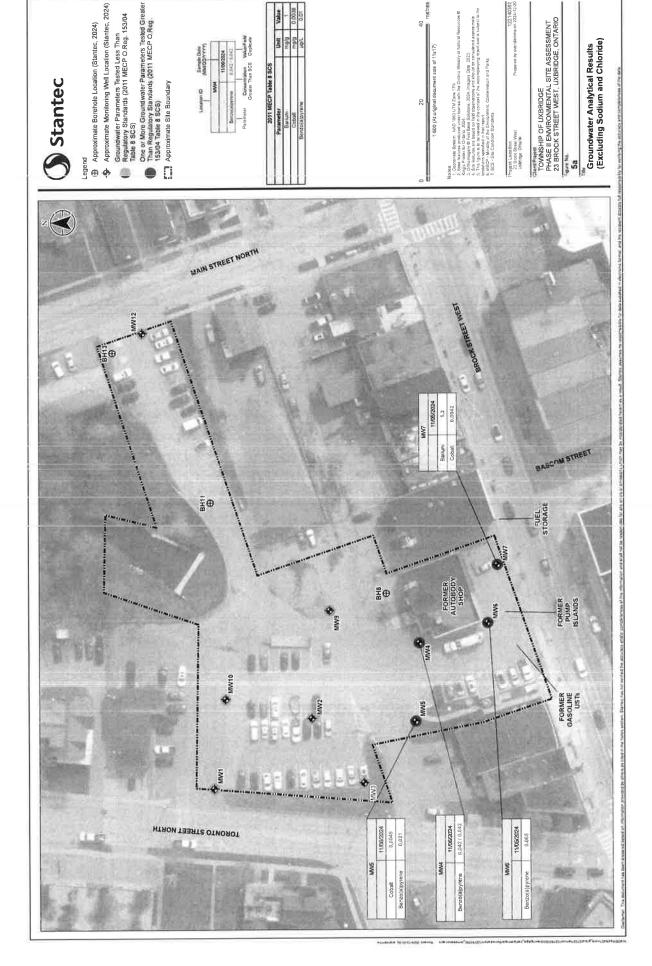
(B) Soil Parameters Tesled Less Than Regulatory

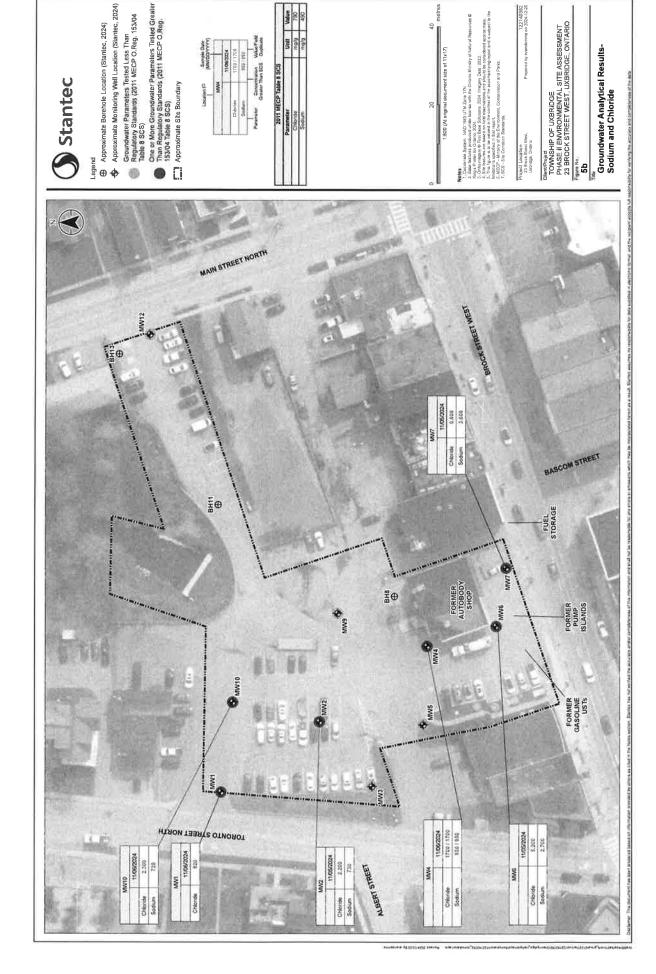
(B) Standards (2011 MECP O.Ren. 153.04 Table neice)


Soil Parameters Tested Less Than Regulatory
Standards (2011 MECP O.Reg. 153/04 Table 8 SCS)
One or More Soil Parameters Tested Greater Than
Regulatory Standards (2011 MECP O.Reg. 153/04
Table 8 SCS)

Approximate Site Boundary

\$13-6.1m 10/21/2024 WANTER CREATER THAN SCS PHC F3 (vC34-C50 range)


Cilmathoped:
TOOWNEELIN OF UXBRIDGE
TOOWNEELIN OF UXBRIDGE
TOOWNEELIN SITE ASSESSMENT
23 BROCK STREET WEST, UXBRIDGE, ON TARIO
44


Tate
Soil Analytical Results
(Excluding EC/SAR)

Unit Value mScm 0.7 nore 5

0 ¶

Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario Appendix B Generic Soil and Groundwater Quality Standard Selection Process February 28, 2025

Appendix B Generic Soil and Groundwater
Quality Standard Selection Process

Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario Appendix B Generic Soil and Groundwater Quality Standard Selection Process February 28, 2025

This section summarizes the selection process Stantec used to identify the appropriate SCS for the Site. The selection was based on a review of site-specific characteristics consistent with the requirements of O.Reg.153/04 and considered the following characteristics specific to the Site.

B.1 Groundwater Use

The Site obtains its drinking water from the Region of Durham's municipal distribution system, however, it was reported on the Region of Durham's website that the sources of potable water in the Township of Uxbridge included Lake Simcoe and a groundwater well. Therefore, SCS for potable groundwater conditions were considered applicable at the Site.

B.2 Current/Intended Property Use

Stantec understands that the Site is currently vacant and has been used for commercial purposes. Therefore, the applicable land use category was residential/parkland/institutional/industrial/commercial/community.

B.3 Depth to Bedrock

The subsurface investigation completed as part of this Phase II ESA did not identify bedrock within 2 m of the existing ground surface. Therefore, the full depth generic SCS were considered applicable for use at the Site.

B.4 Proximity to Water Bodies

The Uxbridge Brook is present immediately north and 90 m south of the Site and runs through the central portion of the Site underground in a culvert, running south-north. Therefore, the generic SCS suitable for properties within 30 m of a water body were considered applicable for the Site.

B.5 Soil Characteristics

Stratigraphy observed in the boreholes advanced as part of this Phase II ESA consisted of fill (sand and gravel, silty sand, and/or silty clay with sand) overlying silt/sandy silt or clay/silty clay. Three soil samples were submitted for grain size analysis as part of the Phase II ESA. The results of the grain size analyses indicated the majority of the material at the Site to be coarse-grained material, therefore, the coarse-grained standards were applied.

B.6 Environmentally Sensitive Areas

The O.Reg.153/04 generic SCS cannot be used at properties that are within, include, or are proximate to (i.e., within 30 m of) Environmentally Sensitive Areas, such as areas of natural significance, or when soil pH is not within the allowable ranges for surface and/or subsurface soils. If either condition applies, the Table 1 (background) SCS are used to evaluate soil and groundwater quality.

Stantec searched the Ontario Ministry of Natural Resources and Forestry's (MNRF's) Natural Heritage online database. No areas of natural or scientific interest (ANSIs) or natural heritage areas were identified within 1 km of the Site.

The generic SCS cannot be applied to a property if the soil pH has a value outside a range of 5 to 9 for surface soil (less than 1,5 m BGS) or outside a range of 5 to 11 for subsurface soil (greater than 1.5 m BGS).

The soil sampling completed as part of this Phase II ESA confirmed that the pH in soil at the Site was within the acceptable range (between 5 and 9 for surface soil, and 5 and 11 for soil at depths greater than 1.5 m from the ground surface) for 27 of the 28 pH samples analyzed, and therefore, the Site would not be considered environmentally sensitive as per the definitions provided in Section 41 of O.Reg.153/04.

Based on the above results, the Site was therefore not considered to be environmentally sensitive.

B.7 Applicable Standards

Based on the Site's characteristics, the Table 8 Generic SCS for Use within 30 m of a Water Body in a Potable Groundwater Condition for a residential/parkland/institutional/industrial/commercial/community property use were considered applicable for the Site (Table 8 SCS).

Appendix C Methodology

C.1 Health and Safety

Stantec developed a Health and Safety Plan (HASP) for this project consistent with the requirements of the Ontario Occupational Health and Safety Act (OHSA) to address the fieldwork components, including sampling and handling of soil and groundwater samples potentially containing the contaminants of potential concern (COPC) previously identified. The specific objectives of the health and safety checklist were to:

- Identify potential health and safety concerns or exposure risks associated with activities to be conducted on the Site.
- Identify and describe the control methods designed to reduce on-site worker exposure to potential risks.
- Reduce the potential for on-site workers and the public to be exposed to unnecessary or unacceptable risk as part of the work program.
- Undertake the proposed Phase II ESA program field activities in a manner consistent with the applicable legislation and guidelines respecting worker health and safety, and regulations concerning contaminant and waste handling.

A copy of the health and safety documentation was kept on the Site by Stantec field personnel for the duration of the field activities.

C.2 Underground Utilities

C.2.1 Public and Private Underground Service Locates

Prior to the borehole drilling activities, Stantec contacted Ontario One Call to have publicly owned utilities located in the vicinity of the proposed borehole locations. In addition, Stantec retained OnSite Locates Inc. of Markham, Ontario to locate public and private underground services near the boreholes including, but not limited to, buried former private Site services, telephone, natural gas, cable, water, and power.

C.3 Methodology

C.3.1 Borehole Advancement and Monitoring Well Installation

Between October 28 and November 4, 2024, Strata advanced 13 boreholes (identified as MW1 to MW7, BH8, MW9 to MW10, BH11, MW12, and BH13) at various locations across the Site to depths ranging from 6.1 m BGS (various locations) to 12.2 m BGS (MW2). The locations of the boreholes are presented on **Figure No. 2** in **Appendix A**. To facilitate future groundwater monitoring and sampling activities at the Site, ten of the 13 boreholes (identified as MW1 to MW7, MW9 to MW10, and MW12) were completed as monitoring wells.

Stantec personnel logged the subsurface conditions encountered within each of the boreholes at the time of the field work. Samples from the soils within the boreholes were recovered at regular depth intervals (i.e., every 1.2 m) in disposable polyethylene liners.

Groundwater monitoring wells were constructed of 50 mm inside diameter (ID) polyvinyl chloride (PVC) well materials. Monitoring wells were constructed with a 3.0 m long slotted PVC well screen connected to an appropriate length of PVC riser pipe. The PVC screen and riser pipe were flush-threaded and equipped with O-rings to provide watertight joints. A flush-threaded PVC cap was installed at the bottom of the well screen. Silica sand was placed in the borehole annulus around each well screen and extended to approximately 0.3 m above the top of the well screen. A bentonite seal was installed from the top of the silica sand to approximate depths of 0.15 m BGS in each of the monitoring wells. A j-plug was installed at the top of each monitoring well. The monitoring wells were finished with flush mounted well casings that were concreted in-place.

Borehole logs in **Appendix D** present the monitoring well construction details.

C.4 Elevation Survey

The ground surface elevations of the boreholes and the top of monitoring well casings were surveyed using a Sokkia GCX3 Global Network Satellite System (GNSS) Receiver to provide an accurate elevation in meters above sea level (m ASL). This permitted an assessment of relative ground water elevations between monitoring wells across the Site.

C.5 Sampling Methods

C.5.1 Soil Sampling Methodology

Soil samples were collected from the boreholes at regular intervals. Stantec's field technician visually assessed and logged the recovered soil samples in the field and recorded observations of colour, odour, texture, soil type, and moisture. Borehole logs are provided in **Appendix D**. Each soil sample was split into two portions. One portion was placed into a sealable plastic bag for use in screening headspace soil vapour concentrations. The second portion of each sample was placed into laboratory-supplied jars and temporarily stored in a cooler on ice prior to transport to Bureau Veritas Canada (2019) Inc. (BV) Laboratories. Samples to be analyzed for volatile organic compounds (VOC) or petroleum hydrocarbons (PHC) including benzene, toluene, ethylbenzene and xylenes (BTEX) and PHC F1 were recovered at each sampling interval using a hermetic sampling device. This involved collecting approximately 5 gram aliquots of soil and extruding the aliquots directly into laboratory supplied vials containing methanol preservative.

Stantec screened soil samples for headspace soil vapour concentrations in the field using an RKI Eagle 2 gas detector. The Eagle 2 is equipped with a combustible gas detector to measure combustible vapour concentrations (CVC) and a photoionization detector (PID) to measure total organic vapours (TOV). The combustible gas detector was calibrated to hexane and operated in methane elimination mode for CVC measurements, and the PID was calibrated to isobutylene and equipped with a 10.6 eV lamp for TOV measurements. For CVC, the Eagle 2 can display measurement in parts per million by volume (ppm_v), percent by volume (% volume), and percent of the lower explosive limit (% LEL). TOV measurements are reported in units of ppm_v.

The Eagle 2 is equipped with a Teflon® lined hose and a 0.4 m (10 in.) long hydrophobic probe. The probe includes a replaceable hydrophobic filter disk that reduces the potential for particulates and water to enter the instrument. The Eagle 2 was calibrated in the field at the beginning of work each day. Field screening methods measure the total concentration of a range of combustible and volatile contaminants such as PHC and VOC in soil vapour. Borehole logs in **Appendix D** include CVC/TOV measurements.

Stantec selected soll samples for laboratory analysis based on a variety of lines of evidence, including samples with elevated CVC/TOV concentrations, staining, odour, and the expected behaviour of contaminants of potential concern (COPCs) in the environment. Samples submitted for laboratory analysis were packed in coolers on ice and shipped to BV under chain-of-custody documentation

C.5.2 Geoprobe Decontamination Methodology

Potential cross-contamination of samples was reduced by using cleaned drilling and sampling equipment. Loose soil was brushed from the stainless-steel drive casings between sampling locations and the non-dedicated sampling equipment from the drill rig was washed using a solution of Alconox and water and rinsed with water between sample locations. Stantec's field technicians were a new pair of disposable nitrile gloves for each soil sample.

C.5.3 Groundwater Monitoring and Sampling

Headspace CVC and TOV in the monitoring wells were measured using an RKI Eagle 2, which was calibrated in accordance with the methodology described above.

Stantec measured the depth to ground water and assessed the presence/absence of light and dense non-aqueous phase liquids (LNAPL and DNAPL) with a Heron Model H.Oil oil/water interface probe (or equivalent). The sensor accuracy is 1 mm (1/200 ft).

Prior to sampling, Stantec developed and purged the newly installed monitoring wells using dedicated Waterra® tubing and foot valves. The monitoring wells were allowed to recover to approximately 90% of static elevation prior to sample collection.

Groundwater samples were recovered from the newly installed monitoring wells and existing monitoring wells in accordance with the United States Environmental Protection Agency's (USEPA's) recommended "low-flow" sampling methodology, as outlined in the USEPA publication EPA/540/S095-504 Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, April 1996.

Low flow refers to the velocity at which water enters the pump intake, which directly affects the flow of formation pore water in the immediate vicinity of the well screen. Water level drawdown provides the best indication of the stress imparted by a given flowrate for a given hydrological situation. The objective is to pump in a manner that reduces stress (drawdown) to the system to the extent practicable, taking into account established data quality objectives.

A peristaltic pump was placed gently into the water column of each monitoring well and the pump intake was positioned in the middle of, or slightly above the middle of the screened interval. The pump was set at a flow rate on the order of 0.2 L to 0.4 L/minute.

Water quality indicator parameters were measured using the YSI-556 MPS. In addition, the water level in the monitoring well was checked periodically to monitor the drawdown in the well as a guide to flow rate adjustment. The goal was minimal drawdown (<0.1 m) during purging. Stabilization was considered to be achieved after all parameters had stabilized for three successive readings. Once the water quality parameters had stabilized and it was confirmed that the drawdown was less than 0.1 m, ground water sampling was initiated. The ground water samples were collected by direct transfer, without agitation, from the dedicated polyethylene tubing on the pump into a clean sampling container.

The VOC sample vials were filled so that the water formed a convex meniscus at the top of the vial, resulting in little to no air space in the vial. The vial was turned over and tapped to check for bubbles in the vial, which would indicate air space is present. If gas bubbles were observed in the sample vial, the procedure was repeated until no gas bubbles appeared. All other sample bottles were filled so that minimal head space was left in the bottle. Sufficient water volumes were available to fill the recommended bottles, as required by the laboratory. The J plug on each well was replaced at the end of the sampling event.

Stantec's field technicians wore a new pair of disposable nitrile gloves at each monitoring well location. Non dedicated monitoring equipment (e.g., interface probe, water quality instruments) was decontaminated using a solution of Alconox detergent and tap water and rinsed with distilled water between each well. Dedicated sampling equipment (waterra tubing, foot valves, bailers, string, etc.) was used for each monitoring well.

C.6 Laboratory Analyses

C.6.1 Soil Analytical Program

Soil samples were recovered from each of the completed boreholes and submitted to BV Labs for analysis of VOCs, PHCs F1 to F4, PAHs, metals and other regulated parameters, pH, and grain size.

C.6.2 Groundwater Analytical Program

Groundwater samples were recovered from each of the ten completed monitoring wells and submitted to BV Labs for analysis of VOCs, PHCs F1 to F4, PAHs, and metals and other regulated parameters.

Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario Appendix D Borehole Logs February 28, 2025

Appendix D Borehole Logs

Project:

Phase II ESA

Client:

Township of Uxbridge 23 Brock Street, Uxbridge, ON

Location: Number:

122140392 Field investigator: H. Masoud

Contractor:

Strata Drilling Group

Geoprobe 3230GT (Direct Push)

Date started/completed:

29-Oct-2024 Ground surface elevation: 267,04 m AMSL

Easting:

Top of casing elevation: 266.99 m AMSL 650263.747

Northing:

4885790.933

		SUBSURFACE PROFILE					SAMPLE	DETAILS		INS	TALLATION DETAILS
Depth	Graphic Log	Ground Surface	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Recovery	N Value	Lab Analyses	%LEL Comba 20 40 60 80 ppm Comb Comb Comb 200 400 600 800	Diagram	Description
-		\75 mm ASPHALT Brown, SILTY SAND (FILL) - trace to some gravel	0,00 266,96 0.08	1	SS	6" 25%	21		<5 8	X-X-	Flushmount protect cover with concrete seal
5 —				2	ss	8" 33%	17	Metals, EC, SAR, PAH	<5 	H	■ 50 mm ID PVC pipe backfilled with bentonite
		Call dad begun DCAT	264.83	3	ss	7" 29%	11		<5 8 <0.02	7 5	bentonite
10	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Soft, dark brown, PEAT - moist	2.21	4	ss	4" 17%	5		8 1	•	- Groundwater Level
-		Very soft to soft, grey, CLAY (CL) - moist	3.12	5	SS	24" 100%	3	PHC F1-F4, VOC	<5 8 <0.02		2.95 m BGS 5-Nov-24
15 -4				6	SS	24" 100%	1		<5 		50 mm ID slotted F pipe backfilled with silica sand
				7	SS	24" 100%	1		<5 <0.02		
20 - 6											
-				8	SS	24" 100%	D		S	Н	
25		- wet below 7,6 m							<5		► Backfilled with
-8				9	SS	24" 100%	0		8 <0.02 		bentonite
30 —		Very loose, grey, SANDY SILT	257,97 9,07	10	SS	0" 0%	3			Т	
-		- wet End of Borehole	257,29 9.75	11	SS	8" 33%	1		^{<5}	+	
35 - 12											
Screen Ir Sand Pac Well Sea	ck Interva Linterval:	II: 1,98 - 5,64 m BGS m 0,23 - 1,98 m BGS s PP	lotes: n AMSL - metro n BGS - metro S - split-spoor pm - parts per bLEL - percent /a - not availat	s below gro n sample million by v lower expl	und surf olume	ace		PHC F1-F4 - pet VOC - volatile or EC - electrical co SAR - sodium ac		n fractions	nes s 1 to 4
		G.100 G	Dra	swn By/Check	ked By: M	Ford			-		Sheet 1 of 1

Project:

Phase II ESA

Client:

Township of Uxbridge

Location:

Contractor:

23 Brock Street, Uxbridge, ON

Number: 122140392 Field investigator: H. Masoud

Strata Drilling Group

Geoprobe 3230GT (Direct Push)

Date started/completed:

28-Oct-2024

Ground surface elevation: 265.21 m AMSL

Top of casing elevation: 265,15 m AMSL

Easting:

650281.583

Northing:

4885765.987

		SUBSURFACE PROFILE					SAMPLE	DETAILS		INS	TALLATION DETAILS
Depth (ft)	Graphic Log	Stratigraphic Description	Elevalion (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Fecovery	N value	Lab Analyses	%LEL Comb 20 40 60 80 ppm OTOV 200 400 600 800	Dlagram	Description
(ft) (m)		Ground Surface \S0 mm ASPHALT Light brown, SILTY SAND (FILL) - some gravel	265.21 0.00 265.16 0.05 264.52	1	SS	19" 79%	54	Metals, EC, SAR, PAH	<5	<u> </u>	Flushmount protect cover with concret seal
-		moist Dark brown to black, SILTY SAND with gravel (FILL) trace to some clay moist	0.69	2	ss	3" 13%	8		<5	¥	Groundwater Leve
5 — 2				3	SS	11" 46%	3		<5 8		1.44 m BGS 5-Nov-24 50 mm ID PVC pi backfilled with
-				4	SS	3" 13%	4		^{<5} 8 1	314	backfilled with bentonite
1				5	SS	11" 46%	5	PHC F1-F4, VOC	<0.02		
-4		- trace roollets in SS6 & SS7	2.	6	ss	22" 92%	3		<5		
5			1	1	SS	24" 100%	1		<5 0 <0.02		pipe backfilled wil
0 - 6		- wood fragment present in SS8		8	SS	17" /1%	O		8 8 <0.02		
+		- metal fragment present in SS9 Firm to hard, grey, SILTY CLAY (CI)	258.43 6.78	9	ss	4" 17%	O		<5 <0,02 <5		
5		- trace to some sand - trace gravel - wet	8005	10	SS	10" 42%	8		8 1 1 1 <0.02 1 1 <5 1 1 1		
-8				11	SS	11" 46%	5		<0.02	H	
0 -				12	SS	11" 46%	59		<5 8 <0.02		Backfilled with bentonite
10		Very dense, dark brown to grey, SILTY SAND (SM)	255,00 10,21								
55		- some gravel - trace clay - moist to wet		13	ss	24" 100%	59		<5		
1				14	SS	24" 100%	55		<5		
10 - 12		End of Borehole	253.02 12.19		1						
	ack Interva al Interval	al: 2.74 - 6.40 m BGS m	tes: AMSL - metre BGS - metre i - split-spoo m - parts per EL - percen a - not availa	s below gr n sample r million by it lower exp	ound sui volume	face		PHC F1-F4 - pe VOC - volatile o EC - electrical o SAR - sodium a	e, toluene, ethylber troleum hydrocarb rganic compounds onductivity dsorption ratio c aromalic hydroca	on fraction	

Project:

Phase II ESA

Client:

Township of Uxbridge

Location:

23 Brock Street, Uxbridge, ON

Number: Field investigator: Harpreet

122140392

Contractor

Strata Drilling Group

Geoprobe 3126GT (Direct Push)

Date started/completed: 31-Oct-2024 Ground surface elevation: 266.30 m AMSL Top of casing elevation: 266,22 m AMSL Easting: 650265,169

4885752.648

Northing:

SUBSURFACE PROFILE SAMPLE DETAILS INSTALLATION DETAILS %LEL Elevation Sample Number Sample 20 40 60 80 Graphic m AMSL) Type Depth Stratigraphic Description Lab Analyses Description Depth (m BGS) Log OTOV 200 400 600 800 (ft) (m) Ground Surface TOPSOIL 0.00 266,15 Flushmount protective cover with concrete Brown to dark brown, SILTY SAND (FILL) 16" SS 15 trace to some grave
 occasional cobbles 0.15 seal <5 - moist to wet 2 SS 10 50 mm ID PVC pipe 46% < 0.02 backfilled with <5 3 SS 16 33% < 0.02 Groundwater Level: 2,22 m BGS 5 Metals, EC, SAR, PAH SS 22 5-Nov-24 8% < 0.02 10 <5 5 SS 7 PHC F1-F4, VOC 100% < 0.02 <5 50 mm ID slotted PVC SS 6 pipe backfilled with silica sand 261,80 <0.02 15 Firm to stiff, brown with orange staining, SILT (ML) 4.50 <5| - trace sand SS 10 83% < 0.02 <5 7 8 SS 92% 00 < 0.02 260.28 - 6 20 Very soft to firm, grey, CLAY (CL) 6.02 9 SS 5 1009 < 0.02 000 25 - trace rootlets in SS10 122:40392_BHLOGS GPJ STANTEC - DATA TEMPLATE GDT 12/20/24 MIFORD 10 SS 2 1009 000 Slough <0.02 00 60% 11 SS 6 < 0.02 000 10 256.09 Very dense, grey, SANDY SILT - moist 10.21 255.58 35 - rock fragments present \50/51 mm 2" 10.72 End of Borehole 12 40 STANTEC BOREHOLE AND WELL V2

Screen Interval: Sand Pack Interval: Well Seal Interval: 2,44 - 5,49 m BGS 2,13 - 5,49 m BGS 0,23 - 2,13 m BGS

m AMSL - metres above mean sea level m BGS - metres above mean sea leve m BGS - metres below ground surface SS - split-spoon sample ppm - parts per million by volume %LEL - percent lower explosive limit

n/a - not available

BTEX - benzene, toluene, ethylbenzene, xylenes PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4
VOC - volatile organic compounds
EC - electrical conductivity

SAR - sodium adsorption ratio PAH - polycyclic aromatic hydrocarbons

Project:

Phase II ESA

Client:

Township of Uxbridge 23 Brock Street, Uxbridge, ON

Location: Number:

122140392

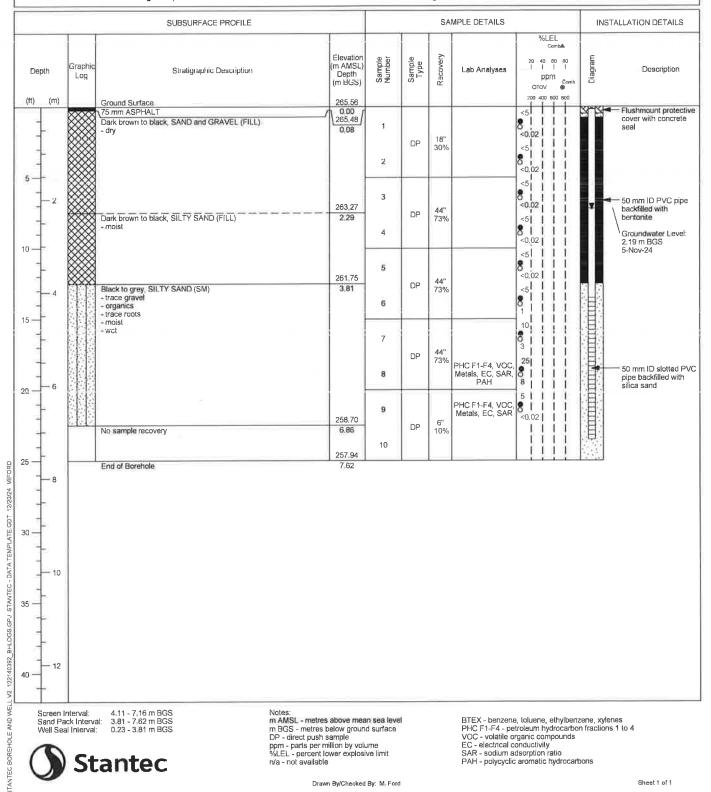
Contractor:

Field investigator: Harpreet Strata Drilling Group

Method:

Geoprobe 3126GT (Direct Push)

Date started/completed: 31-Oct-2024


Ground surface elevation: 265.56 m AMSL

Top of casing elevation:

265,49 m AMSL 650300.695

Easting: Northing:

4885738.659

Screen Interval: Sand Pack Interval: Well Seal Interval:

4 11 - 7 16 m BGS 3 81 - 7 62 m BGS 0 23 - 3 81 m BGS

Notes:

m AMSL - metres above mean sea level
m BGS - metres below ground surface
DP - direct push sample
ppm - parts per million by volume
%LEL - percent lower explosive limit

n/a - not available

BTEX - benzene, toluene, ethylbenzene, xylenes PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatile organic compounds EC - electrical conductivity SAR - sodium adsorption ratio PAH - polycyclic aromatic hydrocarbons

Project:

Phase II ESA

Client:

Township of Uxbridge

Location:

23 Brock Street, Uxbridge, ON

Number:

122140392 Field investigator: Harpreet

Contractor:

Strata Drilling Group

Geoprobe 7822DT (Direct Push)

Date started/completed:

04-Nov-2024 Ground surface elevation: 265.89 m AMSL

Top of casing elevation: 265,77 m AMSL Easting:

650280.776

Northing:

4885739,598

		SUBSURFACE PROFILE					SAMPLE	DETAILS		INS	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Stratigraphic Description Ground Surface	Elevation (m AMSL) Depth (m BGS) 265.89	Sample	Sample Type	Recovery	N Value	Lab Analyses	%LEL Comb& 20 40 60 60 1 1 1 1 ppm OTOV 200 400 600 600	Diagram	Description
-		TOPSOIL Brown to dark brown, SILTY SAND (FILL) - trace organics and rootlets	0.00 265,74 0.15	1	ss	18" 75%	2		<5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Flushmount protect cover with concrete seal
-		- moist to wet - silly clay inclusions in SS2		2	ss	17" 71%	3	Metals, EC, SAR, PAH	<5	4	50 mm ID PVC pip backfilled with bentonite
5				3	ss	17" 71%	2		<5		_
-				4	SS	24" 100%	2		<5 	¥.	— Groundwater Level 2,20 m BGS 5-Nov-24
10 -				5	SS	7" 29%	2	PHC F1-F4, VOC	<5		 50 mm ID slotted F pipe backfilled with silica sand
4				6	ss	24" 100%	2		<5		
15			260,63	7	SS	20" 83%	3		10 <0.02		
- 6		Firm to hard, grey/black, SILTY CLAY with sand (CL) - moist to wet	5.26	8	ss	22" 92%	7		<5 <0.02		
20 -				9	SS	24" 100%	6		<5		
25 —				10	SS	24"	13		<5		Backfilled with bentonite
-					- 00	100%			<0.02 [] [] [] [] [] [] [] [] [] [
30		- rock fragments present in ss11	256,16	11	ss	23" 100%	40		<5 <0.02		
10		End of Borehole	9.73								
35 —											
40 — 12	=										
Screen in Sand Pac Well Seal	ck interva I Interval:	0.23 - 1.22 m BGS m B SS ppr %Lt	es: MSL - metre GS - metres - split-spoor 1 - parts per EL - percent - not availab	s below gro n sample million by v lower explo	und surf olume	ace		PHC F1-F4 - pet VOC - volatile or EC - electrical co SAR - sodium ad		n fractions	nes 1 to 4
		arree c	Dra	awn By/Check	ed By: M	, Ford		,, -, -, -, -, -, -, -, -, -, -, -, -	,		Sheet 1 of 1

Project:

Phase II ESA

Client:

Township of Uxbridge

Location: Number:

23 Brock Street, Uxbridge, ON 122140392

Field investigator: H. Masoud

Strata Drilling Group

Geoprobe 3230GT (Direct Push)

Date started/completed:

01-Nov-2024 Ground surface elevation: 265.69 m AMSL

Top of casing elevation:

Easting:

650305.743

Northing:

4885721.181

Screen Interval: Sand Pack Interval: Well Seal Interval:

1,52 - 4,57 m BGS 1 22 - 4 88 m BGS 0 23 - 1 22 m BGS

Notes: m AMSL - metres above mean sea level m AMSL - metres above mean sea reve m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume %LEL - percent lower explosive limit n/a - not available

BTEX - benzene, toluene, ethylbenzene, xylenes PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatille organic compounds EC - electrical conductivity SAR - sodium adsorption ratio PAH - polycyclic aromatic hydrocarbons

Project:

Phase II ESA

Client:

Township of Uxbridge

Location:

23 Brock Street, Uxbridge, ON

Number:

Field investigator: H. Masoud

Contractor:

Strata Drilling Group

Method:

Geoprobe 3230GT (Direct Push)

Date started/completed: 01-Nov-2024

Ground surface elevation: 265.90 m AMSL

Top of casing elevation: 265.84 m AMSL

Easting:

650320,491

Northing: 4885718.68

		SUBSURFACE PROFILE					PAMPI T	DETAILE		T	
	1	SUBSURFACE PROFILE					SAMPLE	DETAILS	%LEL	INS	TALLATION DETAILS
Depth	Graphic Log	Ground Surface	Elevation (m AMSL) Depth (m BGS)	Sample Number	Sample Type	Recovery	N Value	Lab Analyses	20 40 60 80 DTOV Comba	Diagram	Description
1		75 mm ASPHALT Brown, SAND and GRAVEL (FILL) - moist Brown, SILTY SAND (FILL)	0.00 265.82 0.08 265.67	1	ss	16" 67%	15		8	\$2-\$2-	Flushmount protective cover with concrete seal
1 -		- trace gravel - occassional cobbles - moist	0.23	2	ss	11" 46%	7		10 8 <0.02		50 mm ID PVC pipe backfilled with bentonite
5—		- hydrocarbon odour in ss3 and ss4		3	ss	2" 8%	8		8 8		— Groundwater Level:
-				4	SS	8" 33%	7	PHC F1-F4, VOC, Metals, EC, SAR, PAH		980	2,09 m BGS 5-Nov-24
10				5	SS	16" 67%	7	1.577	15 8 1	980	 50 mm ID slotted PVC pipe backfilled with silica sand
4			261,40	6	ss	15" 63%	8		5 8 <0.02		
15		Soft to firm, grey, CLAY (CL) - trace sand and gravel - wet	4.50	7	ss	20" 83%	6	PHC F1-F4, VOC, PAH	15 7 1 5 5	H.	
				8	SS	23" 96%	4		<5	42.24	
20 - 6		- silly sand seam at 6,6 m		9	SS	20" 83%	5		<5	H	
1										4	Backfilled with bentonite
25 — 8				10	SS	10" 42%	2		<5 <0.02	Н	
			256,91	11	ss	16" 67%	6		<5 8 <0.02		
30 —		End of Borehole	8,99								
35 —											
-											
40 — 12											
Screen	nterval.	1,52 - 4,57 m BGS N	otes:								
Sand Pa	ick Interva al Interval:	II: 1.22 - 5.33 m BGS m 0.23 - 1.22 m BGS s P %	otes:	s below gro n sample million by v I lower expl	und surf olume	ace		PHC F1-F4 - pel VOC - volatile or EC - electrical co SAR - sodium ac		on fractions	nes 1 to 4
	J	WIIICE C		awn By/Check	ked By: M	Ford		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,		Sheet 1 of 1

Borehole: BH8

Project:

Phase II ESA

Client:

Township of Uxbridge

Location: Number:

23 Brock Street, Uxbridge, ON 122140392

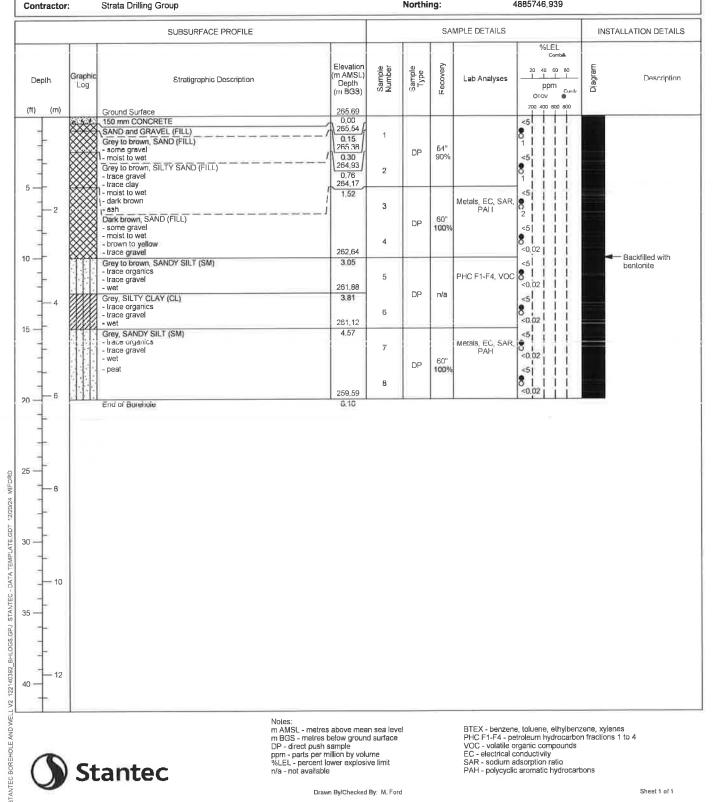
Field investigator: H. Masoud

Strata Drilling Group

Geoprobe 3230GT (Direct Push)

Date started/completed:

30-Oct-2024


Ground surface elevation: 265.69 m AMSL

Top of casing elevation: n/a

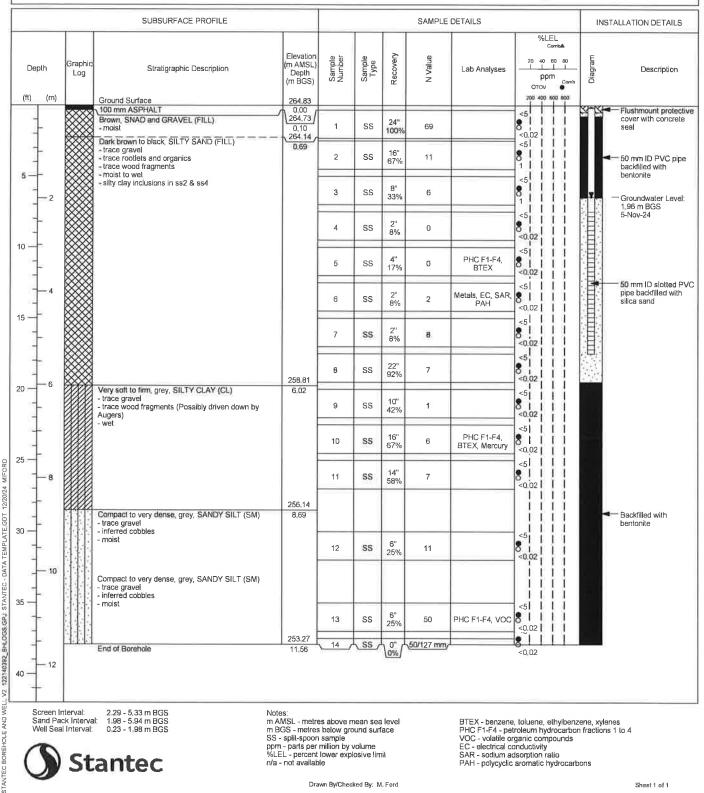
650313,291

Easting: Northing:

4885746,939

Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume %LEL - percent lower explosive limit n/a - not available

BTEX - benzene, toluene, elhylbenzene, xylenes PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatile organic compounds EC - electrical conductivily SAR - sodium adsorption ratio PAH - polycyclic aromatic hydrocarbons


Drawn By/Checked By: M. Ford

Phase II ESA Project:

Client: Township of Uxbridge Location: 23 Brock Street, Uxbridge, ON

Number: 122140392 Field investigator: H. Masoud Contractor: Strata Drilling Group Method: Geoprobe 3230GT (Direct Push)

Date started/completed: 30-Oct-2024 Ground surface elevation: 264.83 m AMSL Top of casing elevation: 264,79 m AMSL Easting: 650308.976 Northing: 4885761.374

Screen Interval: 2,29 - 5,33 m BGS Sand Pack Interval: 1.98 - 5.94 m BGS 0.23 - 1.98 m BGS Well Seal Interval:

m AMSL - metres above mean sea level m BGS - metres below ground surface SS - split-spoon sample ppm - parts per million by volume %LEL - percent lower explosive limit n/a - not available

BTEX - benzene, toluene, ethylbenzene, xylenes PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4

VOC - volatile organic compounds
EC - electrical conductivity
SAR - sodium adsorption ratio
PAH - polycyclic aromatic hydrocarbons

Project:

Phase II ESA

Client:

Township of Uxbridge

Location:

23 Brock Street, Uxbridge, ON

122140392 Number: Field investigator: H, Masoud

Contractor:

Strata Drilling Group

Method:

Geoprobe 3126GT (Hollow Stem Auger)

Date started/completed: 29-Oct-2024

Ground surface elevation: 265,09 m AMSL

Top of casing elevation: 265.02 m AMSL

650286,485

Easting: Northing:

4885788.012

			SUBSURFACE PROFILE					SAMPLE	DETAILS		IN	STALLATION DETAILS
Depth		Graphic Loq	Stratlgraphic Description	Elevation (m AMSL) Depth (m BGS)	Sample	Sample Type	Recovery	N Value	Lab Analyses	%LEL Comba 20 40 60 80 1 1 1 ppm OTOV 200 400 500 800	Llagram	Description
(ft) ((m)	NG SOR	Ground Surface	265.09						<5	VEX.	← Flushmount protective
-			75 mm ASPHALT Brown, GRAVEL (FILL) - moist	0.00 265.01 0.08 264.25	1	AS	19" 79%	48-38-35-21 (73)		8	<u>%</u> -%	cover with concrete seal
-			Grey to brown, SILTY CLAY (FILL) - some gravel - trace organics - moist to wet	0.84 263,57	2	SS	18" 75%	8-6-4-3 (10)		8		■ 50 mm ID PVC nine
5	2		Grey to brown, SANDY SILT (FILL) - with clay - trace gravel - trace organics	1.52	3	ss	18" 75%	10-6-5-5 (11)		8	Ā	50 mm ID PVC pipe backfilled with bentonite Groundwater Level:
1			- moist	204.05	4	ss	10" 42%	5-4-5-5 (9)		\$		1,69 m BGS 5-Nov-24
10 -			Grey to brown, SILTY CLAY (CL) - some sand - trace gravel	261,95 3.14	5	ss	10" 42%	3-2-1-2 (3)	PHC F1-F4, VOC Metals, EC, SAR, PAH	<5 8 <0,02		
-	4		- trace organics - wet		6	ss	8" 33%	0-0-1-1 (1)		<5		
15 —			- trace peat		7	ss	24" 100%	0-0-1-1		<5 8 <0.02		50 mm ID slotted PV pipe backfilled with silica sand
-			Grey, SILTY SAND SM) - with clay	259,45 5,64 258,99	8	SS	16" 67%	0-5-6-6 (11)		<5 <0.02		
20 -	6	72.12.1	- trace boulders - wet End of Borehole	6.10							1541134	
25 -	-8											
30 -												
-	10											
35 —												
. [12											

Screen Interval: Sand Pack Interval: Well Seal Interval:

3.05 - 6.10 m BGS 2.74 - 6.10 m BGS 0.23 - 2.74 m BGS

Stantec

Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface SS - spik-spoon sample AS - auger sample ppm - parts per million by volume %LEL - percent lower explosive limit n/a - not available

Drawn By/Checked By: M. Ford

BTEX - benzene, toluene, ethylbenzene, xylenes PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatile organic compounds EC - electrical conductivity SAR - sodium adsorption ratio PAH - polycyclic aromatic hydrocarbons

Borehole: BH11

Project: Phase II ESA

Client: Township of Uxbridge
Location: 23 Brock Street, Uxbridge, ON

Number: 122140392
Field investigator: H. Masoud
Contractor: Strata Drilling Group

Method: Geoprobe 3126GT (Direct Push)

Date started/completed: 31-Oct-2024
Ground surface elevation: 265,08 m AMSL

Top of casing elevation: n/a

Easting: 650336,518 **Northing:** 4885791.751

		SUBSURFACE PROFILE					HOLE DETAIL O		INSTALLATION DETAILS		
	1	SUBSURFACE PROFILE	_			SA	MPLE DETAILS	%LEL	IN:	STALLATION DETAILS	
Depth	Graphic Log	Stratigraphic Description Ground Surface	Elevation (m AMSL) Depth (m BGS) 265.08	Sample Number	Sample Type	Recovery	Lab Analyses	76LEL Comb 20 40 60 80 1 1 1 ppm OTOV 200 40 600 800	Dlagram	Description	
5		\75 mm ASPHALT \SAND and GRAVEL (FILL) Grey to brown, SAND (FILL) - trace clay - trace silt - trace gravel - trace organics - moist	0.00 265 00 0.08 264 85 0.23	2	DP	60" 100%	Metals, EC, SAR, PAH	<5 0.02 <5 <0.02			
10				3	DP	35" 58%		<5		— Backfilled with	
15		- moist to wet Grey to brown, SILTY CLAY (CL) - with sand - trace organics - wood chips - peat	261.27 3.81	5	DP	36" 60%	PHC F1-F4, VOC	<0.02		bentonite	
20 - 6		- peat - wet Dark brown, PEAT - some silt - some clay	259,75 5.33 258,98	7	DP	52" 87%		<5			
25 — 8		End of Borehole	6.10								
30											
5 - 10											
0 - 12											

Notes:
m AMSL - metres above mean sea level
m BGS - metres below ground surface
DP - direct push sample
ppm - parts per million by volume
%LEL - percent lower explosive limit
n/a - not available

BTEX - benzene, toluene, ethylbenzene, xylenes PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatile organic compounds EC - electrical conductivity SAR - sodium adsorption ratio PAH - polycyclic aromatic hydrocarbons

Drawn By/Checked By: M. Ford

Project:

Phase II ESA

Client:

Township of Uxbridge

Location: Number:

23 Brock Street, Uxbridge, ON 122140392

Field investigator: H. Masoud

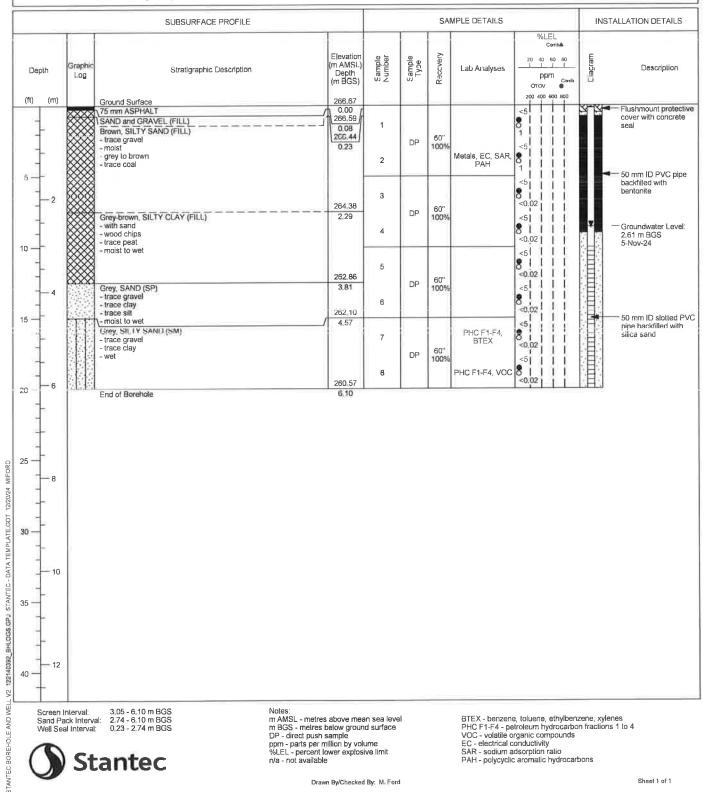
Contractor:

Strata Drilling Group

Geoprobe 3126GT (Direct Push)

Method: 31-Oct-2024 Date started/completed:

Ground surface elevation: 266,67 m AMSL


Top of casing elevation:

266,58 m AMSL

Easting:

650379.723

Northing: 4885809.025

Screen Interval: Sand Pack Interval: Well Seal Interval: 2 74 - 6 10 m BGS 0 23 - 2 74 m BGS

Notes: m AMSL - metres above mean sea level m Awis L - Interes below ground surface DP - direct push sample ppm - parts per million by volume %LEL - percent lower explosive limit n/a - not available

BTEX - benzene, toluene, ethylbenzene, xylenes PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatille organic compounds EC - electrical conductivity SAR - sodium adsorption ratio

PAH - polycyclic aromatic hydrocarbons

Borehole: BH13

Project:

Phase II ESA

Client:

Township of Uxbridge

Location:

23 Brock Street, Uxbridge, ON

Number:

122140392 Field investigator: H. Masoud

Contractor:

Strata Drilling Group

Geoprobe 3230GT (Direct Push)

Date started/completed:

31-Oct-2024

Ground surface elevation: 266.37 m AMSL Top of casing elevation: n/a

Easting: Northing:

650374.779 4885816.703

SUBSURFACE PROFILE SAMPLE DETAILS INSTALLATION DETAILS %LEL Elevation Sample Number Value Sample Type 20 40 60 80 J J J J Graphic m AMSL) Depth Depth Stratigraphic Description Lab Analyses Description Log ppm (m BGS) (ft) (m) Ground Surface 75 mm ASPHALT 0.00 266,29 <5 BTEX, PHC F1-F4, Metals, EC, SAR Brown, SAND and GRAVEL (FILL) 16" SS 15 0.08 266.19 Light brown to dark brown, SILTY SAND (FILL) - Irace gravel - moist <5 0.18 BTEX, PHC F1-F4, Metals, 2 SS EC, SAR BTEX, PHC F1-F4, Metals, EC, SAR 3 SS 15 50% - 2 264,16 Dark brown to black, SILTY CLAY with sand (FILL) 2.21 BTEX, PHC F1-F4, Metals, EC, SAR 22" 92% SS 10 <51 PHC F1-F4, VOC, Metals, EC, SAR, PAH 17" 71% SS 2 262,63 Very soft, brown, PEAT - moist 3.73 <51 BTEX, PHC F1-F4, Metals, EC, SAR 11, 6 SS 2 75% <0.02 | 11/11 Backfilled with 15 <51 261.54 BTEX, PHC F1-F4, Metals, EC, SAR bentonite Very loose to loose, grey, SANDY SILT (SM) 7 SS 3 4.82 100% <0.02 <5 BTEX, PHC В F1-F4, Metals, EC, SAR SS 4 83% < 0.02 20 BTEX, PHC F1-F4, Metals, EC, SAR 23" 9 2 SS 96% 25 19" 10 SS 0 < 0.02 SS 7 257.38 End of Borehole 30 8.99 10 122140392_BHLOGS.GPJ STANTEC 35 40

STANTEC BOREHOLE AND WELL

Notes:
m AMSL - metres above mean sea level
m BGS - metres below ground surface
SS - split-spoon sample
ppm - parts per million by volume
kLEL - percent lower explosive limit
n/a - not available

BTEX - benzene, tolluene, ethylbenzene, xylenes
PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4
VOC - volatile organic compounds
EC - electrical conductivity
SAR - sodium adsorption ratio
PAH - polycyclic aromatic hydrocarbons

BTEX - benzene, toluene, ethylbenzene, xvienes

Phase II Environmental Site Assessment, 23 Brock Street West, Uxbridge, Ontario Appendix E Tables
February 28, 2025

Appendix E Tables

Summary of Groundwater Monitoring Data Phase II Environmental Site Assessment 23 Brock Street West, Uxbridge, Ontario Township of Uxbridge Table I

Monitoring Location	Monitoring Date (dd-mmm-yy)	Ground Surface Elevation (m AMSL)	Top of Pipe Elevation (m AMSL)	Water Level Elevation (m AMSL)	Water Level Depth (m BTOP)	Water Level Depth (m BGS)	Water Level Depth Water Level Depth Hydrocarbon Apparent (m BGS) Thickness (mm)	Well Headspace Combustible Vapour Concentration (ppm,)	Well Headspace Total Organic Vapour Concentrations (ppm,)
MW1	5-Nov-24	267 04	266.99	264 09	2.90	2.95	0	\$>	3
MW2	5-Nov-24	265,21	265.15	263.77	1.38	1.44	0	09	rc
MW3	5-Nov-24	266.30	266 22	264 08	2.14	2,22	0	γ.	<0.02
MW4	5-Nov-24	265,56	265.49	263.37	2.12	2.19	0	430	<0.02
MW5	5-Nov-24	265.89	265.77	263.69	2.08	2,20	0	c)	<0.02
MW6	5-Nov-24	265.69	SN	263,34*	2.20	2,35*	0	<5>	2
MW7	5-Nov-24	265.90	265.84	263,81	2,03	2.09	0	ς,	25
MW9	5-Nov-24	264,83	264.79	262.87	1,92	1.96	0	20	'n
MW10	5-Nov-24	265,09	265 02	263.40	1.62	1.69	0	140	<0.02
MW12	5-Nov-24	266,67	266.58	264.06	2.52	2.61	0	20	7

::
8
ĕ
_0
2

	Metres above mean sea level	Metres below top of pipe	Metres below ground surface	Millimetres	Parts per million by volume	Not Surveyed	i
Mes.	m AMSL	m BTOP	m BGS	шш	^шdd	SN	1

Table II **Summary of TCLP Results** Phase II Environmental Site Assessment 23 Brock Street West, Uxbridge, Ontario Township of Uxbridge

Sample Location		1	т	CLP
Sample Date Sample ID Sampling Company Laboratory			31-Oct-24 TCLP STANTEC BV C4Y8641	31-Oct-24 TCLP Lab-Dup STANTEC BV C4Y8641
Laboratory Work Order Laboratory Sample ID			AHZR67	AHZR67
Sample Type	Units	O.Reg. 347 Sch 4	Andre	Lab Replicate
General Chemistry-TCI P				
30 30 30 30 30 30 30 30 30 30 30 30 30 3		20 ^A	<0.010	-
Cyanida (Free)	mg/L	150 ^A	0.21	
Fluoride Nitrate (as N)	mg/L mg/L	150°	<1.0	
Nitrate + Nitrite (as N)	mg/L	1.000^	<1.0	- 4
Nitrite (as N)	rng/L	n/v	<0.10	- 2
Ignitability	1			
Ignitability	none	n/v	NF/NI	
Leachate Preparation				
Amount Extracted (Wet Weight)	none	n/v	25	
Extraction Fluid	none	n/v	FLUID II	25
pH Final	S.U.	n/v	5.77	
pl I Initial	8.U	n/v n/v	9.62 100	
Total Solids Metals - TCLP	76	100	100	
Arsenic	mg/L	2.5^	<0.2	
Barium	mg/L	100 ^A	0.2	
Boron	mg/L	500 ^A	<0.1	1 5
Cadmium	mg/L	0.5 ^A	<0.05	
Chromium	mg/L	5 ^A	<0.1	- 17
Lead	mg/L	5^	<0.1	
Mercury	mg/L	0.1^	<0.001	1 6
Selenium	mg/L	1^	<0.1	
Silver	mg/L	5 ^A	<0.01	- 8
Uranjum	mg/L	10 ^A	<0.01	12
Semi - Volatile Organic Compounds - To	-	10	-001	
Benzo(a)pyrene	µg/L	1.4	<0.10	<0.10
Cresol, m & p- (Methylphenol, 3&4-)	µg/L	200,000*	<2.5	<2.5
Cresol, o- (Methylphenol, 2-)	µg/L	200,000^	<2.5	<2.5
Cresol, Total Leachable	µg/L	200,000^	<2.5	<2.5
Dichlorophenol, 2,4-	µg/L	90,000 ^A	<2.5	<2.5
Dinitrololuene, 2,4-	µg/L	130 ^A	<10	<10
Hexachlorobenzene	µg/L	130 ^A	<10	<10
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	µg/L	500^	<10	<10
Hexachloroethane	µg/L	3.000 ^A	<10	<10
Nitrobenzene	µg/L	2.000^	<10	<10
Penlachlorophenol	µg/L	6,000 ^A	<2.5	<2.5
Pyridine	µg/L	5,000 ^A	<10	<10
Tetrachlorophenol, 2,3,4,6-	µg/L	10,000 ^A	<2.5	<2.5
Trichlorophenol, 2,4,5-	µg/L	400,000 ^A	< 0.50	<0.50
Trichlorophenol, 2,4,6-	µg/L	500 ^A	<2.5	<2.5
Volatile Organic Compounds - TCLP	1 12			
Benzene	mg/L	0.5^	<0.020	1 2
Carbon Tetrachloride (Tetrachloromethane)	mg/L	0.5 ^A	<0.020	12
Chlorobenzene (Monochlorobenzene)	mg/L	8 ^A	< 0.020	14
Chloroform (Trichloromethane)	mg/L	10^	<0.020	12
Dichlorobenzene, 1,2-	mg/L	20^	<0.050	2
Dichlorobenzene, 1,4-	mg/L	0.5 ^A	<0.050	5
Dichloroethane, 1,2-	mg/L	0.5 ^A	< 0.050	14
Dichloroethene, 1,1-	mg/L	1.4 ^A	<0.020	54
Melhyl Ethyl Kelone (MEK) (2-Butanone)	mg/L	200 ^A	<1.0	15
Melhylene Chloride (Dichloromethane)	mg/L	5^	< 0.20	29
Tetrachloroethene (PCE)	mg/L	3^	< 0.020	-
Trichloroethene (TCE)	mg/L	5 ^A	<0.020	-
Vinyl Chloride	rng/L	0.2	<0.020	

Notes:		
O Reg 3	47 Sch 4	Ontario Ministry of the Environment
9		MOE O Reg. 347 of R.R.O. 1990 - Schedule 4 - Leachate Quality Criteria
6.	5 ^A	Concentration exceeds the indicated standard
15	2	Measured concentration did not exceed the indicated standard,
<0	03	Analyte was not detected at a concentration greater than the laboratory reporting limit
n	fv .	No standard/guideline value
	1	Parameter not analyzed / not available.
NF	/NI	Non-flammable and non-ignitable

8 0 7 1 7 1-Now-24 QC-2 2.3-2.9 m STANTEC BV CATBSAT AACTRESS Field Duplicate 1-Mov-24
MW7-4 Lab-Dup
2.3 - 2.9 m
STANTEC
BV
CAYNEG1
AHZRS8
Lab Replicate # 5 to 1 7.46 1-Merc-38 Merc-38 53 - 6.1 m STARTIC BV CONMENT A-CINE 1 Mon-28 MM6-5 3 - 3.8 m STANTIC BW CATEGOT AHCRST 7.39 28 E . . # 4-Nov-24 QC-3 3-3.8 m STANTEC BV CALSOON ACCOST MWS 4-Mov-24 MWS-5 3-3.8 m STANTEC BV C4Z0005 AICG80 4-Nov-24 MWS-2 0.8 -1.5 m STANTEC BV CAZD005 ANCG78 31-Oct-24 MM44 STANTEC TW COTHER! A-COM S3-6-1 m S7ANTEC BV CATTERN AHZYSS 31-0c134 wwts3 3-3.8 m 31-3.8 m 51-3.8 m 51-3.8 m 51-3.8 m 51-3.8 m 51-3.8 m 61-3.8 m 61-3.0 31-Oct-38 WW3-4 23-3 m STANTEC BV CATMB41 A-PZRS4 18010 MAY-S LIE-DIN 34-37 m STANTEC BY CAYSTAT ANYPSA MWZ 28-Oct-24 MWZ-5 31-37 m STANTEC BV CAWEAL 8 9 **1 = 1** ZB-Oct-24 MW2-1 0 - 0.6 m STANTEC BV CAY6747 AHVP83 29-0ct-24 MW1-5 3-37 m STANTEC BV C4Y8747 AHVP82 29-Oct-24 MW1-2 0.B - 1.4 m STANTEC BV CAY6747 AHVP81 0.051⁴ 0.7⁴ nv 5 B/gu Ug/g mS/cm % F1 (OS-C10 range)
F2 (OC-C10 range)
F2 (>C10-C16 range)
F3 (>C16-C34 range)
F4 (>C34-C50 range)
F4 (>C34) Gravimetric

Table III
Summary of Soil Analytical Results
Phase II Environmental Site Assessment
23 Brock Street West, Uxbridge, Ontario
Township of Uxbridge

1-Nov-24 MW7-7 Lab-Dup 4 6 - 5 2 m STANTEC BV CAY8641 AHZRS7 Lab Replicate

	cal Results	Site Assessment	cbridge, Ontario		
Table III	Summary of Soil Analytical Results	Phase II Environmental Site Assessment	23 Brock Street West, Uxbridge, Ontario	Township of Uxbridge	

State Decided Decide	0 0.0 m structure and structur	MWD3 MWD3 MWD 3 31-17 m 3 57AMPC 8 W COWMA? AHVPB4 Lal	31-17 m STANTEC		_							Tanki.					1-Nov-24
Elydrocarbons Children C		- 11					_			200	WW6-5		MW7-4	MW7-4 Len-Dua	00.2	7-7WM	*
Units Control Scale			_	STANTEC ST BV CAYMAT C	STANTEC ST BV CAYPERT C	STANTEC STA	STANTEC STANTEC STANTEC STANTEC STANTEC STANTEC STANTEC STANTEC STANTECT ST	STANTEC STANTEC SEV CATOONS	3-14m STAMPEC BV C4Z0005	3 - 3.8 m STANTEC BV CA20005	STANTEC BIV CAYREST	5.3 - 5.1 m STANTEC BV CATES41	2.3-2.9 m STANTEC BV CAYBS41	23-24 m STANTEC BV C47881	2.3-2.9 m STANTEC BV CAYB641	46-52 m STANTEC BV C4YB641	EC STANTEC BV 81 CAYB641
alic hydrocations	90000 900000 900000 900000 900	N. N. 1 100								AlCG81 RPD eld Duplicare (%)			AHZR58	AHZR38 Lab Rephcate		(%) AHZI	
Compound	00000 000000 000000 000000 000000 000000																
Compounds 10 10 10 10 10 10 10 1	900000 900000 900000 900	0.5		12 0030		0040		5000			COD C		900		2000	DE - CODE	9.9
Compounds	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			20000		0.00%		2 00 00			0.000		0.051	: 1 :	00000	2 00	2 9
Compound Compou	0 0000 0 0 0000 0 0 0000 0 0 0 0 0 0 0			00000		0.15		et o			0 072		021		710	20	9
Compounds Comp	6 0000 6 00000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 00000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 00000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 00000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 00000 6 0000 6 00000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 00000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 00000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 00000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 0000 6 00000 6 0000 6 0000			1100		0.16		0.10		2	0.077		0.34		-11.00 MZ	21% <0.00	9
Compounds	0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000			9074		0.20		230			0 088	1	0.35		0.41	16% deg	g
Compounds 1 1 1 1 1	0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000		1	(6000)		0.085		2.0			0.075		0.24	8	0.34	nc <0000	9
2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 0000 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0			100000		0.061		0000			0.035		0 12		210	90	8 1
Control of the contro	0 0000 0 0 0000 0 0 0000 0 0 0000 0 0 0000 0			9 10 10	,	0.15		200			/9000	572	0.18		710	0 0	8 9
(5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	0 000 0 0 000 0 0 000 0 0 000 0			2000		0.40		639			023		038		0.33	17% <0.00	8 8
Cet - (rems) 10 cm	40 7286 40 0000 40 0000 40 0000 40 0000	. 10		00000		0.044		0000			0 033	J	<0.050		>0 050	nc (0,000	2
1089, 4 (407) 1089, 4 (408) 10	0 0000 pp 0 0 0000 pp 0 00			estate		0.090		130			0.073		0.23		630	DO NOT	8
0.05	0 0000 p			10001		0 030		4007	-		0 037	5%	C0071		12005	000	F.1
Control (control (con	90000			00000		2002		0000			500		00000		100	200	8 5
Control (1972) (12) (12) (13) (14) (15) (16) (17) (18) (1				00000		6200		2000			0.016		<0.050		×0.050	00	8
100 C C C C C C C C C C C C C C C C C C	421000	7	4.5%	9000	2	0.39	-	20	-		031		021		0.17	D 00000	8
(ce - tars)	-0000 th-			0001		223	-	60%	-		0 18	300	0.39		0.38	3%	8
12 (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		10.00	-		į	ŀ	200		da.O.	2000	60.00	ŀ	00.00	ŀ	00.00	100	
	Ò	900			L	į	0.000	000	<0.040	<0.040	<0.040		<0.000		0 040	00	9
CC - (rems)		ů,	,		_		0 0 40		<0.040	<0 D40	<0.040		<0.040		<0.0411	30× = 34	9
(2)		9 9	c i		_		0 040		0000	0000	<0.040		40 040		0,000	9 0	9 5
(5)		900			_		0000		<0.000	<0.000	<0.040		<0.040		<0.040	-00 -00	10
		900	-		_		0000		c0 040	0000	<0.040 -0.040		<0.040		<0.040	P.	0 9
		9 9			_		0 0 0 0		<0.040	<0.040	<0.040 Q	<0.0040	<0.000	1,70	0 D40	00000	9
		8			_		0 040		<0.040	<0.040	<0 040		<0.040		<0.040	000	00 :
	7	9 9			_		:0 D40		<0.040	0 0 0 0 0	0000		<0.040		40 D40		0.0
	4	40.040			_		0 040		<0 040	<0 040 P	<0.040		<0.040		<0.040	00>	90
		8000	- 1		_		0 049		<0.049	0000	0 049 0 040		<0.049		0 040	# #	65 CF
000 000 000 000 000 000 000 000 000 00		0000	1.5		_		0 040		<0.000	-0 040 O-	<0.040		<0.040		<0.040	000	0)
		9000			_		0 040		<0.040	c0 040	0000		0 040		<0.040	# #	40
200 200 200 200 200 200 200 200 200 200		9000			_		0.050		<0.050	05000	<0.050		<0.050		<0.050	10>	900
\$00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5000			_		00 030		<0.030	<0.030	<0.030		<0.030		<0.0343	<0.030	30
0005 A 200 B 30		0000		7/	-		0000		<0.040	<0.040	<0.040		00040		0 040	-0.040	40
0.05		0000			_		10 040	4. 1	<0.040	0000	2000	0	40 040		00040	9 6	000
0.55		9	ò		_		<0.40	,	0.40	<0.40	99	ſ	<0.40		40 AC	9	
0.05		9	į.	17.	_		<0.40		<0.40	<0.40	<0.40		<0.40		<d 4c<="" td=""><td># #</td><td></td></d>	# #	
0054		8 9		-	_		0.0040		-0.000	0000	0 040		<0.040	4	40 040	9 0	40
yac c		8 9			-		0000		<0.049	<0.040	0000		<0.040		<0.043		40
oroethane 1112 005*		8 9	(r		_		<0.040		C0 0%0 C>	<0.040 0>	40 DAG		<0.040		<0.043	0> 34	40
0.05		900		7.	-		-0.040		<0.040	<0.040	O D4C		0 040		<0.043	2	40
9		0000	2		_		CD 040		<0.040	<0.040	0000		*D D40		0000	9 0	40
*\$000		8	-				<0.040		<0.040	<0.040	×0.04C		<0.040	Ó	<0.043	0>	40
v800		9 9	-		-		0000		<0.010	0000	2000		0100		40013	2 1	10
		0000	- 1		-0.04C	<0.000	<0.040 40.040 40.040	128	-0.040 -0.040	0000	4004	10040 10040	40,0%		4000	2 2	eton.

25/4 (2014) HENDING AND ADMINISTRATION OF THE PROPERTY OF THE

BH11-8 53-81m STANTEC BV CANTEN AHZSOS BH11-5
31-0ct-24
BH11-5
338-4.6 m
STANTEC
BV
COTTENT
AHZRE1 9 8 2 2 8 2 5 **5 = 3** 31-0ct-24 BH11-2 0.8 -1.5 m STANTEC BY C478541 AHZR58 21 21 30 30 3-37 m STANTEC RV CAVE747 AHVPS1 30-Oct-24 MWB-13 10.7 - 11.3 m STANTEC BV CAY6747 AAVP90 59-00-24 MW9-10 MW9-10 59-7-5 m 57-7-5 m 57-7-5 m 69-7-5 m 69-7-5 m 69-7-7 m 69-7-7 m 69-7-7 m 69-7-7 m 7.33 <001 28 30-Oct-24 MW9-6 3.8 - 4.4 m STANTEC BV CAYBT47 AHVPRS 30-Oct-24 mm+5 3-3.8 m STANTEC UV COTESTA AHVFB SOCIAL BISS STANTEC BV CANVOIR Section 46-53 m STANTIC BY CANUST BOCKAN BRILL STANTEC BV CAYBULE AHVQ16 BHB-4 33-3 m STANTEC BV CATTORIA ANVQIS BARS 3-48 m STANTEC BY CANSIAL ANNEZ BH8 30-Oct-24 OC-1 Lab-Dup 15-23 m STANTEC BN BN CQ 7817 AHVP96 Lab Replicate 15.23m
15.23m
15.23m
2001
16.23m
2001
17.020
18.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020
19.020 766 <001 030 30-0ct-24
15-23 m
STANTEC
BY
CAV6747
AHVPBS
Lab Replicata # 50 30-0ct-24 8HB-3 115 - 2.3 m STANTEC BV CAY6747 AHVPBS 7.59 <001 0.28 13 39-0ct-24 III-62 0.8 - 1.5 m STANTEC BV CAYST47 AHVQ14 30-Oct-24 BHB-1 0 - 0.8 m STANTEC BV C4Y6747 AHVQ13 0.051* 0.7* 0.7* Units

Table III
Summary of Soil Analytical Results
Phase II Environmental Site Assessment
23 Brock Street West, Uxbridge, Ontario
Township of Uxbridge

Sample Location	_	_	:					BHB						_		WW		_	-	BH1	
Sarrybie Darte			30-051-24	30-000-24		30-OCC-24	30-001-24	200											-	31-06-24	31-00-24
Sample ID				BHB-2			Ž	oc-1 La						_					-	BH11-6	BH148
Sample Depth Sampling Company			0-08m STANTEC	0.8 - 1.5 m STANTEC			15-23 m STANTEC	STAND						_					-	38-4.6 m STANTEC	53-61m STANTEC
Laboratory Laboratory Work Order Laboratory Remails ID			GAY8747	EV C4Y6747 AHVD14	CAY6747	EV C4Y6747 AHAVPRS	EV C4Y5747 AHVPRS R	BV CAYS747 AHVP36	TAT CANDO	TO CANDO	DES CAPETO	AND CAMPA	AMOUNT	BV CAY6747	47 CAY6747 AHUPRS	67 C4Y6747	GAY6747 AHVP90	CAY6737	CAYB641	EV C4Y8641	EV C4YB641
Sample Type	Umrts	Ontario SCS				_		(%) Lab Rep						_				_	-		
Polycyclic Aromatic Hydrocarbons																					
Aconspirorene	201	2000			0.27	,	ia	200				+500	9		96000		0	99000	(\$000 D)		6
Activaphthylene	ş	0.093*		11	0.12	0.	EN	ž) :				40.05	20		9,00	11.		0.000	<0.0050		
Anhracene	Ş	0.22"			150		15	24%				40.00	00		500			0000	<0.0050		×
Serizo(a) antinadene	9	950			2 1			222			15	40.00	8 8	0	2000			100	50.0030		
Describition of the Person of	ş i	4. ZP U			1			N 12 12 12 12 12 12 12 12 12 12 12 12 12	154			05000	3 58		2 0	77		000	090000		21.0
Secretary and a secretary and	100	4890			0.00	,	Ą	%g:				0000	2		0,0	,		9000	00000		
Benzo(k)flucranthene	3	0.48*			0.00		2	18%				40 0°	95	1	4600			/S000	<0 DOS(1)		
Chryseræ	ş	2 B*			1.1	10	П	57%				<0.000	05		1900			2100	<0.0050		
Dibenzo(a h)anthracene	ĝ	D 14		n	0.26	-/	R	31%			100	<0.000	99		0,000	-		0×00 0×	<0.0050		
Fluoranihene	ş	0.68			1	,		25%				0000	99		020			0.043	<0.500 0>		
Flucrene	ğ	0.18			1			17.8				000	7 .		100			0.0054	<0.0050		
ingenot(2 3-cd)pyrene	6	0.23		4			t					9 6	3 2		1000			1000	- 200G		
Methylnaphthalene (Total)	ş ş	2 d c			0.00			26.	(0)			38 0	. 50	Ų.	1000			04000	<0.0050	co	0
Methylpachthalene 2-	1 8	v. 55 0			0.30			76				2000>	8		421009	. 9		050000	<0.0050		
Naphihalene	Ş	,s00			0.004			12%				<0.000	50		0.000			O#00 0>	<0.0050		
Phenarihrene	ş	,59 C		e e	122		S	24%			-14	<0.00	50		212	M.		0.02=	<0.0050		
Pyritore	ş	1			27.5			28%		4		<0.00	20		120			0 003	<0.005)		
Votatile Organic Compounds																					
Accione	201	-\$0							20								40.43	<d 48<="" th=""><th></th><th><0.49</th><th></th></d>		<0.49	
Bromodichicromethane	Ş	0.05^4							9	y				0	9		40.040	0000	S	<0.040	
Bromstorm (Tribromomethane)	Ş	0.05							0 1	Q.I							0000	0000	4	<0.040	3
Carton Tatrachicute (Tatrachicus)	Ş Ş	, so o							900	2.0					59		2000	2000	-2	40 040	81
Chlarabenzene (Monachidrobenzene)	9	450 0							0	9				Ta			09000	0000	15	<0.040	
Chloroform (Thehloromethane)	ş	0 06A							100	9	Gi Co		ū				40.040	0900>		<0.040	
Disramochloromethane	Ş	900	27						9	g i							2000	0000		0000	1)
Dehlardenzene 13	Ş	, so c							9 9	7 9							3 0	9		-0 D40	
Dichlorabenzene 14-	ş	4900				5			0.00	g							0,000	0w0 0>		<0.040	
Dichlarodillucramethane (Freson 12)	ě	0.05*							900	9				4			0000	0000	7.7	<0.040	30
Ochlorosthane, 1.1-	Ş	0000				51.5			8 8	Q II							and o	9 9	11.4	<0.040 <0.048	
Donjorgithere 1.1	5 5	, so o							ô	0							0000	0.000		<0.040	
Dichloroethene pis-1.2	ş	0 05A							000	9	(6)						9	0000>	-	<0.040	
Dichloroethene trans 1.2.	Š	vs00				ň		4	V.	91						Z.	900	0000	î	<0.040	
Deblerographe 13 (sum al somes as - (rang)	\$ 5	, o o							7	7 9						58	989	9 9		060 0>	
Dichlaropropene as-1,3-	ğ	* 5							9	8		6		10		i.	00000	00000	S E	0€0 0>	S.F
Dichloropropene, trans-1,3-	ş	4 15							900	g	2	1					900	0w00>	i.	<0.040	
Ethylene Objornide (Dibromoethane 1,2.)	ş	0.06*							0	Q.		*6					9	0000		<0.04D	
Немале (п-нехале)	5	-900							400	2.0							1000	9 9		0,000	
Merinal Jodes As J Kelong Million	g i	1000					112		70) 19		-04					9 9	9 9	1-3	0,0	
Mercy School News (N. 18)	9	500	10			è			9	0							0000	0-00	Se	c0 040	
Methylene Chloride (Dichloromethane)	3	450 O							9	10							6700	<0.00>		<0.049	
Styrene	ğ	0.05^							9	9							0000-	9000	0	<0 D4D	000
Tetrachloroethane 1.1.1.2-	ğ l	0.05							000	9 10							10,000	9 9 9		40 D40	000
Telephone has (DOF)	į į	0.05							9	2.9		13					900	9 9		<0.040	0
Trichlorethane 1.1.1	3	000		72			7.º		9	9						8	0000+	0-00>		<0.040	
Trichloroethane 11,2	ş.	0.05	ŭ						9	93							0000	9000		<0.040	
Trichlorelthere (TCE)	ş	000							0000	2.0							0000	0000		<0.010	
Inches did some change (Present 11)	100	,000		12		7	97.5		P	2		.5			16	ii.A	*00.0	0.000		40010	
The same of the sa	-																				

Table III
Summary of Soil Analytical Results
Phase II Environmental Site Assessment
23 Brock Street West, Uxbridge, Ontario
Township of Uxbridge

Table III Summary of Soil Analytical Results Phase II Environmental Site Assessment 23 Brock Street West, Uxbridge, Ontario Township of Uxbridge

The control of the	Sample Location Sample Date	_		31.0036	MW12 31-Qet-24	31-04-34	31-Oct-24	33-061-24	31-Oct-24	31-00:34	31-041-34	31-00134	31-0ct-24	31-Oct-24	BH13 31-0ct-24	31-0:1-24	31-0ct-24	31-004-24	31-Oct-24	31-Oct-24	31-00-31	31-Oct-26
1	Sample iD Sample Depth Sample Company Liboratory Work Order Liboratory Work Order Sample Type	4	Ontario SCS	MWT2-2 BB-12-3m MTANTEC BV CATSE41 AHZE63	4.5 - 6.5 m STANTEC BY CATEGAL AHZR64	S.3 - 6.1 m STANTEC IN CATIENT AHZINES	MW12-8 Lab- Dup 53-8.1 m STANTEC BV CAYB641 AHZR65 Lab Rapilezbe	8-15-0 8-15-m stantisc By Corrisers	BH13-4 B18-1.4 m STANTEC BV CATEGA1 AHEBA1	15-21m STANTEC BV CAYBERT ANCEST	23-25 m 23-25 m STANTEC BV CAMBA1	Bup Dup 23.23 = STANTEC ENTER ACESTS Lub Replicate	BH13-5 3-38 m STANTEC BV C4Y8541 AHZR66	BH13-5 Lab- Dup 3-38 m STANTEC BV CAYB641 AVZR65 Lab Replicate	3.8 - 4.4 m 3.8 - 4.4 m 3.7 ANTEC BV CAY8641 AHZS20	846-52m STANTEC BV CAYB641 APCS21	S1-53 m STANTEC BV CAYBS41 AHZS22	BH13-9 6.1 - 6.7 m STANTEC BV CAYB641 AHZ323	BH13-8 Lab- Dup 61-6.7 m STANTEC BV CAYB641 ANZSZ3 Lab Replicate	78 - 82 m STANTEC C478641	BH13-10 Lab- Dup 7.6 - 8.2 m SYANTEC BV CAYB641 AH2524 Lab Rapilicata	BH13-11 84 - 9 m STANTEC PN CATACAL AHZSZE
10 10 10 10 10 10 10 10	meral Chemistry																					ı
19 19 19 19 19 19 19 19	Available (CaCl2) pH	SU	* 100 miles	3.70			3.6	181	25.	١.	741	٠	733		122	2.63	7.85	7.80		282	2	178
1	Cyanide (Free)	9/5/1	0.051	500	9	7	-	100	1001		#0 0>	9	<0.01		4000	100>	<0.01	<0.01		<0.01	4	00 0√
1	Electrical Conductivity, Lab	mS/GH	0.7A	22.		3.6	3.6	0.76	074		をおりません	**	0.35	-	から ない	0.27	0.15	0.10		110	11.0	0 12
14 15 15 15 15 15 15 15	slure Cordent	76 Tone	è %	2 1	2	2.		: 1:	3.0		25		26		z z	K E	20	6 44 678	#	15	2.	20
10 10 10 10 10 10 10 10	EX and Petroleum Hydrocarbons									П												
10 10 10 10 10 10 10 10	brzońe	5/61	-000	+	<0.020	<0.0060		<0.020	020.0+	+0.000	*0.000		<0.0000		0000+	0800	5000	9000		9000		4000
March 1985	Toluene	0/01	0.2^	9	<0.020	<0.020	100	<0.020	*0.000	<0.020	<0.020	9	0.00M		<0.020	<0.020	<0.020	<0.020		<0.020		<0.020
1999 1,	ibenzene	0,01	2002		0.0000	<0.010	10	<0.020	40.00	<0.020	<0.020	6	C1.0 O1))	<0.020	<0.020 d≥	<0.020	<0.000		<0.020		<0.020
10 10 10 10 10 10 10 10	78 F P	5/04		2	<0.040	<0.020		<0.040	0000	<0.040	<0.040	à	40.000	×	<0.040	<0.040	<0.040	<0.040	-1	<0.040		<0.040
10 10 10 10 10 10 10 10	0 90	D/On	2		<0.020	<0.020	51	<0.020	9	<0.020	<0.020 0.020	22	<0.020	63	<0.020	<0.020	<0.020	<0.020	E	<0.020	100	<0.020
1	res drai	9	9 <	20	4U DAD	4U UZO	23:	40 040	9	<0.040	<0.040		9000		<0.040	<0.040	0000	<0.040		<0.040		<0.000 pq
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	F1 (CATCLE) range) mixter BTEX	200	7 4		7 5	410		000		9 5	0 0		2 5		0 5		2 5	0 0		100		5 5
1971 1972	FZ (>C10-C16 (anore)	0/00	V""U	N.	47 B	47.0	<7.0	<7.0	D	<7.0	0.4	- 11 -	9.79	C	012	012	c7.0	47.0		27.0		200
17 17 17 17 17 17 17 17	-2 (>C18-C34 range)	pjan	240.4		17	9	95	GS CS	9	1000	1004		8		130	3604	049	049		5 5		CF2
1970 170,	=4 (>C34-C50 range)	0,01	120,10^	10	99	99	95	1707	2	120	4004		210*	100	120	-007	950	050		8		9 99
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	F4 (×C34) Gravimetric	5/dri	120 ₈₁₀ ^A					,		1,300*	1,000,1	1,600		,		-002						
13 127 127 128	managem to believe at C50	1000	100		Will	958	154	x68	100	NO	0,0	-	YES		854	O.	534	YES	1	YES		#Bu
17 17 17 17 17 17 17 17	als														The second second	100000	111111111111111111111111111111111111111			1000		
2017 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pry	r P	, c.	0.22		8	70	<0.20	020	40 20 	0.85	*1	0.39	*)	23	8	22.0	020		200	¥0	929
1,	20 E	\$ 1	78.	77				5 4	28	37	0.0		- 6	100	5	7.1	a 2	18		را ت 1		410
	E 21	9	25,	0.26				<0.20	0.28	0.26	0.38	,	0.20		<0.20	8 20	<0.20	<0.20		<0.20	2	9 29
15	-	Š	36,14	<50			(1)	999	<5.0	<50	6.0		11		6.8	0.5>	0.50	<5.0	v	<50	12	450
17 124 125	n (Avariable)	8	1.5 _{g18} A	0.36	4			<0.050	0.18	0 10	0.80	8	990	9	0.68	0.29	<0.050	<0.050		40 050	ì	<0.050
Page	שחוו	ş	1,2	024	80.		N	of 10	0 11	d 10	0.33	**	3.0	×	0.34	ot 0>	<0.10	<0.10		<0.10	Ä	0100
1	min m	Ş	70.	7. 0		7.		0 6	y 6	7 6	4 0	•	0 0		- 07	1/	U 6	500		in q		60
1	minm (nexavalent)	1	924	1 10			- 33	200	5 61	0 0 0	4 5		25	- 1	2 2 2	23	9 6	0 0		0 0		0.10
17.27	BL	ş	26	57 10			X.	4.7	99	4.5	59	58	60	31	4	60	43	10		4.7		4
Column		8	1204	70	1	1		12 12	9.6	8.4	2000	5	2000	E	1001	12	2.4	16		1.7		1.9
mm very control	nry	ş	0.27^A	0.068			0	<0.050	<0.050	<0.050	0.77	100	ğ	00	.00	0.20	090 0>	<0.050	¥	<0.050		<0.050
15	bdenum	8	24	<0.50		*		<0.50	<0.50	<0.50	9	-	<0.50		05 0>	020	050	40.50	, 1	<0.50		<0.50
10 10 10 10 10 10 10 10	I A	\$ 1	28	20 60		111		25 G	9 60	50.50	1180	- 1-	50	1)1	8 6	a C	27	e co		4 6		980
off 1 Construction	10000	3	1 10	<0.20 <0.20	4		3.5	<0.20	<0.20	<0.20	0.30	1,5	1	/AE	A. 10. 15.	<0.20	0.20	0 20 50		0.20		40.20
25 044 050 053 053 0.47 055 041 055 052 0.47 056 041 055 052 0.42 041 055 053 041 055 052 042 042 042 042 042 042 042 042 042 04	Thallium	300	ų.	9500		5	52	090.0>	0.058	0.050	0.17	*	0.094		9/00	<0.060	<0.050	050 0>	1	<0.050		<0.050
55 A5 A	EQ.	Š	25	0 44		*	3	0.40	0.33	0.39	0.42	*	0.37	×	0.36	0.41	0.65	0.52		0.42		0.48
	dom	5	20.07	8 8				9 5	24	3 2	240		*700		-00-	0 \$	n e	2 6		2 5		9 .

The content part The content	Sample Deta	-	31.06134	35-001-24	150038	21 Cat 34	11-06134	150648	31-00:36		MACHINE LED	10013	31.00134 8H13-5 Lab	31-001-38	35-001-06	11.08124	31-0G-24	31-Oct-24 BH13-8 Lub-	31-0ct-24	31-0d-24 EH13-10 Lab	31-04-24
					53-61 m STANTEC IN CONTRACT	Dup 53.61m STANTEC W CANBAIL	0-06 m STANTEC BV CATEGO	0.8 - 1.4 m STANTEC W CAYB641	15 - 2.1 m STANTEC IIV GAYBELL ANCESTE	23-28 m 17ANTEC 8 P (2478641 1402319	Dup 23-29 m STANTEC BV CAYBAT ALCON	3-38m STANTIC BY GYTELI AHCHES	Dup 3-38 m STANTEC BV CAYMAI ANCHA	STANTEC BV CAYBAN AFCESO	4.5-5.2 m STANTIC BV CATEMI AHZS21	STANTEC BV CAYBEAN AHZSZZ	BL-13-8 BJ 6.7 m STANTEC N CATEGRA ANZEZ	Dup 6,1 - 5,7 m STANTEC BV C4Y9641 AHZS23	PA-12m STANTEC BV COTEMI AHZS24	Dup 76-82 m STANTEC BV CAY8841 AHZ324	E4+3m STANTEC BW Corners AMERIK
1		nits Ontario SC	2			Lab Rapilcata					Lab Ruplicada		ab Replicate					Lab Replicate		Lab Raplicate	
Compounds		H																			
The components of the componen		_	0900			- Ca						0.00	- 1		- ,						- 11
The control of the co		_	<0.050									<0.050									
The property of the property o		_	<0.050				S					0.16									
1		_	<0.060			S	54	à				0.18		14			<u> </u>				
Compound			0.058	10		X.	97	V		20	3.0	0.24			2	×	i.		93		
The components of the control of the		_	0000				y				Ž,	012							,		
Object Compounds Object		_	40.050					EA	. 11			0.00		5		-					
1987 1987			-0 020			0	25					00000		515	6.5						
19 19 19 19 19 19 19 19			0.072	X		į.	80	Y	V	Ç.		0.26									- 2
### 0.527		_	050 O>									<0.050									25
### 0594, 4-0001 ### 0594, 4-0001 ### 0595, 4-00000 ### 0595, 4-00000 ### 0595, 4-00000 ### 0595, 4-00000 ##		_	<0.050			Į (7:		110			97	100	c			Y	
		_	40071			i.				2		9007									
			0 090 o>									9000									
4 1000		_	<0.050				-					<0 ((50			1						
200			og 090				i d			15		0.24			-						
		4	0.074	×			÷	-		-		000			÷	×	×	×	Ü		1
		1																			
					<0.48							00.00				10.1					
		_			0 D40							0 040				,		- 1			
		_			<0.040	Ä						<0.000									
Party Party					0000							0000				,			4	1	
					0 040			0				0000				.,		()	. 1		
	a		-11	00	<0.040	ı	140		1	2	ŭ	<0.040	,			96		00			
		_	,		00040							0.040									
			-		<0.040							<0.040			58						
200 Property of the control of the c				Ġŧ.	<0.040	0			w	v.		<0.040	ř			2					
		-	5/1		0,000)e (00000 00000									
0000 0000 0000 0000 0000 0000 0000 0000 0000		-			°0 040		V					<0.040									
0000 0000 0000 0000 0000 0000 0000 0000 0000		-	-		-0 DAO							<0.040				4		3			
		-			40 040 0 040	0		a		2.5		00000				500					
					090.0>	(11		25				<0.050									
		_			©€0 0>	0	è	×		2	25	<0.030 -c0.030									
		_	5		<0.040	(0)	(4)		000	740	7.5	<0.040	II.	w.		40.				42	
0000 0000 0000 0000 0000 0000 0000 0000 0000			4		0040	4			4			0000									
			0.2		07-07	())	633					40 40				. 73	0	0			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					40.40							<0.40					o				
The continue (Continue Market)					<0.040	00			9	ï		<0.040				10	100	10	10	25	
11 2 2 2 2 2 2 2 2 2	ne Chloride (Dichloromethane)		51.5		0000							40.049 40.049				19					
000 000 000 000 000 000 000 000 000 00	aroghane 11.12				00000							AD 1340									
(000) (000)					<0.040			i.				<0.040									
(Feor 11)				9.	0000		(4)	ă.	10.		0.0	0,040				15	je.	((-			
(Fleen 11) 1999 1025 0000 0000 0000 0000 0000 0000 0000	71.2				<0.040	0	-					<0.040								100	
(Freon 11)			**		<0.010			-				<0.010		77							
	(Freon 11)	_	4		0000				· ·			<01040			1		,				

Table III
Summary of Soil Analytical Results
Phase II Environmental Site Assessment.
23 Brock Street West, Uxbridge, Onfarro
Township of Uxbridge

Table III
Summary of Soil Analytical Results
Phase II Environmental Site Assessment
23 Brock Street Weet, Uxbridge, Ontario
Township of Uxbridge

Protects Sea Councy Water and Sealment Standards for the under Part XVI of the Environmental Potestion Act (MOE 2011) Sea Condition Standards (SCS)

1 between the Protection Standards (School Protection Community Property Use

1 between the Protection of the condition of the Condition Standards (SCS)

2 between the Protection of the Condition Standards (SCS)

3 between the Protection Standards (SCS)

4 between the Protection Standards (SCS)

4 between the Protection Standards (SCS)

4 between the Protection Standards (SCS)

5 between the School Protection Standards (SCS)

5 between the School Protection Standards (SCS)

6 between the School Protection Standards (SCS

N N N N N N N N N N N N N N N N N N N	Summary of Groundwater Analytical Results	Phase II Environmental Site Assessment	23 Brock Street West, Uxbridge, Ontario	Township of Uxbridge
Table IV	Summan	Phase II	23 Brock	Township

Sample Data Sample Data Sampling Company Laborationy Work Order Laborationy Sample 10	Units Onlaws \$65	MAY I	AMERIA AMERIA AMERIA AMERIA AMERIA	NW3 PWE-M INV STANTEC BV CAZ1246 AIFD18	STANTEC BV C421246 AIFD23	MW4 S-Mov-24 G-C-01 S-T-ANTEC BV C-4Z-1246 AIFDZ4 Field Duplicate	6-Nov-24 MW5 STANTEC BW CAZ1246 RPD AFD25 (%)	MWS -24 G-Nerv-24 5 MWS Lab-Dui FEC STANTEC INV	5-Now-24 NWS N STAMTEC BV CAZ1246 AIF-Z0	S-Nev-M MW6 Lat-Dup STAINTEC N CAZ12-16 A F Dub Lab Ru pi cata	S-Nov-24 NWF STANTEG IIV C427348	ENOU-24 ENTS STANTEC IN DECT-266 AUFO28	S-Nov.24 INTRIB STANTEC IN CACTOR AIFD27	MW12 6-Nov-24 MW13 5TANTEC W C4Z1246 AJFODN	6-Nov-24 - NO C-Nov-24 - No C-	F.Na21 STATES STANTEC BV C421246 AIFF00 Lab Rapheata	6-Nov-24 TRIP BLA-W STANTED BV C-42/1244 AIFD3C Trip Blark
General Chemistry									-								
Ower	D 1	\$20	2300	400	1,700	1,700	089 %0		4,239*		e.600°	430	2300	38		- 1	100
BTEX and Petroleum Hydrocarbons	1	$\frac{1}{2}$															
Between	**		421)	.0.0	090	980	L		633	53		401	-631	-240	634	480	454)
Tolueno		_	0.37	0.20	020	051	_	0.4	0 23		40.20	13	0.20	0.00	\$ 5 5 5 7	0.20	0.20
Ethylachzane	ugh. 24°	_	40.20	9 20	D 28	870		D. F	150		2 6	979	0.20	2 5	4. 20 4. 20	0.20	40.20
Ayene as a	Till Till Till Till Till Till Till Till	\$0.20 \$0.20	0.520	00.00	2.3	0.73	200		0.00		8 6	20.50	020	200	A 20	020	\$ 0.00 \$ 0.00 \$ 0.00
XMents Total	100/L 300.	A <0.20	0.22	9 20	2.5	2.5			0.41		<0.20	<0.20	<0.20	<0.20	<c 20<="" td=""><td><0.20</td><td><0.20</td></c>	<0.20	<0.20
PHC F1 (OS.C10 range)	7/8/1	625	<25	<25	30	36			₩		<25	<25	<25	425	25	<25	<25
PHC F1 (C6 C10 range) minus BTEX	µg/L 420,, ^A	_	<25	<25	26	32		31	Ą		<25	<25	<25	425	425	<25	<25
PHC F2 (>C10.C16 range)	µg/L 150,15	06> <30	065	050	08>	06	Q# 1		9 6	S .	089	080	06>	06	8 8		
PHC F3 (>C16 C34 range)	_		8 8	B 8	000 V	200	9.6		3 6	3 8	2027	9 8	87	000	200		
PHC P4 (SCS4 CSU range)	HB/L 500,10		*200	314	188A	854	2.2		拼涂	W22	100	- ACR	113	NES!	.834.		.6
Metals	Ц												0.000	1000			
Archidy	2000		_	0.002	2000	00000	900		00000		9 9 9	200000	400000	00000	6-7-1		
Argence	_	-	_	0.25	0.22	233	10		300		121	919	250	0.15	2	N	
	_	Ė	-	000000	*0.00040	-0.000vg	000>		<0.0020		00000	<0.00040	20000	<0.00040	2		
Baran	mg/L 5*	-	_	M00	920	8	94 00:		0.33	, e	039	0 0 0 5	0.000	0014	-		
Cadmium	mg/L 0.002	-	-	0.0000000	06000000	00000000	40 00 o	050	9000		-0.00045	0000000	00000000	05000000	,		
Chieffich	ug/L 75 ^A	-		050	40 50	959	0,00		<10 08		525.00	<0.50	90 00	×0.50			
Societ	mg/L 0.0038*	71000		0.00071	<0.00050	<0.00050	0000	A8904.0 0.9049 ^A	<0.0025		0.00427	<0.000050	6,000	05000 O>			
Coppe			_	0.00095	0600000>	-0.00000	2000		<0.0045		5000	080000-	-0,000	08000 0>	2	2	
1	mg/L 001'		_	40 00050	<0.00050 0.000 0.000	40.10	F 6		0 3>		299	00000000000000000000000000000000000000	*0.10	0.10	50)	111	1
Windows			_	0,0070	09000	2,000	500		<0.0025		00000	0.0021	00000	1900000	1		
1000			_	0.0015	<0.0010	41000	000		<0.0250		1000	00000	0000	0.0000			
Sense	mg/L 001	-		<0.0020	<0.0020	<0.0020	40 D		9000		20000	<0.00020	0000000-	<0 D020		is	
***************************************	_	_	E	280	1068	1000	150		2,700		3,500	220	120	in			ř
Trainer	™g/L 0 002^		*0.000000	×0 000050	-0.000000	00000000°	050000 o>	050000 0> 0500	0000		400000	<0.000060	*0.000000	<0.000050			
Current	mg/L 0.02	_	-	20000	0.00020	00000	000		40 CE 26		1000	sonnos	Control of	0.00000			
E	_	400000	\exists	0 00000	0000 E+	+0,000	AC +CD		600	1	40.05	-00000	40000	*0 0000			
Polycyclic Aromatic Hydrocarbons			-										-	****			
According	1000	0000	00000	<0.00 PSO	0.065	6500	0000	200	0 00	0.000	0.050	090 D>	0000	0900>			
Anthracene	No.	×0 D20 0×		<0.050	0.0	0.12	70>	99	0 00	0100>	<0.050	<0.050	0500>	<0.050			
Benza(a)ani/iramene		-	-	<0.000	<0.050	°0 050	no <01	99	9 1	00000	<0.050	090 6>	<0.000	<0.050 0.050	0		PC
Benzo(a)pyrene		_	_	0 00096	0,042	0.042	20.00		9.086	0,00	050000>	00000	40,000	25000			11
Benzo(bf)/lubranihans	70	_	_	9000	40,050	20020	200	8 5	5000	E 4	0000	05000	00000	00000			
Benzokkilucranibene	ua/L	_		00000	<0.050	<0.050	JO> 00	3	00000	<0.000>	090.0>	<0.050	0000	<0.050	10		
Chrysene		_	_	<0.050	<0.050	<0.050		9	<0.050	<0.000	<0.050	<0.050	<0.050	<0.050	=		
Obenzo(a h)anthracene	HBVL 0.2"	_	_	09000	0000	<0.050 0.20		0000	40050	080	9000	9000	98 9	9000			ri
Fluoratinene		_	_	0500	0.50	0.50		05	00.50	C 10 05	0000	<0.050	×0.050	00000	Di		1-8
Indeno(1.2.3 cd)pyrana	700	<0.050	<0.050	×0 090	<0.050	090 0>	nc <0.0	99	0.058	0.00.0>	<0.050	<0.050	°0 050	<0.050			4
Methyinaphinalene 1-	HQ/L	<0.050	_	<0.050	0.39	0.40	_	120	7500	0 00	<0.050	<0.050	<0.050 <0.050	×0 080	Ю		
Melhylnaphinalene 2*	Type:	90020	_	00000	0.29	973		0.050	5003	2000	40.050	050.05	00000	0000			100
Phenanthrene	1,000	-0 D30	_	<0.030	0.	10		30	1	1 34	- CD D30	KD 20 M	0000	<0.0030			
Person	2	TANKE .									a manager of		APPA PI	2000			

Table IV Summary of Groundwater Analytical Results Phase II Environmental Site Assessment 23 Brock Street West, Uxbridge, Ontario Township of Uxbridge

Sample Location	-		MW1	MW2	CWW		MW4		MIWS	4	MW6	News7	BEA15	MW10	MW12	- FELD	FIELD BLANK	TRIP BLANK
Sarrique ID to Sarrique ID	Units	S. S	STANTEC BV C4Z1248 AIFDZZ	STANTEC STANTEC BV C4Z1248 AIFD17	STANTEC BY C4Z1248 AFD18	MAYA MAYA STANTEC BV CACTAM ANYOZE	#Men-38 OC-01 STANTEG BV C427344 AFIDIX NF	EHONNS STANTEC BY OCTINE AIFDES	### 6-Nov-24 ###################################	STANTEC BY BY CALTER ANTON	S-Now-24 MWS Lab-Dup STANTEC BV C4Z1246 AFDZ0 Lab Raplicate	STANTIC STANTIC BY CALLISH AIFDZ1	6-Nov-24 MWN STANTEC BV CAZ1246 AIFDZ8	6-Nov-24 NW10 STANTEC BV C421246 AIFDZ7	6-Nov-24 MW12 STANTEC BV CAZ1246 AIFDZ8	6-Nov-24 QC-02 STANTEC BV C42/246 AFF 00 Field Blank	STANTEC STANTEC IV C421246 AFF00	6-Nov-24 TRUP BLANK STANTEC IN CCT146 AFDN Trip Blank
Volatile Organic Compounds																		
Agrant	LIGHT.	2,700"	<10	cto	13	<10	<10 n	0.010		:<10	,	410	QL>	195	ets.	410	049	657
Bromodichloromethane	hg/L	164	<0.50	950	<0.50	<0.50	40 50 n	oc 0>		<0.50		<0.50	<0.50	05.0>	950>	<0.50	050>	020
Bromoform (Tribromomethane)	1/2	254	<10	0.10	<10	0.15	<1D 0	410		010		40	410	40	410	<10	410	0.4
Bromomethane (Methyl bromide)	4	0.89*	0.50	0.90	0.50	0.50	050	0.50		<0.50		c0 50	<0.50	°0 50	<0.50	00.00	<0.50	05 0>
Calcott residentine (1 Estat not or net arre)		500	020	200	07020	02.00	020	20.50		40.20		40.20 40.20	¢0.20	22.03	200	<0.20	9 50	0.20
Chloroform (Trichloromidhane)	707	2.4A	<0.20	<0.30 MI	40.20	<0.20	<0.20	020		0.20	10	0.20	2020	22.05	20,00	20.0	2020	20.20
Dibrompohloromethane	1	75 ₄	<0.50	050	05 D>	<0.50	40 50	<0.50		00.00		<0.50	40 50 0 50	020	95 0	050	050	2 9
Dichlarobenzene 12	Hg/L	'n	<0.50	050	<0.50	<0.50	<0.50 n	<0.50		<0.50	60	<0.50	090>	<0.50	8	00.00	9	00.00
Ochlorobenzene 1,3	ž	28,	<0.50	05.0	<0.50	<0.50	n 050>	10 50 ×0 50		<0.50	0	<0.50	<0.50	<0.50	<0.50	<0.50	os o>	00 00
Dichlorobenzene 14-	ž	4_	<0.50	05.05	05.0	c0 50	-0 20 P	10 co	-	<0.50	2.5	o5 0>	05.0>	<0.50	<0.50	<0.50	<0.50	05.0>
Ochiprodifluoromethane (Freon 12)	MD/L	_	010	010	0.10	015	o10	o 10		<10	,	010	<10	<10	010	410	410	<10
Ochloroethane 1.1	5	_	<0.20	<0.20	CO ZO	<0.20	<0.20 n	<0.20		<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichibroethane, 1.2-	Z	_	<0.50	og D>	050	<0.50	-0 20 v	oc <0.50	7.	05 0>	7.	05.0>	99	050>	09.0>	05 D>	<0.50	<0.50
Dichloraethene 1.1-	ž	1.04	<0.20	×0.20	<0.20	<0.20	~0 20 u	<0.20	5	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichloroethene cis-1 2-	ž.	_	050	02.0	8	8	05 0	-0 20 PG		050		-0.50	05.0	05 05	×0.50	×0 50	<0.50	<0.50
Dishloroethere trans 1.2	100		020	020	0000	90	-C 20	0.50		0.00	7.	05 05	08	99 0	ô 8	×0.50	05 D	<0.50
Ochloropropane 1.2+	- P		0.20	40 ZD	40.20	<0.20	40 Z0	40.20		<0.20 <0.20		0.00	<0.20 <0.20	<0.20 <0.20	<0.20	<0.20	<0.20 <0.20	<0.20
Ocnidopropene 1.4 (sum of isomers as 4 dans)	4		90	2020	8 1	90	05.05	90 20		05.05		0.00	05 02	9500	0.00	<0.50	ă.	<0.50
Dichlaropropene ca-1,3	hBV.	-	09 09 09	<0.30	0 30	<0.30	-0 30 -0 30	c 030		oc 0 30	7	05 05	8	0.00	×0.30	<0.30	<0.30	<0.30
Dichloropropene trans-1.3-	- Jan	_	<0.40	<0.40	40 40	<0.40	<0.40 m	10 40 40 40 A0		<0.40	7	<0.40	°D 40	<0.40	¢0 40	<0.40	<0.40	<0.40
Ethylene Othromide (Dibromoethane, 1.2-)	Zi.	0.5%	¢0.20	<0.20	<0.20	<0.20	<0.20	- VO 20		<020		<0.20	¢0 20	<0.20	0Z D	<0.20	<0.20	<0.20
Hexane (n-Hexane)	i i		0.5	010	015	0.5	0.0	0 1	3.0	٠١٥ ١	7.1	0.0	0	0	010	015	010	c10
wenn kenne (men) (z-androne)	100	T, But	0.40) ¥	015	250	200	200		000		0.4	410	019	010 9	c10	010	010
Methy (ed bigs of below (ATDE)	gen	45	040	5500	0,00	0.00	900	900	77	200	01	2 5	200	7 9	7 9	7	7 9	0 5
Methylpoe Chlorde Christophane)		2 %	00	620	200	00	200	000		3 6		3 5	3 6	3 6	9 6	3 6	2 5	000
Styceon	901	_	050	0500	0500	0,00	0500	500		0.50		5 5	900	2 9	7 9	7 9	17.0	2 5
Tetrachloroethane 1.1.12	no/L		050	050	05.0	40 50 40 50	050	05050		9		05.00	6.6	05.0	8 0	8 5	3 5	8 5
Tetrachoostrave 1,123.	7/24	4.	40.50	<0.50 <0.50	<0.50	<0.50	050	<0.50	77	<0.50		0000	050	02.00	<0.50	09.00	9 9	25.05
Tetrachlorodhene (PCE)	ğ	164	<0.20	<0.20	<0.20	<0.20	-0.20	<0.20	:	<0.20		<0.20	<0.20	-0.20 -0.20	<0.20	<0.20	<0.20	<0.20
Trichlaraethane, 1, 1, 1	P/G/I	_	<0.20	<0.20	<0.20	<0.20	×0.20	<0.20		<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethane, 1,12	LIDA.		050	0 0 0 0 0	<0.50	<0.50	-0.50 -	c0 20		<0.50		op 20	00.50	<0.50	<0.50	05 05	-c0 S0	os 0>
Trichlarcethene (TCE)	Fg.	_	<0.20	°0.20	<0.20	<0.20	-0.20	<0.20		<0.20	,	<0.20	<0.20	<0.20	40.20	<0.20	PZ 0>	<0.20
rotadiogrammere From 14	Jan 1	_	<0.50	<0.50	02 02	<0.50	050	-CO 50		0.00		0.50	09.00	<0.50	<0.50	×0.50	05 0>	<0.50
A SALE COLOR	100	.50	<0.20	20.20	50.20	40.20	0.30	6.40		27 B		02.0	9.50	-0.55	<0.20	<0.20	<0.20	939

Table IV
Immary of Groundwater Analytical Results
Phase II Environmental Site Assessment
23 Brock Street West, Uxbridge, Ontario
Township of Uxbridge

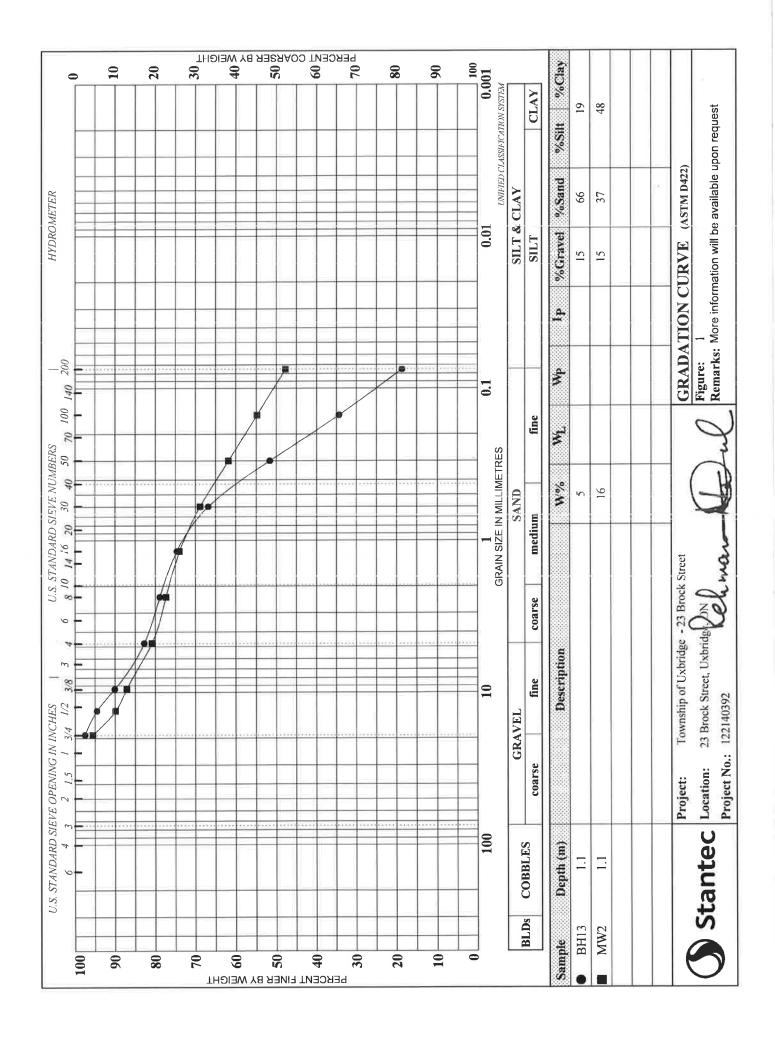

Chan SSS SSC Grown Where are descripted between the use your Per XV | of the Environments Protection Act (MOE, 2011) Site Condition Standards (SCS)

Table 8 - All Types of Proporty Use

The Standards are described to the second secon

Your Project #: 122140392 Your C.O.C. #: 1019663-01-01

Attention: Marissa Lusito

Stantec Consulting Ltd 675 Cochrane Dr W. West Tower Suite 300 Markham, ON CANADA L3R 0B8

Report Date: 2024/11/26

Report #: R8420109 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4Y6747 Received: 2024/11/04, 15:40

Sample Matrix: Soil # Samples Received: 18

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2024/11/25	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum	6	N/A	2024/11/08	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2024/11/22	2024/11/22	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	2	2024/11/07	2024/11/07	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	4	2024/11/07	2024/11/08	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	5	N/A	2024/11/08		EPA 8260C m
Free (WAD) Cyanide	1	2024/11/21	2024/11/23	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	6	2024/11/08	2024/11/08	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2024/11/22	2024/11/22	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	3	2024/11/07	2024/11/08	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	3	2024/11/08	2024/11/08	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2024/11/21	2024/11/22	CAM SOP-00436	EPA 3060A/7199 m
Hexavalent Chromium in Soil by IC (1)	6	2024/11/07	2024/11/07	CAM SOP-00436	EPA 3060A/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2024/11/22	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2024/11/08	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2024/11/22	2024/11/22	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	6	2024/11/08	2024/11/11	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	1	2024/11/22	2024/11/22	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	1	2024/11/22	2024/11/23	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	6	2024/11/07	2024/11/07	CAM SOP-00447	EPA 6020B m
Moisture	6	N/A	2024/11/19	CAM SOP-00445	Carter 2nd ed 70.2 m
Moisture	1	N/A	2024/11/21	CAM SOP-00445	Carter 2nd ed 70.2 m
Moisture	11	N/A	2024/11/05	CAM SOP-00445	Carter 2nd ed 70.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2024/11/22	2024/11/22	CAM SOP-00318	EPA 8270E
PAH Compounds in Soil by GC/MS (SIM)	6	2024/11/07	2024/11/07	CAM SOP-00318	EPA 8270E
oH CaCl2 EXTRACT	1	2024/11/21	2024/11/21	CAM SOP-00413	EPA 9045 D m
oH CaCl2 EXTRACT	6	2024/11/08	2024/11/08	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	3	N/A	2024/11/11	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	1	N/A	2024/11/25	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	3	N/A	2024/11/08	CAM SOP-00102	EPA 6010C

Your Project #: 122140392 Your C.O.C. #: 1019663-01-01

Attention: Marissa Lusito

Stantec Consulting Ltd 675 Cochrane Dr W. West Tower Suite 300 Markham, ON CANADA L3R 0B8

> Report Date: 2024/11/26 Report #: R8420109

> > Version: 2 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

BUREAU VERITAS JOB #: C4Y6747 Received: 2024/11/04, 15:40

Sample Matrix: Soil # Samples Received: 18

	Date	Date		
Analyses	Quantity Extracte	d Analyzed	Laboratory Method	Analytical Method
Volatile Organic Compounds and F1 PHCs	5 N/A	2024/11/08	3 CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance,

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
- (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 122140392 Your C.O.C. #: 1019663-01-01

Attention: Marissa Lusito

Stantec Consulting Ltd 675 Cochrane Dr W. West Tower Suite 300 Markham, ON CANADA L3R 088

Report Date: 2024/11/26

Report #: R8420109 Version: 2 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

BUREAU VERITAS JOB #: C4Y6747 Received: 2024/11/04, 15:40

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Julie Clement, Technical Account Manager Email: Julie.CLEMENT@bureauveritas.com Phone# (613)868-6079

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHVP81		AHVP83		AHVP85		
Sampling Date		2024/10/29		2024/10/28		2024/10/30		
Sampling Date		11:50		09:50		15:20		
COC Number		1019663-01-01		1019663-01-01		1019663-01-01		
	UNITS	MW1-2	QC Batch	MW2-1	QC Batch	BH8-3	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	8.4	9745976	16	9745976	6.4		9745976
Inorganics			•					
Conductivity	mS/cm	0.47	9752456	0.83	9751543	0.28	0.002	9753978
Available (CaCl2) pH	рН	7.93	9754639	8.03	9754639	7.59		9754639
WAD Cyanide (Free)	ug/g	<0.01	9753786	<0.01	9753786	<0.01	0.01	9753786
Chromium (VI)	ug/g	<0.18	9752069	<0.18	9752069	<0.18	0.18	9752069
Metals								
Hot Water Ext. Boron (B)	ug/g	0.072	9751996	0.11	9751233	0.44	0.050	9751996
Acid Extractable Antimony (Sb)	ug/g	<0.20	9751740	<0.20	9751740	2.6	0.20	9751740
Acid Extractable Arsenic (As)	ug/g	1.0	9751740	1.1	9751740	1.5	1.0	9751740
Acid Extractable Barium (Ba)	ug/g	23	9751740	28	9751740	42	0.50	9751740
Acid Extractable Beryllium (Be)	ug/g	<0.20	9751740	<0.20	9751740	0.25	0.20	9751740
Acid Extractable Boron (B)	ug/g	<5.0	9751740	5.1	9751740	<5.0	5.0	9751740
Acid Extractable Cadmium (Cd)	ug/g	<0.10	9751740	<0.10	9751740	0.10	0.10	9751740
Acid Extractable Chromium (Cr)	ug/g	6.9	9751740	7.1	9751740	9.1	1.0	9751740
Acid Extractable Cobalt (Co)	ug/g	2.7	9751740	3.2	9751740	2.8	0.10	9751740
Acid Extractable Copper (Cu)	ug/g	6.0	9751740	8.6	9751740	8.6	0.50	9751740
Acid Extractable Lead (Pb)	ug/g	12	9751740	4.2	9751740	56	1.0	9751740
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	9751740	<0.50	9751740	<0.50	0.50	9751740
Acid Extractable Nickel (Ni)	ug/g	5.7	9751740	6.3	9751740	6.5	0.50	9751740
Acid Extractable Selenium (Se)	ug/g	<0.50	9751740	<0.50	9751740	<0.50	0.50	9751740
Acid Extractable Silver (Ag)	ug/g	<0.20	9751740	<0.20	9751740	<0.20	0.20	9751740
Acid Extractable Thallium (TI)	ug/g	0.066	9751740	0.065	9751740	0.068	0.050	9751740
Acid Extractable Uranium (U)	ug/g	0.35	9751740	0.39	9751740	0.36	0.050	9751740
Acid Extractable Vanadium (V)	ug/g	15	9751740	15	9751740	20	5.0	9751740
Acid Extractable Zinc (Zn)	ug/g	26	9751740	28	9751740	86	5.0	9751740
Acid Extractable Mercury (Hg)	ug/g	<0.050	9751740	<0.050	9751740	0.13	0.050	9751740
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHVP85			AHVP86			AHVP86		
Sampling Date		2024/10/30 15:20			2024/10/30			2024/10/30		
COC Number		1019663-01-01			1019663-01-01			1019663-01-01		
	UNITS	BH8-3 Lab-Dup	RDL	QC Batch	QC-1	RDL	QC Batch	QC-1 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A				5.5		9745976			
Inorganics	*				<u> </u>					
Conductivity	mS/cm	0.28	0.002	9753978	0.30	0.002	9751543			
Available (CaCl2) pH	рН				7.66		9754639	7.62		9754639
WAD Cyanide (Free)	ug/g				<0.01	0.01	9753786	<0.01	0.01	9753786
Chromium (VI)	ug/g				<0.18	0.18	9752069	<0.18	0.18	9752069
Metals										
Hot Water Ext. Boron (B)	ug/g				0.45	0.050	9751233			
Acid Extractable Antimony (Sb)	ug/g				1.9	0.20	9751740			
Acid Extractable Arsenic (As)	ug/g				1.4	1.0	9751740			
Acid Extractable Barium (Ba)	ug/g				42	0.50	9751740			
Acid Extractable Beryllium (Be)	ug/g				0.25	0.20	9751740			
Acid Extractable Boron (B)	ug/g				<5.0	5.0	9751740			
Acid Extractable Cadmium (Cd)	ug/g				<0.10	0.10	9751740			
Acid Extractable Chromium (Cr)	ug/g				9.6	1.0	9751740			
Acid Extractable Cobalt (Co)	ug/g				2.9	0.10	9751740			
Acid Extractable Copper (Cu)	ug/g				8.1	0.50	9751740			
Acid Extractable Lead (Pb)	ug/g				52	1.0	9751740			
Acid Extractable Molybdenum (Mo)	ug/g				<0.50	0.50	9751740			
Acid Extractable Nickel (Ni)	ug/g				6.4	0.50	9751740			
Acid Extractable Selenium (Se)	ug/g				<0.50	0.50	9751740			
Acid Extractable Silver (Ag)	ug/g				<0.20	0.20	9751740			
Acid Extractable Thallium (TI)	ug/g				0.067	0.050	9751740			
Acid Extractable Uranium (U)	ug/g				0.37	0.050	9751740			
Acid Extractable Vanadium (V)	ug/g				22	5.0	9751740			
Acid Extractable Zinc (Zn)	ug/g				67	5.0	9751740			
Acid Extractable Mercury (Hg)	ug/g				0.14	0.050	9751740			
RDL = Reportable Detection Limit						-	-			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHVP89		AHVP91		AHVQ17		
Sampling Date		2024/10/30 09:25		2024/10/29 09:20		2024/10/30 15:30		
COC Number		1019663-01-01		1019663-01-01		1019663-01-01		
	UNITS	MW9-6	QC Batch	MW10-5	QC Batch	BH8-7	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	9.9	9745976	3.0	9745976	1.7		9771384
Inorganics		<u> </u>						
Conductivity	mS/cm	1.4	9753978	0.90	9753978	0.40	0.002	9782786
Available (CaCl2) pH	рН	7.33	9754639	7.57	9754639	7.08		9780505
WAD Cyanide (Free)	ug/g	<0.01	9753786	<0.01	9753786	<0.01	0.01	9781284
Chromium (VI)	ug/g	<0.18	9752069	<0.18	9752069	<0.18	0.18	9780503
Metals				· · · · · · · · · · · · · · · · · · ·	,			
Hot Water Ext. Boron (B)	ug/g	0.89	9752688	0.43	9751996	0.66	0.050	9782284
Acid Extractable Antimony (Sb)	ug/g	0.96	9751740	<0.20	9751740	<0.20	0.20	9782729
Acid Extractable Arsenic (As)	ug/g	2.6	9751740	1.5	9751740	<1.0	1.0	9782729
Acid Extractable Barium (Ba)	ug/g	48	9751740	68	9751740	34	0.50	9782729
Acid Extractable Beryllium (Be)	ug/g	0.29	9751740	0.38	9751740	0.27	0.20	9782729
Acid Extractable Boron (B)	ug/g	5.1	9751740	6.8	9751740	<5.0	5.0	9782729
Acid Extractable Cadmium (Cd)	ug/g	0.14	9751740	0.12	9751740	0.10	0.10	9782729
Acid Extractable Chromium (Cr)	ug/g	12	9751740	15	9751740	8.5	1.0	9782729
Acid Extractable Cobalt (Co)	ug/g	3.1	9751740	4.9	9751740	2.1	0.10	9782729
Acid Extractable Copper (Cu)	ug/g	11	9751740	12	9751740	4.9	0.50	9782729
Acid Extractable Lead (Pb)	ug/g	71	9751740	14	9751740	26	1.0	9782729
Acid Extractable Molybdenum (Mo)	ug/g	0.72	9751740	<0.50	9751740	<0.50	0.50	9782729
Acid Extractable Nickel (Ni)	ug/g	7.0	9751740	11	9751740	5.0	0.50	9782729
Acid Extractable Selenium (Se)	ug/g	0.72	9751740	<0.50	9751740	<0.50	0.50	9782729
Acid Extractable Silver (Ag)	ug/g	<0.20	9751740	<0.20	9751740	<0.20	0.20	9782729
Acid Extractable Thallium (TI)	ug/g	0.12	9751740	0.10	9751740	<0.050	0.050	9782729
Acid Extractable Uranium (U)	ug/g	0.36	9751740	0.45	9751740	0.38	0.050	9782729
Acid Extractable Vanadium (V)	ug/g	22	9751740	25	9751740	21	5.0	9782729
Acid Extractable Zinc (Zn)	ug/g	54	9751740	36	9751740	76	5.0	9782729
Acid Extractable Mercury (Hg)	ug/g	0.29	9751740	<0.050	9751740	0.060	0.050	9782729
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

QC Batch = Quality Control Batch

O.REG 153 PAHS (SOIL)

Bureau Veritas ID		AHVP81		AHVP83	AHVP85	AHVP86	AHVP89		
Sampling Date		2024/10/29 11:50		2024/10/28 09:50	2024/10/30 15:20	2024/10/30	2024/10/30 09:25		
COC Number		1019663-01-01		1019663-01-01	1019663-01-01	1019663-01-01	1019663-01-01		
	UNITS	MW1-2	RDL	MW2-1	BH8-3	QC-1	MW9-6	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.071	0.071	<0.0071	0.12	0.14	<0.0071	0.0071	9745593
Polyaromatic Hydrocarbons									
Acenaphthene	ug/g	<0.050	0.050	<0.0050	0.27	0.32	0.0089	0.0050	9751063
Acenaphthylene	ug/g	<0.050	0.050	<0.0050	0.12	0.17	0.019	0.0050	9751063
Anthracene	ug/g	<0.050	0.050	<0.0050	0.51	0.65	0.025	0.0050	9751063
Benzo(a)anthracene	ug/g	<0.050	0.050	<0.0050	1.5	2.0	0.090	0.0050	9751063
Benzo(a)pyrene	ug/g	<0.050	0.050	<0.0050	1.5	2.1	0.12	0.0050	9751063
Benzo(b/j)fluoranthene	ug/g	<0.050	0.050	<0.0050	1.7	2.4	0.15	0.0050	9751063
Benzo(g,h,i)perylene	ug/g	0.099	0.050	<0.0050	0.97	1.3	0.10	0.0050	9751063
Benzo(k)fluoranthene	ug/g	<0.050	0.050	<0.0050	0.65	0.78	0.054	0.0050	9751063
Chrysene	ug/g	<0.050	0.050	<0.0050	1.3	1.7	0.091	0.0050	9751063
Dibenzo(a,h)anthracene	ug/g	<0.050	0.050	<0.0050	0.25	0.34	0.020	0.0050	9751063
Fluoranthene	ug/g	<0.050	0.050	<0.0050	3.5	4.5	0.22	0.0050	9751063
Fluorene	ug/g	<0.050	0.050	<0.0050	0.21	0.25	0.011	0.0050	9751063
Indeno(1,2,3-cd)pyrene	ug/g	<0.050	0.050	<0.0050	1.0	1.4	0.097	0.0050	9751063
1-Methylnaphthalene	ug/g	<0.050	0.050	<0.0050	0.058	0.070	<0.0050	0.0050	9751063
2-Methylnaphthalene	ug/g	<0.050	0.050	<0.0050	0.062	0.068	<0.0050	0.0050	9751063
Naphthalene	ug/g	<0.050	0.050	<0.0050	0.064	0.057	0.0055	0.0050	9751063
Phenanthrene	ug/g	<0.050	0.050	<0.0050	2.2	2.8	0.12	0.0050	9751063
Pyrene	ug/g	<0.050	0.050	<0.0050	3.1	4.1	0.21	0.0050	9751063
Surrogate Recovery (%)									
D10-Anthracene	%	90		95	82	85	88		9751063
D14-Terphenyl (FS)	%	89		89	87	91	84		9751063
D8-Acenaphthylene	%	87		89	88	92	86		9751063
RDL = Reportable Detection I	imit								

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

O.REG 153 PAHS (SOIL)

Bureau Veritas ID		AHVP91		AHVQ17		
Sampling Date		2024/10/29		2024/10/30		
Sampling Date		09:20		15:30		
COC Number		1019663-01-01		1019663-01-01		
	UNITS	MW10-5	QC Batch	BH8-7	RDL	QC Batch
Calculated Parameters				:(
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	9745593	<0.0071	0.0071	9771783
Polyaromatic Hydrocarbons						
Acenaphthene	ug/g	<0.0050	9751063	<0.0050	0.0050	9781986
Acenaphthylene	ug/g	0.0083	9751063	<0.0050	0.0050	9781986
Anthracene	ug/g	0.0070	9751063	<0.0050	0.0050	9781986
Benzo(a)anthracene	ug/g	0.014	9751063	<0.0050	0.0050	9781986
Benzo(a)pyrene	ug/g	0.018	9751063	<0.0050	0.0050	9781986
Benzo(b/j)fluoranthene	ug/g	0.023	9751063	<0.0050	0.0050	9781986
Benzo(g,h,i)perylene	ug/g	0.016	9751063	<0.0050	0.0050	9781986
Benzo(k)fluoranthene	ug/g	0.0087	9751063	<0.0050	0.0050	9781986
Chrysene	ug/g	0.013	9751063	<0.0050	0.0050	9781986
Dibenzo(a,h)anthracene	ug/g	<0.0050	9751063	<0.0050	0.0050	9781986
Fluoranthene	ug/g	0.045	9751063	<0.0050	0.0050	9781986
Fluorene	ug/g	0.0054	9751063	<0.0050	0.0050	9781986
Indeno(1,2,3-cd)pyrene	ug/g	0.015	9751063	<0.0050	0.0050	9781986
1-Methylnaphthalene	ug/g	<0.0050	9751063	<0.0050	0.0050	9781986
2-Methylnaphthalene	ug/g	<0.0050	9751063	<0.0050	0.0050	9781986
Naphthalene	ug/g	<0.0050	9751063	<0.0050	0.0050	9781986
Phenanthrene	ug/g	0.028	9751063	<0.0050	0.0050	9781986
Pyrene	ug/g	0.038	9751063	<0.0050	0.0050	9781986
Surrogate Recovery (%)						
D10-Anthracene	%	94	9751063	88		9781986
D14-Terphenyl (FS)	%	89	9751063	104		9781986
D8-Acenaphthylene	%	86	9751063	80		9781986

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Veritas ID		AHVP88		AHVQ26		
Sampling Date		2024/10/30 09:15		2024/10/30 10:10		
COC Number		1019663-01-01		1019663-01-01		
	UNITS	MW9-5	QC Batch	MW9-10	RDL	QC Batch
BTEX & F1 Hydrocarbons						
Benzene	ug/g	<0.020	9754484	<0.020	0.020	9782078
Toluene	ug/g	<0.020	9754484	<0.020	0.020	9782078
Ethylbenzene	ug/g	0.021	9754484	<0.020	0.020	9782078
o-Xylene	ug/g	0.022	9754484	<0.020	0.020	9782078
p+m-Xylene	ug/g	0.14	9754484	<0.040	0.040	9782078
Total Xylenes	ug/g	0.16	9754484	<0.040	0.040	9782078
F1 (C6-C10)	ug/g	<10	9754484	<10	10	9782078
F1 (C6-C10) - BTEX	ug/g	<10	9754484	<10	10	9782078
F2-F4 Hydrocarbons		×				
F2 (C10-C16 Hydrocarbons)	ug/g	15	9755082	<7.0	7.0	9781962
F3 (C16-C34 Hydrocarbons)	ug/g	270	9755082	<50	50	9781962
F4 (C34-C50 Hydrocarbons)	ug/g	110	9755082	<50	50	9781962
Reached Baseline at C50	ug/g	Yes	9755082	Yes		9781962
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	104	9754484	112		9782078
4-Bromofluorobenzene	%	98	9754484	97		9782078
D10-o-Xylene	%	110	9754484	109		9782078
D4-1,2-Dichloroethane	%	96	9754484	100		9782078
o-Terphenyl	%	105	9755082	96		9781962
RDL = Reportable Detection L QC Batch = Quality Control B						

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHVP82	AHVP84	AHVP87	AHVP90	AHVP91		
-		2024/10/29	2024/10/28	2024/10/30	2024/10/30	2024/10/29		
Sampling Date		13:25	10:25	15:25	11:20	09:20		
COC Number		1019663-01-01	1019663-01-01	1019663-01-01	1019663-01-01	1019663-01-01		
	UNITS	MW1-5	MW2-5	BH8-5	MW9-13	MW10-5	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	9745595
Volatile Organics	•							
Acetone (2-Propanone)	ug/g	<0.49	<0.49	<0.49	<0.49	<0.49	0.49	9748482
Benzene	ug/g	<0.0060	<0.0060	0.011	<0.0060	<0.0060	0.0060	9748482
Bromodichloromethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Bromoform	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Bromomethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Carbon Tetrachloride	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Chlorobenzene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Chloroform	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Dibromochloromethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
1,2-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
1,3-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
1,4-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
1,1-Dichloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
1,2-Dichloroethane	ug/g	<0.049	<0.049	<0.049	<0.049	<0.049	0.049	9748482
1,1-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
cis-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
trans-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
1,2-Dichloropropane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	9748482
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	9748482
Ethylene Dibromide	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Hexane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Methylene Chloride(Dichloromethane)	ug/g	<0.049	<0.049	<0.049	<0.049	<0.049	0.049	9748482
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	9748482
Methyl Isobutyl Ketone	ug/g	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	9748482
Methyl t-butyl ether (MTBE)	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Styrene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

QC Batch = Quality Control Batch

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHVP82	AHVP84	AHVP87	AHVP90	AHVP91		
Sampling Date		2024/10/29	2024/10/28	2024/10/30	2024/10/30	2024/10/29		
Sampling Date		13:25	10:25	15:25	11:20	09:20		
COC Number		1019663-01-01	1019663-01-01	1019663-01-01	1019663-01-01	1019663-01-01		
	UNITS	MW1-5	MW2-5	BH8-5	MW9-13	MW10-5	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
1,1,2,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Tetrachloroethylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9748482
1,1,1-Trichloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
1,1,2-Trichloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Trichloroethylene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	9748482
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9748482
Vinyl Chloride	ug/g	<0.019	<0.019	<0.019	<0.019	<0.019	0.019	9748482
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9748482
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9748482
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9748482
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	9748482
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	9748482
F2-F4 Hydrocarbons						÷======		
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	<7.0	<7.0	15	<7.0	7.0	9755082
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	73	<50	50	9755082
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	9755082
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes		9755082
Surrogate Recovery (%)								
o-Terphenyl	%	114	101	103	100	105		9755082
4-Bromofluorobenzene	%	108	108	108	106	107		9748482
D10-o-Xylene	%	106	104	102	100	107		9748482
D4-1,2-Dichloroethane	%	89	94	94	93	95		9748482
D8-Toluene	%	96	94	95	96	94		9748482

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AHVP81		AHVP82		AHVP83		AHVP84		
Sampling Date		2024/10/29 11:50		2024/10/29 13:25		2024/10/28 09:50		2024/10/28 10:25		
COC Number		1019663-01-01		1019663-01-01		1019663-01-01		1019663-01-01		
	UNITS	MW1-2	QC Batch	MW1-5	QC Batch	MW2-1	QC Batch	MW2-5	RDL	QC Batch
Inorganics										
Moisture	%	5.3	9747354	24	9747247	4.6	9747354	17	1.0	9747247
RDL = Reportable Detec	tion Limit									
QC Batch = Quality Cont	trol Batch									

Bureau Veritas ID		AHVP84		AHVP85	AHVP86		AHVP87		
Sampling Date		2024/10/28 10:25		2024/10/30 15:20	2024/10/30		2024/10/30 15:25		
COC Number		1019663-01-01		1019663-01-01	1019663-01-01		1019663-01-01		
	UNITS	MW2-5 Lab-Dup	QC Batch	BH8-3	QC-1	QC Batch	BH8-5	RDL	QC Batch
Inorganics									
Moisture	%	17	9747247	13	12	9747354	22	1.0	9747247
RDL = Reportable Detect	ion Limit	·							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		AHVP88	AHVP89	AHVP90	AHVP91		AHVQ13		
s 1: 5 :		2024/10/30	2024/10/30	2024/10/30	2024/10/29		2024/10/30		
Sampling Date		09:15	09:25	11:20	09:20		15:10		
COC Number		1019663-01-01	1019663-01-01	1019663-01-01	1019663-01-01		1019663-01-01		
	UNITS	MW9-5	MW9-6	MW9-13	MW10-5	QC Batch	BH8-1	RDL	QC Batch
Inorganics									
Moisture	%	34	28	9.7	21	9747247	11	1.0	9774757
RDL = Reportable Detect	tion Limit								
QC Batch = Quality Cont	rol Batch								

Bureau Veritas ID		AHVQ14	AHVQ15	AHVQ16	AHVQ17	AHVQ18		
5 1: 5 .		2024/10/30	2024/10/30	2024/10/30	2024/10/30	2024/10/30		
Sampling Date		15:10	15:20	15:25	15:30	15:30		
COC Number		1019663-01-01	1019663-01-01	1019663-01-01	1019663-01-01	1019663-01-01		
	UNITS	BH8-2	BH8-4	BH8-6	BH8-7	BH8-8	RDL	QC Batch
Inorganics								-
Moisture	%	12	12	20	23	73	1.0	9774757
RDL = Reportable Detec	tion Limit							

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AHVQ26					
Sampling Date		2024/10/30 10:10					
COC Number		1019663-01-01					
	UNITS	MW9-10	RDL	QC Batch			
Inorganics							
Moisture	%	16	1.0	9781742			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Bureau Veritas ID		AHVQ26		
B. P. Bata		2024/10/30		
Sampling Date		10:10		
COC Number		1019663-01-01		
	UNITS	MW9-10	RDL	QC Batch
Metals				
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	9782978
RDL = Reportable Detection Lin	nit			
QC Batch = Quality Control Bate	ch			

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHVP81 Sample ID: MW1-2 Matrix: Soil

Collected: 2024/10/29

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9745593	N/A	2024/11/08	Automated Statchk
Hot Water Extractable Boron	ICP	9751996	2024/11/07	2024/11/08	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9753786	2024/11/08	2024/11/08	Prgya Panchal
Conductivity	AT	9752456	2024/11/07	2024/11/08	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9752069	2024/11/07	2024/11/07	Sousan Besharatiou
Acid Extractable Metals by ICPMS	ICP/MS	9751740	2024/11/07	2024/11/07	Jaswinder Kaur
Moisture	BAL	9747354	N/A	2024/11/05	Raj Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9751063	2024/11/07	2024/11/07	Lingyun Feng
pH CaCl2 EXTRACT	AT	9754639	2024/11/08	2024/11/08	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9745976	N/A	2024/11/08	Automated Statchk

Bureau Veritas ID: AHVP82

Sample ID: MW1-5

Matrix: Soil

Collected: 2024/10/29

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9745595	N/A	2024/11/08	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755082	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9747247	N/A	2024/11/05	Raj Patel
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9748482	N/A	2024/11/08	Cheng-Yu Sha

Bureau Veritas ID: AHVP83

Sample ID: MW2-1

Matrix: Soil

Collected:

2024/10/28

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9745593	N/A	2024/11/08	Automated Statchk
Hot Water Extractable Boron	ICP	9751233	2024/11/07	2024/11/07	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9753786	2024/11/08	2024/11/08	Prgya Panchal
Conductivity	AT	9751543	2024/11/07	2024/11/08	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9752069	2024/11/07	2024/11/07	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9751740	2024/11/07	2024/11/07	Jaswinder Kaur
Moisture	BAL	9747354	N/A	2024/11/05	Raj Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9751063	2024/11/07	2024/11/07	Lingyun Feng
pH CaCl2 EXTRACT	AT	9754639	2024/11/08	2024/11/08	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9745976	N/A	2024/11/08	Automated Statchk

Bureau Veritas ID: AHVP84 Sample ID: MW2-5 Matrix: Soil

Collected: 2024/10/28

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9745595	N/A	2024/11/08	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755082	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9747247	N/A	2024/11/05	Raj Patel

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHVP84 Sample ID: MW2-5

Matrix: Soil Collected: 2024/10/28

Shipped: Received:

2024/11/04

Date Analyzed Instrumentation Batch Extracted Analyst **Test Description** 9748482 2024/11/08 Cheng-Yu Sha GC/MSFD N/A Volatile Organic Compounds and F1 PHCs

Bureau Veritas ID: AHVP84 Dup

Sample ID: MW2-5

Matrix: Soil Collected: 2024/10/28

Shipped:

Received: 2024/11/04

Date Analyzed Analyst Instrumentation Extracted Batch **Test Description** 2024/11/05 Raj Patel BAL 9747247 N/A Moisture

Bureau Veritas ID: AHVP85

Sample ID: BH8-3

Matrix: Soil

Collected: 2024/10/30

Shipped:

2024/11/04 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9745593	N/A	2024/11/08	Automated Statchk
Hot Water Extractable Boron	ICP	9751996	2024/11/07	2024/11/08	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9753786	2024/11/08	2024/11/08	Prgya Panchal
Conductivity	AT	9753978	2024/11/08	2024/11/08	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9752069	2024/11/07	2024/11/07	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9751740	2024/11/07	2024/11/07	Jaswinder Kaur
Moisture	BAL	9747354	N/A	2024/11/05	Raj Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9751063	2024/11/07	2024/11/07	Lingyun Feng
pH CaCl2 EXTRACT	AT	9754639	2024/11/08	2024/11/08	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9745976	N/A	2024/11/11	Automated Statchk

Bureau Veritas ID: AHVP85 Dup

Sample ID: BH8-3

Matrix: Soil

Collected: 2024/10/30

Shipped:

2024/11/04 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	9753978	2024/11/08	2024/11/08	Kien Tran

Bureau Veritas ID: AHVP86 Sample ID: QC-1

Matrix: Soil

Collected: Shipped:

2024/10/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9745593	N/A	2024/11/08	Automated Statchk
Hot Water Extractable Boron	ICP	9751233	2024/11/07	2024/11/07	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9753786	2024/11/08	2024/11/08	Prgya Panchal
Conductivity	AT	9751543	2024/11/07	2024/11/08	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9752069	2024/11/07	2024/11/07	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9751740	2024/11/07	2024/11/07	Jaswinder Kaur
Moisture	BAL	9747354	N/A	2024/11/05	Raj Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9751063	2024/11/07	2024/11/07	Lingyun Feng
pH CaCl2 EXTRACT	AT	9754639	2024/11/08	2024/11/08	Kien Tran

TEST SUMMARY

Batch

9745976

Bureau Veritas ID: AHVP86

Collected: 2024/10/30

Shipped:

Sample ID: QC-1 Matrix: Soil

> **Date Analyzed** Analyst

Received: 2024/11/04

Sodium Adsorption Ratio (SAR)

Test Description

Instrumentation CALC/MET

Extracted N/A

2024/11/08 Automated Statchk

Bureau Veritas ID: AHVP86 Dup

Collected: Shipped:

2024/10/30

Sample ID: QC-1

Matrix: Soil

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	9753786	2024/11/08	2024/11/08	Prgya Panchal
Hexavalent Chromium in Soil by IC	IC/SPEC	9752069	2024/11/07	2024/11/07	Sousan Besharatlou
pH CaCl2 EXTRACT	AT	9754639	2024/11/08	2024/11/08	Kien Tran

Bureau Veritas ID: AHVP87 Sample ID: BH8-5

Collected: 2024/10/30

Shipped:

2024/11/04 Received:

Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9745595	N/A	2024/11/08	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755082	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9747247	N/A	2024/11/05	Raj Patel
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9748482	N/A	2024/11/08	Cheng-Yu Sha

Bureau Veritas ID: AHVP88

Collected: 2024/10/30

Sample ID: MW9-5 Matrix: Soil

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9754484	N/A	2024/11/08	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755082	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9747247	N/A	2024/11/05	Raj Patel

Bureau Veritas ID: AHVP89 Sample ID: MW9-6

Collected: 2024/10/30

Matrix: Soil

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9745593	N/A	2024/11/08	Automated Statchk
Hot Water Extractable Boron	ICP	9752688	2024/11/07	2024/11/08	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9753786	2024/11/08	2024/11/08	Prgya Panchal
Conductivity	AT	9753978	2024/11/08	2024/11/08	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9752069	2024/11/07	2024/11/07	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9751740	2024/11/07	2024/11/07	Jaswinder Kaur
Moisture	BAL	9747247	N/A	2024/11/05	Raj Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9751063	2024/11/07	2024/11/07	Lingyun Feng
pH CaCl2 EXTRACT	AT	9754639	2024/11/08	2024/11/08	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9745976	N/A	2024/11/11	Automated Statchk

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHVP90 Sample ID: MW9-13 Matrix: Soil Collected: 2024/10/30

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum CALC		9745595	N/A	2024/11/08	Automated Statchk	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755082	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb	
Moisture	BAL	9747247	N/A	2024/11/05	Raj Patel	
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9748482	N/A	2024/11/08	Cheng-Yu Sha	

Bureau Veritas ID: AHVP91 Sample ID: MW10-5

Matrix: Soil

Collected: 2024/10/29

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9745593	N/A	2024/11/08	Automated Statchk
Hot Water Extractable Boron	ICP	9751996	2024/11/07	2024/11/08	Thuy Linh Nguyen
1,3-Dichloropropene Sum	CALC	9745595	N/A	2024/11/08	Automated Statchk
Free (WAD) Cyanide	TECH	9753786	2024/11/08	2024/11/08	Prgya Panchal
Conductivity	AT	9753978	2024/11/08	2024/11/08	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9752069	2024/11/07	2024/11/07	Sousan Besharatlou
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755082	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9751740	2024/11/07	2024/11/07	Jaswinder Kaur
Moisture	BAL	9747247	N/A	2024/11/05	Raj Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9751063	2024/11/07	2024/11/07	Lingyun Feng
pH CaCl2 EXTRACT	AT	9754639	2024/11/08	2024/11/08	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9745976	N/A	2024/11/11	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9748482	N/A	2024/11/08	Cheng-Yu Sha

Bureau Veritas ID: AHVQ13 Sample ID: BH8-1

Matrix: Soil

Collected: 2024/10/30

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9774757	N/A	2024/11/19	Joe Thomas

Bureau Veritas ID: AHVQ14 Sample ID: BH8-2 Matrix: Soil Collected: 2024/10/30

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9774757	N/A	2024/11/19	Joe Thomas

Bureau Veritas ID: AHVQ15 Sample ID: BH8-4

Matrix: Soil

Collected: 2024/10/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9774757	N/A	2024/11/19	Joe Thomas

Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHVQ16

Collected: 2024/10/30

Sample ID: BH8-6 Matrix: Soil

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9774757	N/A	2024/11/19	Joe Thomas

Bureau Veritas ID: AHVQ17

Collected: 2024/10/30

Shipped:

Sample ID: BH8-7 Matrix: Soil

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9771783	N/A	2024/11/25	Automated Statchk
Hot Water Extractable Boron	ICP	9782284	2024/11/22	2024/11/22	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9781284	2024/11/21	2024/11/23	Prgya Panchal
Conductivity	AT	9782786	2024/11/22	2024/11/22	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780503	2024/11/21	2024/11/22	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9782729	2024/11/22	2024/11/23	Jaswinder Kaur
Moisture	BAL	9774757	N/A	2024/11/19	Joe Thomas
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9781986	2024/11/22	2024/11/22	Margaret Kulczyk-Stanko
pH CaCl2 EXTRACT	AT	9780505	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/25	Automated Statchk

Bureau Veritas ID: AHVQ18 Sample ID: BH8-8

Matrix: Soil

Matrix: Soil

Collected: 2024/10/30

Shipped:

Received: 2024/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9774757	N/A	2024/11/19	Joe Thomas

Bureau Veritas ID: AHVQ26 Sample ID: MW9-10

Collected: 2024/10/30

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro, CCME F1 & BTEX in Soil	HSGC/MSFD	9782078	N/A	2024/11/22	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9781962	2024/11/22	2024/11/22	Jeevaraj Jeevaratrnam
Acid Extractable Metals by ICPMS	ICP/MS	9782978	2024/11/22	2024/11/22	Jaswinder Kaur
Moisture	BAL	9781742	N/A	2024/11/21	Muhammad Chhaidan

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	5.7°C
Package 2	6.7°C
Package 3	5.0°C

Revised Report [2024/11/25]: Additional analysis requested

Sample AHVP81 [MW1-2]: PAH Analysis: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Sample AHVP87 [BH8-5]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AIIVP88 [MW9-5]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AHVP90 [MW9-13]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AHVQ14 [BH8-2]: PAH Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample AHVQ18 [BH8-8]: PAH Analysis: Detection limits were adjusted for high moisture content.

Sample AHVQ26 [MW9-10]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9747247	R1P	RPD [AHVP84-02]	Moisture	2024/11/05	0		%	20
9747354	R1P	RPD	Moisture	2024/11/05	2.4		%	20
9748482	CYS	Matrix Spike	4-Bromofluorobenzene	2024/11/08		106	%	60 - 140
			D10-o-Xylene	2024/11/08		102	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/08		92	%	60 - 140
			D8-Toluene	2024/11/08		96	%	60 - 140
			Acetone (2-Propanone)	2024/11/08		81	%	60 - 140
			Benzene	2024/11/08		94	%	60 - 140
			Bromodichloromethane	2024/11/08		91	%	60 - 140
			Bromoform	2024/11/08		102	%	60 - 140
			Bromomethane	2024/11/08		82	%	60 - 140
			Carbon Tetrachloride	2024/11/08		110	%	60 - 140
			Chlorobenzene	2024/11/08		90	%	60 - 140
			Chloroform	2024/11/08		95		60 - 140
			Dibromochloromethane	2024/11/08		98		60 - 140
			1,2-Dichlorobenzene	2024/11/08		96		60 - 140
			1,3-Dichlorobenzene	2024/11/08		94		60 - 140
			1,4-Dichlorobenzene	2024/11/08		95		60 - 140
			Dichlorodifluoromethane (FREON 12)	2024/11/08		94		60 - 140
			1,1-Dichloroethane	2024/11/08		86		60 - 140
			1,2-Dichloroethane	2024/11/08		92		60 - 140
			1,1-Dichloroethylene	2024/11/08		93		60 - 140
			cis-1,2-Dichloroethylene	2024/11/08		102		60 - 140
			trans-1,2-Dichloroethylene	2024/11/08		101		60 - 140
			1,2-Dichloropropane	2024/11/08		88		60 - 140
			cis-1,3-Dichloropropene	2024/11/08		80		60 - 140
			trans-1,3-Dichloropropene	2024/11/08		83		60 - 140
			Ethylbenzene			88		
			Ethylene Dibromide	2024/11/08		95		60 - 140
			Hexane	2024/11/08 2024/11/08		95 96		60 - 140
								60 - 140
			Methylene Chloride(Dichloromethane)	2024/11/08		95		60 - 140
			Methyl Ethyl Ketone (2-Butanone)	2024/11/08		75		60 - 140
			Methyl Isobutyl Ketone	2024/11/08		75		60 - 140
			Methyl t-butyl ether (MTBE)	2024/11/08		91	% % % %	60 - 140
			Styrene	2024/11/08		85		60 - 140
			1,1,1,2-Tetrachloroethane	2024/11/08		107		60 - 140
			1,1,2,2-Tetrachloroethane	2024/11/08		84		60 - 140
			Tetrachloroethylene	2024/11/08		98		60 - 140
			Toluene	2024/11/08		93		60 - 140
			1,1,1-Trichloroethane	2024/11/08		100	%	60 - 140
			1,1,2-Trichloroethane	2024/11/08		86	%	60 - 140
			Trichloroethylene	2024/11/08		103	%	60 - 140
			Trichlorofluoromethane (FREON 11)	2024/11/08		107	%	60 - 140
			Vinyl Chloride	2024/11/08		92	%	60 - 140
			p+m-Xylene	2024/11/08		85	%	60 - 140
			o-Xylene	2024/11/08		97	%	60 - 140
			F1 (C6-C10)	2024/11/08		94	%	60 - 140
9748482	CYS	Spiked Blank	4-Bromofluorobenzene	2024/11/07		107	%	60 - 140
			D10-o-Xylene	2024/11/07		99	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/07		93	%	60 - 140
			D8-Toluene	2024/11/07		96	% % % % % % % % % % % % % % % % % % %	60 - 140
			Acetone (2-Propanone)	2024/11/07		92		60 - 140

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Benzene	2024/11/07		95	%	60 - 130
			Bromodichloromethane	2024/11/07		93	%	60 - 130
			Bromoform	2024/11/07		105	%	60 - 130
			Bromomethane	2024/11/07		84	%	60 - 140
			Carbon Tetrachloride	2024/11/07		109	%	60 - 130
			Chlorobenzene	2024/11/07		95	%	60 - 130
			Chloroform	2024/11/07		97	%	60 - 130
			Dibromochloromethane	2024/11/07		101	%	60 - 130
			1,2-Dichlorobenzene	2024/11/07		102	%	60 - 130
			1,3-Dichlorobenzene	2024/11/07		104	%	60 - 130
			1,4-Dichlorobenzene	2024/11/07		105	%	60 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/07		92	%	60 - 140
			1,1-Dichloroethane	2024/11/07		87	%	60 - 130
			1,2-Dichloroethane	2024/11/07		95	%	60 - 130
			1,1-Dichloroethylene	2024/11/07		93	%	60 - 130
			cis-1,2-Dichloroethylene	2024/11/07		105	%	60 - 130
			trans-1,2-Dichloroethylene	2024/11/07		106	%	60 - 130
			1,2-Dichloropropane	2024/11/07		90	%	60 - 130
			cis-1,3-Dichloropropene	2024/11/07		83	%	60 - 130
			trans-1,3-Dichloropropene	2024/11/07		87	%	60 - 130
			Ethylbenzene	2024/11/07		92	%	60 - 130
			Ethylene Dibromide	2024/11/07		100	%	60 - 130
			Hexane	2024/11/07		94	%	60 - 130
			Methylene Chloride(Dichloromethane)	2024/11/07		98	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/07		83	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/07		80	%	60 - 130
			Methyl t-butyl ether (MTBE)	2024/11/07		94	%	60 - 130
			Styrene	2024/11/07		90	%	60 - 130
			1,1,1,2-Tetrachloroethane	2024/11/07		109	%	60 - 130
			1,1,2,2-Tetrachloroethane	2024/11/07		88	%	60 - 130
			Tetrachloroethylene	2024/11/07		101	%	60 - 130
			Toluene	2024/11/07		96	%	60 - 130
			1,1,1-Trichloroethane	2024/11/07		100	%	60 - 130
			1,1,2-Trichloroethane	2024/11/07		89	%	60 - 130
			Trichloroethylene	2024/11/07		108	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/07		106	%	60 - 130
			Vinyl Chloride	2024/11/07		145 (1)	%	60 - 130
			p+m-Xylene	2024/11/07		90	%	60 - 130
			o-Xylene	2024/11/07		99	%	60 - 130
			F1 (C6-C10)	2024/11/07		94	%	80 - 120
9748482	CYS	Method Blank	4-Bromofluorobenzene	2024/11/07		108	%	60 - 140
			D10-o-Xylene	2024/11/07		101	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/07		91	%	60 - 140
			D8-Toluene	2024/11/07		96	%	60 - 140
			Acetone (2-Propanone)	2024/11/07	< 0.49		ug/g	
			Benzene	2024/11/07	<0.0060		ug/g	
			Bromodichloromethane	2024/11/07	<0.040		ug/g	
			Bromoform	2024/11/07	<0.040		ug/g	
			Bromomethane	2024/11/07	<0.040		ug/g	
			Carbon Tetrachloride	2024/11/07	<0.040		ug/g	
			Chlorobenzene	2024/11/07	<0.040		ug/g	
			Chloroform	2024/11/07	<0.040		ug/g	

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dibromochloromethane	2024/11/07	<0.040		ug/g	
			1,2-Dichlorobenzene	2024/11/07	<0.040		ug/g	
			1,3-Dichlorobenzene	2024/11/07	<0.040		ug/g	
			1,4-Dichlorobenzene	2024/11/07	<0.040		ug/g	
			Dichlorodifluoromethane (FREON 12)	2024/11/07	<0.040		ug/g	
			1,1-Dichloroethane	2024/11/07	<0.040		ug/g	
			1,2-Dichloroethane	2024/11/07	<0.049		ug/g	
			1,1-Dichloroethylene	2024/11/07	<0.040		ug/g	
			cis-1,2-Dichloroethylene	2024/11/07	<0.040		ug/g	
			trans-1,2-Dichloroethylene	2024/11/07	<0.040		ug/g	
			1,2-Dichloropropane	2024/11/07	<0.040		ug/g	
			cis-1,3-Dichloropropene	2024/11/07	<0.030		ug/g	
			trans-1,3-Dichloropropene	2024/11/07	< 0.040		ug/g	
			Ethylbenzene	2024/11/07	<0.010		ug/g	
			Ethylene Dibromide	2024/11/07	< 0.040		ug/g	
			Hexane	2024/11/07	< 0.040		ug/g	
			Methylene Chloride(Dichloromethane)	2024/11/07	< 0.049		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2024/11/07	<0.40		ug/g	
			Methyl Isobutyl Ketone	2024/11/07	<0.40		ug/g	
			Methyl t-butyl ether (MTBE)	2024/11/07	<0.040		ug/g	
			Styrene	2024/11/07	<0.040		ug/g	
			1,1,1,2-Tetrachloroethane	2024/11/07	<0.040		ug/g	
			1,1,2,2-Tetrachloroethane	2024/11/07	<0.040		ug/g	
			Tetrachloroethylene	2024/11/07	<0.040		ug/g	
			Toluene	2024/11/07	<0.020		ug/g	
			1,1,1-Trichloroethane	2024/11/07	<0.040		ug/g	
			1,1,2-Trichloroethane	2024/11/07	<0.040		ug/g	
			Trichloroethylene	2024/11/07	<0.010		ug/g	
			Trichlorofluoromethane (FREON 11)	2024/11/07	<0.010		ug/g	
			Vinyl Chloride	2024/11/07	<0.019			
			p+m-Xylene	2024/11/07	<0.013		ug/g	
			o-Xylene	2024/11/07	<0.020		ug/g	
			Total Xylenes	2024/11/07	<0.020		ug/g	
			F1 (C6-C10)				ug/g	
			F1 (C6-C10) F1 (C6-C10) - BTEX	2024/11/07	<10		ug/g	
748482	CYS	RPD	Acetone (2-Propanone)	2024/11/07	<10		ug/g	
740402	CIS	KFD		2024/11/08	NC		%	50
			Benzene	2024/11/08	NC		%	50
			Bromodichloromethane	2024/11/08	NC		%	50
			Bromoform	2024/11/08	NC		%	50
			Bromomethane	2024/11/08	NC		%	50
			Carbon Tetrachloride	2024/11/08	NC		%	50
			Chlorobenzene	2024/11/08	NC		%	50
			Chloroform	2024/11/08	NC		%	50
			Dibromochloromethane	2024/11/08	NC		%	50
			1,2-Dichlorobenzene	2024/11/08	NC		%	50
			1,3-Dichlorobenzene	2024/11/08	NC		%	50
			1,4-Dichlorobenzene	2024/11/08	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2024/11/08	NC		%	50
			1,1-Dichloroethane	2024/11/08	NC		%	50
			1,2-Dichloroethane	2024/11/08	NC		%	50
			1,1-Dichloroethylene	2024/11/08	NC		%	50
			cis-1,2-Dichloroethylene	2024/11/08	NC		%	50

Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			trans-1,2-Dichloroethylene	2024/11/08	NC		%	50
			1,2-Dichloropropane	2024/11/08	NC		%	50
			cis-1,3-Dichloropropene	2024/11/08	NC		%	50
			trans-1,3-Dichloropropene	2024/11/08	NC		%	50
			Ethylbenzene	2024/11/08	NC		%	50
			Ethylene Dibromide	2024/11/08	NC		%	50
			Hexane	2024/11/08	NC		%	50
			Methylene Chloride(Dichloromethane)	2024/11/08	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2024/11/08	NC		%	50
			Methyl Isobutyl Ketone	2024/11/08	NČ		%	50
			Methyl t-butyl ether (MTBE)	2024/11/08	NC		%	50
			Styrene	2024/11/08	NC		%	50
			1,1,1,2-Tetrachloroethane	2024/11/08	NC		%	50
			1,1,2,2-Tetrachloroethane	2024/11/08	NC		%	50
			Tetrachloroethylene	2024/11/08	NC		%	50
			Toluene	2024/11/08	NC		%	50
			1,1,1-Trichloroethane	2024/11/08	NC		%	50
			1,1,2-Trichloroethane	2024/11/08	NC		%	50
			Trichloroethylene	2024/11/08	NC		%	50
			Trichlorofluoromethane (FREON 11)	2024/11/08	NC		%	50
			Vinyl Chloride	2024/11/08	NC		%	50
			p+m-Xylene	2024/11/08	NC		%	50
			o-Xylene	2024/11/08	NC		%	50
			Total Xylenes	2024/11/08	NC		%	50
			F1 (C6-C10)	2024/11/08	NC		%	30
			F1 (C6-C10) - BTEX	7024/11/08	NC		%	30
9751063	LFE	Matrix Spike	D10-Anthracene	2024/11/07		90	%	50 - 130
			D14-Terphenyl (FS)	2024/11/07		84	%	50 - 130
			D8-Acenaphthylene	2024/11/07		85	%	50 - 130
			Acenaphthene	2024/11/07		90	%	50 - 130
			Acenaphthylene	2024/11/07		97	%	50 - 130
			Anthracene	2024/11/07		93	%	50 - 130
			Benzo(a)anthracene	2024/11/07		84	%	50 - 130
			Benzo(a)pyrene	2024/11/07		82	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/07		82	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/07		89	%	50 - 130
			Benzo(k)fluoranthene	2024/11/07		83	%	50 - 130
			Chrysene	2024/11/07		78	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/07		88	%	50 - 130
			Fluoranthene	2024/11/07		93	%	50 - 130
			Fluorene	2024/11/07		93	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/07		97	%	50 - 130
			1-Methylnaphthalene	2024/11/07		76	%	50 - 130
			2-Methylnaphthalene	2024/11/07		78	%	50 - 130
			Naphthalene	2024/11/07		73	%	50 - 130
			Phenanthrene	2024/11/07		86	%	50 - 130
			Pyrene	2024/11/07		94	%	50 - 130
9751063	LFE	Spiked Blank	D10-Anthracene	2024/11/07		91	%	50 - 130
		_	D14-Terphenyl (FS)	2024/11/07		90	%	50 - 130
			D8-Acenaphthylene	2024/11/07		91	%	50 - 130
			Acenaphthene	2024/11/07		94	%	50 - 130
			Acenaphthylene	2024/11/07		101	%	50 - 130

QA/QC		race and a second						
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Anthracene	2024/11/07		94	%	50 - 130
			Benzo(a)anthracene	2024/11/07		86	%	50 - 130
			Benzo(a)pyrene	2024/11/07		84	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/07		84	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/07		93	%	50 - 130
			Benzo(k)fluoranthene	2024/11/07		86	%	50 - 130
			Chrysene	2024/11/07		80	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/07		90	%	50 - 130
			Fluoranthene	2024/11/07		98	%	50 - 130
			Fluorene	2024/11/07		96	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/07		98	%	50 - 130
			1-Methylnaphthalene	2024/11/07		83	%	50 - 130
			2-Methylnaphthalene	2024/11/07		85	%	50 - 130
			Naphthalene	2024/11/07		85	%	50 - 130
			Phenanthrene	2024/11/07		90	%	50 - 130
			Pyrene	2024/11/07		99	%	50 - 130
9751063	LFE	Method Blank	D10-Anthracene	2024/11/07		95	%	50 - 130
			D14-Terphenyl (FS)	2024/11/07		88	%	50 - 130
			D8-Acenaphthylene	2024/11/07		90	%	50 - 130
			Acenaphthene	2024/11/07	<0.0050		ug/g	
			Acenaphthylene	2024/11/07	<0.0050		ug/g	
			Anthracene	2024/11/07	<0.0050		ug/g	
			Benzo(a)anthracene	2024/11/07	<0.0050		ug/g	
			Benzo(a)pyrene	2024/11/07	<0.0050		ug/g	
			Benzo(b/j)fluoranthene	2024/11/07	<0.0050		ug/g	
			Benzo(g,h,i)perylene	2024/11/07	<0.0050		ug/g	
			Benzo(k)fluoranthene	2024/11/07	<0.0050		ug/g	
			Chrysene	2024/11/07	<0.0050		ug/g	
			Dibenzo(a,h)anthracene	2024/11/07	<0.0050		ug/g	
			Fluoranthene	2024/11/07	<0.0050		ug/g	
			Fluorene	2024/11/07	<0.0050			
			Indeno(1,2,3-cd)pyrene	2024/11/07	<0.0050		ug/g	
			1-Methylnaphthalene	2024/11/07	<0.0050		ug/g	
			2-Methylnaphthalene		<0.0050		ug/g	
				2024/11/07 2024/11/07			ug/g	
			Naphthalene	i i	<0.0050		ug/g	
			Phenanthrene	2024/11/07	<0.0050		ug/g	
751067	1.55	DDD	Pyrene	2024/11/07	<0.0050		ug/g	40
751063	LFE	RPD	Acenaphthene	2024/11/07	NC		%	40
			Acenaphthylene	2024/11/07	NC		%	40
			Anthracene	2024/11/07	NC		%	40
			Benzo(a)anthracene	2024/11/07	NC		%	40
			Benzo(a)pyrene	2024/11/07	NC		%	40
			Benzo(b/j)fluoranthene	2024/11/07	NC		%	40
			Benzo(g,h,i)perylene	2024/11/07	NC		%	40
			Benzo(k)fluoranthene	2024/11/07	NC		%	40
			Chrysene	2024/11/07	NC		%	40
			Dibenzo(a,h)anthracene	2024/11/07	NC		%	40
			Fluoranthene	2024/11/07	NC		%	40
			Fluorene	2024/11/07	NC		%	40
			Indeno(1,2,3-cd)pyrene	2024/11/07	NC		%	40
			1-Methylnaphthalene	2024/11/07	NC		%	40
			2-Methylnaphthalene	2024/11/07	NC		%	40

Stantec Consulting Ltd
Client Project #: 122140392

Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Naphthalene	2024/11/07	NC		%	40
			Phenanthrene	2024/11/07	NC		%	40
			Pyrene	2024/11/07	NC		%	40
9751233	ANF	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/07		100	%	75 - 125
9751233	ANF	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/07		93	%	75 - 12 5
9751233	ANF	Method Blank	Hot Water Ext. Boron (B)	2024/11/07	<0.050		ug/g	
9751233	ANF	RPD	Hot Water Ext. Boron (B)	2024/11/07	4.0		%	40
9751543	KIT	Spiked Blank	Conductivity	2024/11/08		104	%	90 - 110
9751543	KIT	Method Blank	Conductivity	2024/11/08	<0.002		mS/cm	
9751543	KIT	RPD	Conductivity	2024/11/08	4.1		%	10
9751740	JWK	Matrix Spike	Acid Extractable Antimony (Sb)	2024/11/07		98	%	75 - 125
			Acid Extractable Arsenic (As)	2024/11/07		98	%	75 - 125
			Acid Extractable Barium (Ba)	2024/11/07		95	%	75 - 125
			Acid Extractable Beryllium (Be)	2024/11/07		99	%	75 - 125
			Acid Extractable Boron (B)	2024/11/07		94	%	75 - 125
			Acid Extractable Cadmium (Cd)	2024/11/07		96	%	75 - 125
			Acid Extractable Chromium (Cr)	2024/11/07		98	%	75 - 125
			Acid Extractable Cobalt (Co)	2024/11/07		94	%	75 - 125
			Acid Extractable Copper (Cu)	2024/11/07		94	%	75 - 125
			Acid Extractable Lead (Pb)	2024/11/07		91	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2024/11/07		92	%	75 - 125
			Acid Extractable Nickel (Ni)	2024/11/07		95	%	75 - 125
			Acid Extractable Selenium (Se)	2024/11/07		97	%	/5 - 125
			Acid Extractable Silver (Ag)	2024/11/07		91	%	75 - 125
			Acid Extractable Thallium (TI)	2024/11/07		94	%	75 - 125
			Acid Extractable Uranium (U)	2024/11/07		96	%	75 - 125
			Acid Extractable Vanadium (V)	2024/11/07		97	%	75 - 125
			Acid Extractable Zinc (Zn)	2024/11/07		97	%	75 - 125
			Acid Extractable Mercury (Hg)	2024/11/07		91	%	75 - 125
9751740	JWK	Spiked Blank	Acid Extractable Antimony (Sb)	2024/11/07		100	%	80 - 120
			Acid Extractable Arsenic (As)	2024/11/07		96	%	80 - 120
			Acid Extractable Barium (Ba)	2024/11/07		99	%	80 - 120
			Acid Extractable Beryllium (Be)	2024/11/07		95	%	80 - 120
			Acid Extractable Boron (B)	2024/11/07		97	%	80 - 120
			Acid Extractable Cadmium (Cd)	2024/11/07		95	%	80 - 120
			Acid Extractable Chromium (Cr)	2024/11/07		94	%	80 - 120
			Acid Extractable Cobalt (Co)	2024/11/07		93	%	80 - 120
			Acid Extractable Copper (Cu)	2024/11/07		96	%	80 - 120
			Acid Extractable Lead (Pb)	2024/11/07		93	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2024/11/07		90	%	80 - 120
			Acid Extractable Nickel (Ni)	2024/11/07		97	%	80 - 120
			Acid Extractable Selenium (Se)	2024/11/07		99	%	80 - 120
			Acid Extractable Silver (Ag)	2024/11/07		91	%	80 - 120
			Acid Extractable Thallium (TI)	2024/11/07		96	%	80 - 120
			Acid Extractable Uranium (U)	2024/11/07		97	%	80 - 120
			Acid Extractable Vanadium (V)	2024/11/07		96	%	80 - 120
			Acid Extractable Zinc (Zn)	2024/11/07		100	%	80 - 120
			Acid Extractable Mercury (Hg)	2024/11/07		92	%	80 - 120
9751740	JWK	Method Blank	Acid Extractable Antimony (Sb)	2024/11/07	<0.20		ug/g	
5,51,70	2 2 4 14	caros signik	Acid Extractable Arsenic (As)	2024/11/07	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2024/11/07	<0.50		ug/g	
			Acid Extractable Beryllium (Be)	2024/11/07	<0.20		ug/g	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Acid Extractable Boron (B)	2024/11/07	<5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2024/11/07	<0.10		ug/g	
			Acid Extractable Chromium (Cr)	2024/11/07	<1.0		ug/g	
			Acid Extractable Cobalt (Co)	2024/11/07	<0.10		ug/g	
			Acid Extractable Copper (Cu)	2024/11/07	<0.50		ug/g	
			Acid Extractable Lead (Pb)	2024/11/07	<1.0		ug/g	
			Acid Extractable Molybdenum (Mo)	2024/11/07	<0.50		ug/g	
			Acid Extractable Nickel (Ni)	2024/11/07	<0.50		ug/g	
			Acid Extractable Selenium (Se)	2024/11/07	<0.50		ug/g	
			Acid Extractable Silver (Ag)	2024/11/07	<0.20		ug/g	
			Acid Extractable Thallium (TI)	2024/11/07	<0.050		ug/g	
			Acid Extractable Uranium (U)	2024/11/07	<0.050		ug/g	
			Acid Extractable Vanadium (V)	2024/11/07	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2024/11/07	<5.0		ug/g	
			Acid Extractable Mercury (Hg)	2024/11/07	< 0.050		ug/g	
751740	JWK	RPD	Acid Extractable Antimony (Sb)	2024/11/07	NC		%	30
			Acid Extractable Arsenic (As)	2024/11/07	NC		%	30
			Acid Extractable Barium (Ba)	2024/11/07	1.4		%	30
			Acid Extractable Beryllium (Be)	2024/11/07	NC		%	30
			Acid Extractable Boron (B)	2024/11/07	NC		%	30
			Acid Extractable Cadmium (Cd)	2024/11/07	NC		%	30
			Acid Extractable Chromium (Cr)	2024/11/07	4.0		%	30
			Acid Extractable Cobalt (Co)	2024/11/07	0.86		%	30
			Acid Extractable Copper (Cu)	2024/11/07	0.87		%	30
			Acid Extractable Lead (Pb)	2024/11/07	3.2		%	30
			Acid Extractable Molybdenum (Mo)	2024/11/07	NC		%	30
			Acid Extractable Nickel (Ni)	2024/11/07	0.61		%	30
			Acid Extractable Selenium (Se)	2024/11/07	NC		%	30
			Acid Extractable Silver (Ag)	2024/11/07	NC		%	30
			Acid Extractable Thallium (TI)	2024/11/07	NC		%	30
			Acid Extractable Uranium (U)	2024/11/07	5.5		%	30
			Acid Extractable Vanadium (V)	2024/11/07	0.015		%	30
			Acid Extractable Zinc (Zn)	2024/11/07	6.2		%	30
			Acid Extractable Mercury (Hg)	2024/11/07	NC		%	30
751996	TLG	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/08		102	%	75 - 125
751996	TLG	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/08		93	%	75 - 125
751996	TLG	Method Blank	Hot Water Ext. Boron (B)	2024/11/08	<0.050	20	ug/g	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
751996	TLG	RPD	Hot Water Ext. Boron (B)	2024/11/08	8.9		%	40
752069	SB5	Matrix Spike [AHVP86-01]	Chromium (VI)	2024/11/07	4,2	53 (2)	%	70 - 130
752069	SB5	Spiked Blank	Chromium (VI)	2024/11/07		94	%	80 - 120
752069	SB5	Method Blank	Chromium (VI)	2024/11/07	<0.18	34	ug/g	00 120
752069	SB5	RPD [AHVP86-01]	Chromium (VI)	2024/11/07	NC		%	35
752456	GTK	Spiked Blank	Conductivity	2024/11/08	110	102	%	90 - 110
752456	GTK	Method Blank	Conductivity	2024/11/08	<0.002	102	mS/cm	30 - 110
752456	GTK	RPD	Conductivity	2024/11/08	1.5		%	10
752 4 30 752688	ANF	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/08	1.0	103	%	75 - 125
752688	ANF	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/08		99	%	75 - 125
752688	ANF	Method Blank	Hot Water Ext. Boron (B)	2024/11/08	<0.0E0	22		13-12
752688	ANF	RPD	Hot Water Ext. Boron (B)		<0.050		ug/g ∘⁄	40
753786	GYA	Matrix Spike [AHVP86-01]	· ·	2024/11/08	NC	0.4	%	40
753786	GYA		WAD Cyanide (Free)	2024/11/08		94 105	%	75 - 125
753786	GYA	Spiked Blank Method Blank	WAD Cyanide (Free) WAD Cyanide (Free)	2024/11/08 2024/11/08	<0.01	105	% ug/g	80 - 120

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC						HOUSE VOLUM		8200.0
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
9753786	GYA	RPD [AHVP86-01]	WAD Cyanide (Free)	2024/11/08	NC		%	35
753978	KIT	Spiked Blank	Conductivity	2024/11/08		104	%	90 - 110
753978	KIT	Method Blank	Conductivity	2024/11/08	<0.002		mS/cm	
753978	KIT	RPD [AHVP85-01]	Conductivity	2024/11/08	1.7		%	10
754484	ΛΛΙ	Spiked Blank	1,1-Difluorobenzene	2024/11/08		102	%	60 - 140
			4-Bromofluorobenzene	2024/11/08		100	%	60 - 140
			D10-o-Xylene	2024/11/08		102	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/08		97	%	60 - 140
			Benzene	2024/11/08		93	%	50 - 14
			Toluene	2024/11/08		89	%	50 - 14
			Ethylbenzene	2024/11/08		102	%	50 - 14
			o-Xylene	2024/11/08		98	%	50 - 140
			p+m-Xylene	2024/11/08		95	%	50 - 140
			F1 (C6-C10)	2024/11/08		102	%	80 - 120
754484	AAI	RPD	Benzene	2024/11/08	2.5		%	50
			Toluene	2024/11/08	1.8		%	50
			Ethylbenzene	2024/11/08	2.1		%	50
			o-Xylene	2024/11/08	3.0		%	50
			p+m-Xylene	2024/11/08	2.2		%	50
			F1 (C6-C10)	2024/11/08	2.8		%	30
			Benzene	2024/11/08	NC		%	50
			Toluene	2024/11/08	NC		%	50
			Ethylbenzene	2024/11/08	NC		%	50
			o-Xylene	2024/11/08	NC		%	50
			p+m-Xylene	2024/11/08	NC		%	50
			Total Xylenes	2024/11/08	NC		%	50
			F1 (C6-C10)	2024/11/08	NC		%	30
			F1 (C6-C10) - BTEX	2024/11/08	NC		%	30
754484	AAI	Method Blank	1,4 Difluorobenzene	2024/11/08		104	%	60 - 14
			4-Bromofluorobenzene	2024/11/08		97	%	60 - 14
			D10-o-Xylene	2024/11/08		100	%	60 - 14
			D4-1,2-Dichloroethane	2024/11/08		97	%	60 - 14
			Benzene	2024/11/08	<0.020		ug/g	
			Toluene	2024/11/08	<0.020		ug/g	
			Ethylbenzene	2024/11/08	<0.020		ug/g	
			o-Xylene	2024/11/08	<0.020		ug/g	
			p+m-Xylene	2024/11/08	<0.040		ug/g	
			Total Xylenes	2024/11/08	<0.040		ug/g	
			F1 (C6-C10)	2024/11/08	<10		ug/g	
			F1 (C6-C10) - BTEX	2024/11/08	<10		uġ/g	
754639	KIT	Spiked Blank	Available (CaCl2) pH	2024/11/08	110	100	%	97 - 10
754639	KIT	RPD [AHVP86-01]	Available (CaCl2) pH	2024/11/08	0.45	200	%	N/A
			o-Terphenyl	2024/11/10	0,43	106	%	60 - 14
755082	MSZ	Matrix Spike	F2 (C10-C16 Hydrocarbons)	2024/11/10		106	%	60 - 14
				2024/11/10		107	%	60 - 14
			F3 (C16-C34 Hydrocarbons)			101	%	60 - 14
755000	N 4 C 7	Cuited Dlack	F4 (C34-C50 Hydrocarbons)	2024/11/10		101	%	60 - 14
755082	MSZ	Spiked Blank	o-Terphenyl	2024/11/10				
			F2 (C10-C16 Hydrocarbons)	2024/11/10		102	%	80 - 1
			F3 (C16-C34 Hydrocarbons)	2024/11/10		103	%	80 - 1
			F4 (C34-C50 Hydrocarbons)	2024/11/10		97	%	80 - 1
755082	MSZ	Method Blank	o-Terphenyl	2024/11/10		101	%	60 - 1
			F2 (C10-C16 Hydrocarbons)	2024/11/10	<7.0		ug/g	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			F3 (C16-C34 Hydrocarbons)	2024/11/10	<50		ug/g	
0755000			F4 (C34-C50 Hydrocarbons)	2024/11/10	<50		ug/g	
9755082	MSZ	RPD	F2 (C10-C16 Hydrocarbons)	2024/11/10	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2024/11/10	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2024/11/10	NC		%	30
9774757	JTS	RPD	Moisture	2024/11/19	2.5		%	20
9780503	SB5	Matrix Spike	Chromium (VI)	2024/11/21		86	%	70 - 130
9780503	SB5	Spiked Blank	Chromium (VI)	2024/11/21		93	%	80 - 120
9780503	SB5	Method Blank	Chromium (VI)	2024/11/21	<0.18		ug/g	
9780503	SB5	RPD	Chromium (VI)	2024/11/21	NC		%	35
9780505	KIT	Spiked Blank	Available (CaCl2) pH	2024/11/21		100	%	97 - 103
9780505	KIT	RPD	Available (CaCl2) pH	2024/11/21	0.16		%	N/A
9781284	GYA	Matrix Spike	WAD Cyanide (Free)	2024/11/22		91	%	75 - 125
9781284	GYA	Spiked Blank	WAD Cyanide (Free)	2024/11/22		108	%	80 - 120
9781284	GYA	Method Blank	WAD Cyanide (Free)	2024/11/22	<0.01		ug/g	
9781284	GYA	RPD	WAD Cyanide (Free)	2024/11/22	NC		%	35
9781742	MUC	RPD	Moisture	2024/11/21	2.5		%	20
9781962	IJΕ	Matrix Spike	o-Terphenyl	2024/11/22		91	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/22		97	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2024/11/22		100	%	60 - 140
0704063	115	C-th-d Di- 1	F4 (C34-C50 Hydrocarbons)	2024/11/22		94	%	60 - 140
9781962	IJΕ	Spiked Blank	o-Terphenyl	2024/11/22		94	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/22		98	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2024/11/22		101	%	80 - 120
0701063		NA-+b Olb	F4 (C34-C50 Hydrocarbons)	2024/11/22		94	%	80 - 120
9781962	JJE	Method Blank	o-Terphenyl	2024/11/22	7.0	94	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/22	<7.0		ug/g	
			F3 (C16-C34 Hydrocarbons)	2024/11/22	<50		ug/g	
0704067		000	F4 (C34-C50 Hydrocarbons)	2024/11/22	<50		ug/g	
9781962	IJΕ	RPD	F2 (C10-C16 Hydrocarbons)	2024/11/22	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2024/11/22	NC		%	30
0701006	NAVC	NA=Auto C=tl-	F4 (C34-C50 Hydrocarbons)	2024/11/22	NC	0.0	%	30
9781986	MKS	Matrix Spike	D10-Anthracene	2024/11/22		88	%	50 - 130
			D14-Terphenyl (FS)	2024/11/22		105	%	50 - 130
			D8-Acenaphthylene	2024/11/22		82	%	50 - 130
			Acenaphthene	2024/11/22		85	%	50 - 130
			Acenaphthylene	2024/11/22		83	%	50 - 130
			Anthracene	2024/11/22		89	%	50 - 130
			Benzo(a)anthracene	2024/11/22		96	%	50 - 130
			Benzo(a)pyrene	2024/11/22		93	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/22		92	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/22		94	%	50 - 130
			Benzo(k)fluoranthene	2024/11/22		96	%	50 - 130
			Chrysene	2024/11/22		94	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/22		105	%	50 - 130
			Fluoranthene	2024/11/22		96	%	50 - 130
			Fluorene	2024/11/22		94	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/22		93	%	50 - 130
			1-Methylnaphthalene	2024/11/22		77	%	50 - 130
			2-Methylnaphthalene	2024/11/22		75	%	50 - 130
			Naphthalene	2024/11/22		64	%	50 - 130
			Phenanthrene	2024/11/22		90	%	50 - 13

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Pyrene	2024/11/22		96	%	50 - 130
9781986	MKS	Spiked Blank	D10-Anthracene	2024/11/22		88	%	50 - 130
			D14-Terphenyl (FS)	2024/11/22		103	%	50 - 130
			D8-Acenaphthylene	2024/11/22		85	%	50 - 130
			Acenaphthene	2024/11/22		89	%	50 - 130
			Acenaphthylene	2024/11/22		89	%	50 - 130
			Anthracene	2024/11/22		90	%	50 - 130
			Benzo(a)anthracene	2024/11/22		95	%	50 - 130
			Benzo(a)pyrene	2024/11/22		93	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/22		93	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/22		95	%	50 - 130
			Benzo(k)fluoranthene	2024/11/22		94	%	50 - 130
			Chrysene	2024/11/22		95	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/22		103	%	50 - 130
			Fluoranthene	2024/11/22		97	%	50 - 130
			Fluorene	2024/11/22		96	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/22		93	%	50 - 130
			1-Methylnaphthalene	2024/11/22		91	%	50 - 130
			2-Methylnaphthalene	2024/11/22		90	%	50 - 130
			Naphthalene	2024/11/22		86	%	50 - 130
			Phenanthrene	2024/11/22		92	%	50 - 130
			Pyrene	2024/11/22		97	%	50 - 130
781986 MK\$	Method Blank	D10-Anthracene	2024/11/22		93	%	50 - 130	
7701300	IVINS	WICEHOO BIBLIK	D14-Terphenyl (FS)	2024/11/22		107	%	50 - 130
			D8-Acenaphthylene	2024/11/22		86	%	50 - 130
			Acenaphthene	2024/11/22	<0.0050		ug/g	
			Acenaphthylene	2024/11/22	<0.0050		ug/g	
			Anthracene	2024/11/22	<0.0050		ug/g	
			Benzo(a)anthracene	2024/11/22	<0.0050		ug/g	
			Benzo(a)pyrene	2024/11/22	<0.0050		ug/g	
				2024/11/22	<0.0050		ug/g	
			Benzo(b/j)fluoranthene	2024/11/22	<0.0050		ug/g	
			Benzo(g,h,i)perylene	2024/11/22	<0.0050		ug/g	
			Benzo(k)fluoranthene					
			Chrysene	2024/11/22	<0.0050		ug/g	
			Dibenzo(a,h)anthracene	2024/11/22	<0.0050		ug/g	
			Fluoranthene	2024/11/22	<0.0050		ug/g	
			Fluorene	2024/11/22	<0.0050		ug/g	
			Indeno(1,2,3-cd)pyrene	2024/11/22	<0.0050		ug/g	
			1-Methylnaphthalene	2024/11/22	<0.0050		ug/g	
			2-Methylnaphthalene	2024/11/22	<0.0050		ug/g	
			Naphthalene	2024/11/22	<0.0050		ug/g	
			Phenanthrene	2024/11/22	<0.0050		ug/g	
			Pyrene	2024/11/22	<0.0050		ug/g	
9781986	MKS	RPD	Acenaphthene	2024/11/22	NC		%	40
			Acenaphthylene	2024/11/22	NC		%	40
			Anthracene	2024/11/22	NC		%	40
			Benzo(a)anthracene	2024/11/22	NC		%	40
			Benzo(a)pyrene	2024/11/22	NC		%	40
			Benzo(b/j)fluoranthene	2024/11/22	NC		%	40
			Benzo(g,h,i)perylene	2024/11/22	NC		%	40
			Benzo(k)fluoranthene	2024/11/22	NC		%	40
			Chrysene	2024/11/22	NC		%	40

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dibenzo(a,h)anthracene	2024/11/22	NC		%	40
			Fluoranthene	2024/11/22	NC		%	40
			Fluorene	2024/11/22	NC		%	40
			Indeno(1,2,3-cd)pyrene	2024/11/22	NC		%	40
			1-Methylnaphthalene	2024/11/22	NC		%	40
			2-Methylnaphthalene	2024/11/22	NC		%	40
			Naphthalene	2024/11/22	NC		%	40
			Phenanthrene	2024/11/22	NC		%	40
			Pyrene	2024/11/22	NC		%	40
9782078	DAN	Matrix Spike	1,4-Difluorobenzene	2024/11/22		103	%	60 - 140
			4-Bromofluorobenzene	2024/11/22		110	%	60 - 140
			D10-o-Xylene	2024/11/22		90	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/22		98	%	60 - 140
			Benzene	2024/11/22		NC	%	50 - 140
			Toluene	2024/11/22		NC	%	50 - 140
			Ethylbenzene	2024/11/22		NC	%	50 - 140
			o-Xylene	2024/11/22		NC	%	50 - 140
			p+m-Xylene	2024/11/22		NC	%	50 - 140
			F1 (C6-C10)	2024/11/22		NC	%	60 - 140
9782078	DAN	Spiked Blank	1,4-Difluorobenzene	2024/11/22		110	%	60 - 140
			4-Bromofluorobenzene	2024/11/22		101	%	60 - 140
			D10-o-Xylene	2024/11/22		100	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/22		97	%	60 - 140
			Benzene	2024/11/22		95	%	50 - 140
			Toluene	2024/11/22		92	%	50 - 140
			Ethylbenzene	2024/11/22		98	%	50 - 140
			o-Xylene	2024/11/22		93	%	50 - 140
			p+m-Xylene	2024/11/22		92	%	50 - 140
			F1 (C6-C10)	2024/11/22		97	%	80 - 120
9782078	DAN	Method Blank	1,4-Difluorabenzene	2024/11/22		108	%	60 - 140
3.020.0		TWEETING BIGHT	4-Bromofluorobenzene	2024/11/22		94	%	60 - 140
			D10-o-Xylene	2024/11/22		98	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/22		96	%	60 - 140
			Benzene	2024/11/22	<0.020	90		60 - 140
			Toluene	2024/11/22	<0.020		ug/g	
			Ethylbenzene				ug/g	
			o-Xylene	2024/11/22	<0.020		ug/g	
			•	2024/11/22	<0.020		ug/g	
			p+m-Xylene	2024/11/22	<0.040		ug/g	
			Total Xylenes	2024/11/22	<0.040		ug/g	
			F1 (C6-C10)	2024/11/22	<10		ug/g	
202020	DAN	222	F1 (C6-C10) - BTEX	2024/11/22	<10		ug/g	
9782078	DAN	RPD	Benzene	2024/11/22	NC		%	50
			Toluene	2024/11/22	NC		%	50
			Ethylbenzene	2024/11/22	NC		%	50
			o-Xylene	2024/11/22	NC		%	50
			p+m-Xylene	2024/11/22	NC		%	50
			Total Xylenes	2024/11/22	NC		%	50
			F1 (C6-C10)	2024/11/22	24		%	30
			F1 (C6-C10) - BTEX	2024/11/22	24		%	30
782284	TLG	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/22		108	%	75 - 125
782284	TLG	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/22		103	%	75 - 125
782284	TLG	Method Blank	Hot Water Ext. Boron (B)	2024/11/22	< 0.050		ug/g	

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9782284	TLG	RPD	Hot Water Ext. Boron (B)	2024/11/22	NC		%	40
9782729	JWK	Matrix Spike	Acid Extractable Antimony (Sb)	2024/11/22		109	%	75 - 125
		·	Acid Extractable Arsenic (As)	2024/11/22		101	%	75 - 125
			Acid Extractable Barium (Ba)	2024/11/22		NC	%	75 - 125
			Acid Extractable Beryllium (Re)	2024/11/22		106	%	75 - 125
			Acid Extractable Boron (B)	2024/11/22		90	%	75 - 125
			Acid Extractable Cadmium (Cd)	2024/11/22		106	%	75 - 125
			Acid Extractable Chromium (Cr)	2024/11/22		99	%	75 - 125
			Acid Extractable Cobalt (Co)	2024/11/22		101	%	75 - 125
			Acid Extractable Copper (Cu)	2024/11/22		99	%	75 - 125
			Acid Extractable Lead (Pb)	2024/11/22		NC	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2024/11/22		96	%	75 - 125
			Acid Extractable Nickel (Ni)	2024/11/22		104	%	75 - 125
			Acid Extractable Selenium (Se)	2024/11/22		102	%	75 - 125
			Acid Extractable Silver (Ag)	2024/11/22		100	%	75 - 125
			Acid Extractable Thallium (TI)	2024/11/22		104	%	75 - 125
			Acid Extractable Uranium (U)	2024/11/22		108	%	75 - 1 2 5
			Acid Extractable Vanadium (V)	2024/11/22		NC	%	75 - 125
			Acid Extractable Zinc (Zn)	2024/11/22		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2024/11/22		101	%	75 - 125
9782729	IWK	Spiked Blank	Acid Extractable Antimony (Sb)	2024/11/22		104	%	80 - 120
	,,,,,,	Apimira Emilia	Acid Extractable Arsenic (As)	2024/11/22		102	%	80 - 120
			Acid Extractable Barlum (Ba)	2024/11/22		97	26	80 - 120
			Acid Extractable Beryllium (Be)	2024/11/22		99	%	80 - 120
			Acid Extractable Boron (B)	2024/11/22		94	%	80 - 120
			Acid Extractable Cadmium (Cd)	2024/11/22		98	%	80 - 120
			Acid Extractable Chromium (Cr)	2024/11/22		94	%	80 - 120
			Acid Extractable Cobalt (Co)	2024/11/22		97	%	80 - 120
			Acid Extractable Copper (Cu)	2024/11/22		95	%	80 - 120
			Acid Extractable Lead (Pb)	2024/11/22		99	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2024/11/22		92	%	80 - 120
			Acid Extractable Nickel (Ni)	2024/11/22		99	%	80 - 120
			Acid Extractable Selenium (Se)	2024/11/22		101	%	80 - 120
			Acid Extractable Silver (Ag)	2024/11/22		96	%	80 - 120
			Acid Extractable Thallium (TI)	2024/11/22		100	%	80 - 120
			Acid Extractable Uranium (U)	2024/11/22		103	%	80 - 120
			Acid Extractable Vanadium (V)	2024/11/22		97	%	80 - 120
			Acid Extractable Zinc (Zn)	2024/11/22		100	%	80 - 120
			Acid Extractable Mercury (Hg)	2024/11/22		97	%	80 - 120
9782729	IMK	Method Blank	Acid Extractable Antimony (Sb)	2024/11/22	<0.20		ug/g	
3/02/23	30010	WICKING DIGITA	Acid Extractable Arsenic (As)	2024/11/22	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2024/11/22	<0.50		ug/g	
			Acid Extractable Beryllium (Be)	2024/11/22	<0.20		ug/g	
			Acid Extractable Boron (B)	2024/11/22	<5.0		ug/g	
			Acid Extractable Boron (B) Acid Extractable Cadmium (Cd)	2024/11/22	<0.10		ug/g	
			Acid Extractable Cadimum (Cd) Acid Extractable Chromium (Cr)	2024/11/22	<1.0		ug/g	
			Acid Extractable Colonial (Co)	2024/11/22	<0.10		ug/g	
			Acid Extractable Cobait (Co) Acid Extractable Copper (Cu)	2024/11/22	<0.50		ug/g	
			Acid Extractable Copper (Cd) Acid Extractable Lead (Pb)	2024/11/22	<1.0		ug/g	
			Acid Extractable Lead (PD) Acid Extractable Molybdenum (Mo)	2024/11/22	<0.50		ug/g	
			-	2024/11/22	<0.50		ug/g	
			Acid Extractable Nickel (Ni)		<0.50			
			Acid Extractable Selenium (Se)	2024/11/22	~0.30		ug/g	

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Silver (Ag)	2024/11/22	<0.20		ug/g	
			Acid Extractable Thallium (TI)	2024/11/22	<0.050		ug/g	
			Acid Extractable Uranium (U)	2024/11/22	<0.050		ug/g	
			Acid Extractable Vanadium (V)	2024/11/22	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2024/11/22	<5.0		ug/g	
			Acid Extractable Mercury (Hg)	2024/11/22	< 0.050		ug/g	
9782729	JWK	RPD	Acid Extractable Antimony (Sb)	2024/11/22	21		%	30
			Acid Extractable Arsenic (As)	2024/11/22	5.3		%	30
			Acid Extractable Barium (Ba)	2024/11/22	3.0		%	30
			Acid Extractable Beryllium (Be)	2024/11/22	8.3		%	30
			Acid Extractable Boron (B)	2024/11/22	NC		%	30
			Acid Extractable Cadmium (Cd)	2024/11/22	4.9		%	30
			Acid Extractable Chromium (Cr)	2024/11/22	2.1		%	30
			Acid Extractable Cobalt (Co)	2024/11/22	0.79		%	30
			Acid Extractable Copper (Cu)	2024/11/22	2.0		%	30
			Acid Extractable Lead (Pb)	2024/11/22	12		%	30
			Acid Extractable Molybdenum (Mo)	2024/11/22	11		%	30
			Acid Extractable Nickel (Ni)	2024/11/22	1.9		%	30
			Acid Extractable Selenium (Se)	2024/11/22	4.1		%	30
			Acid Extractable Silver (Ag)	2024/11/22	NC		%	30
			Acid Extractable Thallium (TI)	2024/11/22	2.0		%	30
			Acid Extractable Uranium (U)	2024/11/22	1.8		%	30
			Acid Extractable Vanadium (V)	2024/11/22	1.6		%	30
			Acid Extractable Zinc (Zn)	2024/11/22	1.8		%	30
			Acid Extractable Mercury (Hg)	2024/11/22	2.8		%	30
9782786	KIT	Spiked Blank	Conductivity	2024/11/22		103	%	90=110
9782786	KIT	Method Blank	Conductivity	2024/11/22	< 0.002		mS/cm	
9782786	KIT	RPD	Conductivity	2024/11/22	8.6		%	10
9782978	JWK	Matrix Spike	Acid Extractable Mercury (Hg)	2024/11/22		93	%	75 - 125
9782978	JWK	Spiked Blank	Acid Extractable Mercury (Hg)	2024/11/22		100	%	80 - 120
9782978	JWK	Method Blank	Acid Extractable Mercury (Hg)	2024/11/22	<0.050		ug/g	
9782978	JWK	RPD	Acid Extractable Mercury (Hg)	2024/11/22	NC		%	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) The recovery was above the upper control limit. This may represent a high bias in some results for this specific analyte. For results that were not detected (ND), this potential bias has no impact.
- (2) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cristina Carriere, Senior Scientific Specialist

Armin A Handay

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

REPORT INFORMATION(if differs from invoice);

Marissa Lusito

Company Name. Contact Name

STANTEC

3 lol aged

ONT-2024-11-506

C41673

Task B:

COC #: PROJECT INFORMATION:

HATTING THE Project Manager:

Julye Clement

XX

Profit Centro Project 8 Sile #

Ä

marissa.lusito@stantec.com

MOE RECULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE BUREAU VERITAS DRINKING WATER CHAIN OF CUSTODY

(905) 479-9326

Fax

(905) 944-7777 SAPinvoices@Slantec.com

675 Cochrane Dr.W. West Tower Suite 300

Markham ON L3R 0B8

#3072 Stantec Consulting Ltd INVOICE INFORMATION:

Company Name

1 x318

Special Instructions

Sanilary Sever Bylaw

Machanifine Medianifine Indicana

Table 2
Table 3
Table 3

Rogulation 153 (2011)

Other Regulations

ANZ 33 (NOS

(HOS) AMAN CO! BOR O Metals / Hg / Cr VI Field Filtered (please circle):

Š

1150

2

Reg 406 Table

Include Criteria on Contificate of Analysis (YN)? Solve Solve College

Sample Burcode Label

re

20/20/20 N JEW -A w

24/10/29

fush Confirmation Number

Time Required

100

SAMPLES MUST DE KEPT COOL (KINDI) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VER TAS

1/5/5 S/5/5

Laboratory Use Only

bettiment ton

Date: I YY/MMOD!

RECEIVED BY: (Signatura/Print)

5240

1120

0915

1525

848-5 MW9-5 14.4V

UNLESS OTHERWISE AGREED TO IN WRITHING, WORK SUBMITTED ON THIS CHAIL OF CUSTOOY IS SUBJECT TO BUFBAN VERTIAAS STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTOOY DOCUMENT IS ADMINISTRATION OF CUSTOOY DOCUMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BINALCOMERNACHEMAL LABORATORISES.

12

10/11/101

Date: (YY/MM/DD)

RELINGUISHED BY: (Signature/Print)

THE PARTY

MW 9-13

0

1/20 / P

- SAMPLE CONTANER, PRESENVATON, HOLD THE AND PACKAGE INFORMATION CAN BE VIEWED AT WWW BINAL COMENINDONMENTAL-LABORATORES RESOURLES CHAIN-CUSTOOV-FORMS-COCS. IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN AMALYTICAL TAT DELAYS.

Page 35 of 47

t t t 3 3 3 3 3

>

1325 0360

1-2Mh

KW2

>

>

1520

210/2 24/0/12 24/4/28

BH 8

3

1

OC

5201

>

7

Job Specific Rush TAT (# applies to entire submission)

Photo note. Sentant 197 for centan less such as 800 and Doomsfurant are > 5 395 - contect your Project Manager for density.

Sandard TaT a 5-7 Working days for most hasa

(wit be applied # Rush TAT is not specified).

Regular (Standard) TAT:

54

u)

9 15 Total

C4Y6747

Address

Project Manager:

Julla Clement

Bottle Orderit:

Burreus Verillas Canada (2018) Inc.

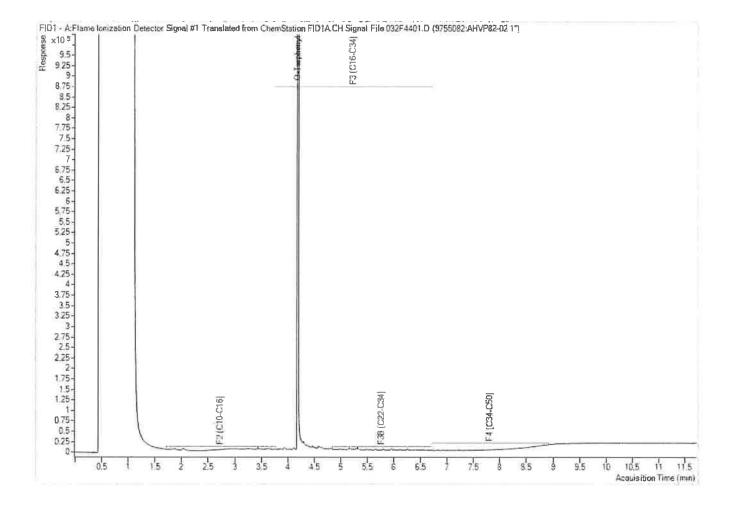
Page 37 of 47

ø 117 ın

2

Ø,

Page 38 of 47


Burnatu Veritan Carsuda (2019) Inc.

Page 40 of 47

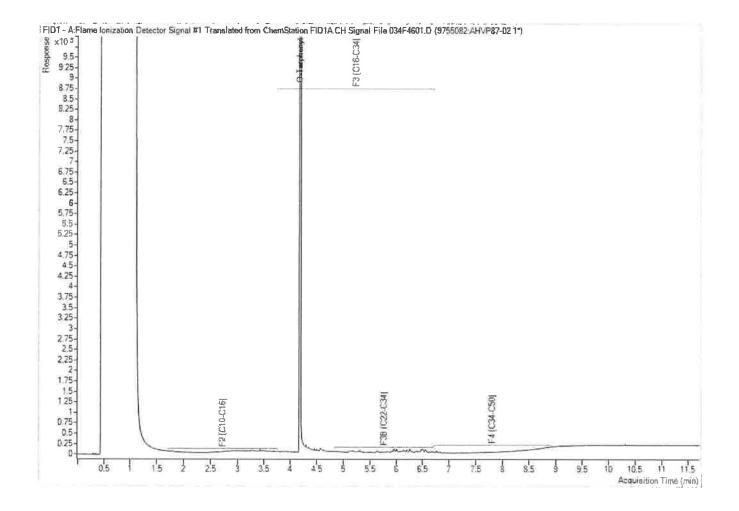
Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW1-5

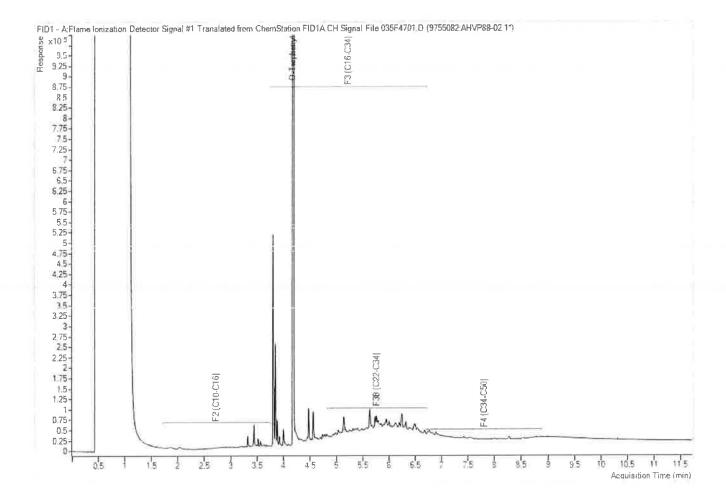

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

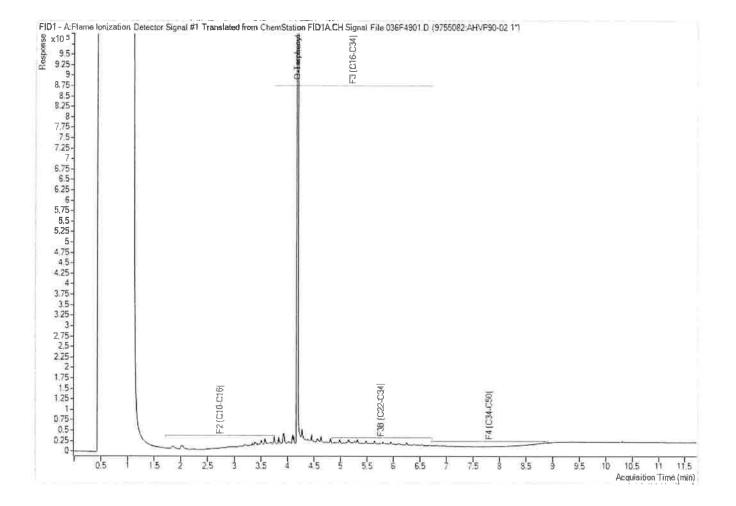
Client ID: MW2-5


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

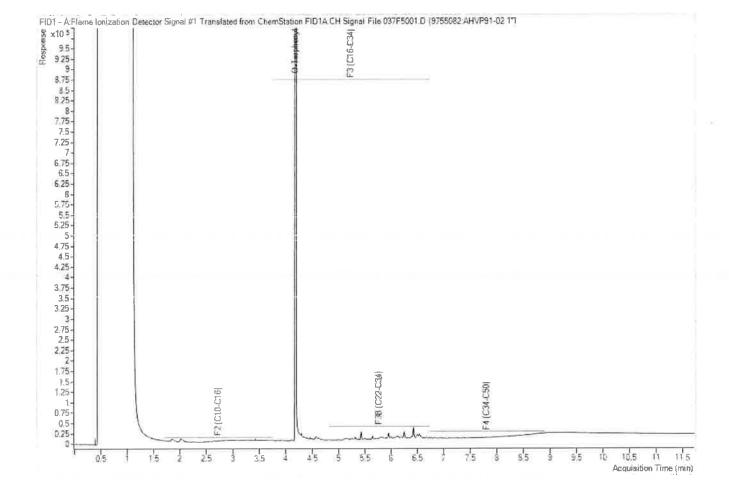
Stantec Consulting Ltd Client Project #: 122140392


Client ID: BH8-5

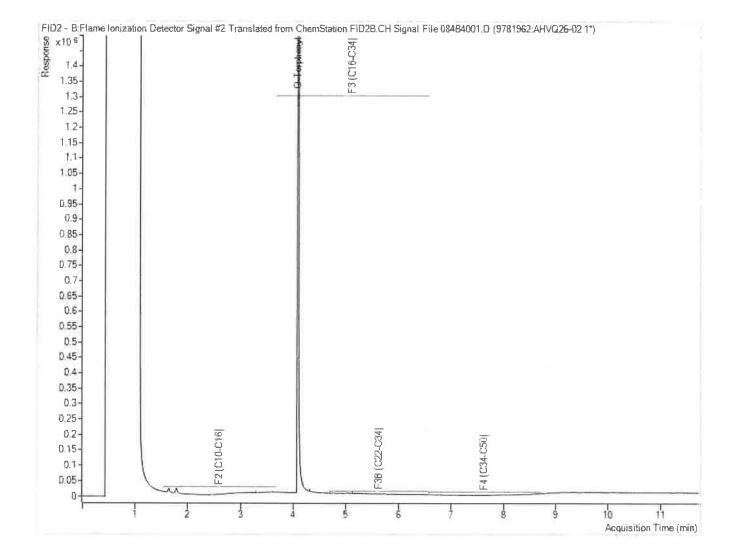
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram


Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW9-5

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram


Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW9-13

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram


Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW10-5

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW9-10

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Your Project #: 122140392 Your C.O.C. #: 1019663-10-01

Attention: Marissa Lusito

Stantec Consulting Ltd 675 Cochrane Dr W. West Tower Suite 300 Markham, ON CANADA L3R 0B8

> Report Date: 2024/11/26 Report #: R8420115 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4Y8641 Received: 2024/11/05, 15:20

Sample Matrix: Soil # Samples Received: 27

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	8	N/A	2024/11/10	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum	1	N/A	2024/11/25	CAM SOP-00301	EPA 8270D m
Semivolatile Organic Compounds (TCLP)	1	2024/11/11	2024/11/12	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	8	2024/11/22	2024/11/22	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	4	2024/11/22	2024/11/23	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	8	2024/11/08	2024/11/08	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	2	N/A	2024/11/11		EPA 8260C m
1,3-Dichloropropene Sum	3	N/A	2024/11/25		EPA 8260C m
1,3-Dichloropropene Sum	6	N/A	2024/11/08		EPA 8260C m
Free (WAD) Cyanide	10	2024/11/21	2024/11/22	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	2	2024/11/22	2024/11/22	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	8	2024/11/08	2024/11/12	CAM SOP-00457	OMOE E3015 m
Cyanide (WAD) in Leachates	1	N/A	2024/11/08	CAM SOP-00457	OMOE 3015 m
Conductivity	8	2024/11/11	2024/11/11	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	10	2024/11/21	2024/11/21	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	2	2024/11/22	2024/11/22	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	10	2024/11/21	2024/11/22	CAM SOP-00436	EPA 3060A/7199 m
Hexavalent Chromium in Soil by IC (1)	2	2024/11/22	2024/11/22	CAM SOP-00436	EPA 3060A/7199 m
Hexavalent Chromium in Soil by IC (1)	8	2024/11/08	2024/11/08	CAM SOP-00436	EPA 3060A/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	5	N/A	2024/11/18	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	6	N/A	2024/11/19	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2024/11/07	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	11	2024/11/18	2024/11/19	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	3	2024/11/22	2024/11/22	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	4	2024/11/08	2024/11/10	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	5	2024/11/08	2024/11/11	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric)	2	2024/11/13	2024/11/13	CAM SOP-00316	CCME PHC-CWS m
F4G (CCME Hydrocarbons Gravimetric)	3	2024/11/20	2024/11/20	CAM SOP-00316	CCME PHC-CWS m
Fluoride by ISE in Leachates	1	2024/11/08	2024/11/09	CAM SOP-00449	SM 24 4500-F- C m
Acid Extractable Metals by ICPMS	10	2024/11/21	2024/11/23	CAM SOP-00447	EPA 6020B m

Your Project #: 122140392 Your C.O.C. #: 1019663-10-01

Attention: Marissa Lusito

Stantec Consulting Ltd 675 Cochrane Dr W. West Tower Suite 300 Markham, ON CANADA L3R 0B8

Report Date: 2024/11/26

Report #: R8420115 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4Y8641 Received: 2024/11/05, 15:20

Sample Matrix: Soil # Samples Received: 27

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	2	2024/11/22	2024/11/22	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	8	2024/11/08	2024/11/08	CAM SOP-00447	EPA 6020B m
Total Metals in TCLP Leachate by ICPMS	1	2024/11/08	2024/11/08	CAM SOP-00447	EPA 6020B m
Ignitability of a Sample	1	2024/11/11	2024/11/11	CAM SOP-00432	EPA 1030 Rev. 1 m
Moisture	11	N/A	2024/11/18	CAM SOP-00445	Carter 2nd ed 70.2 m
Moisture	3	N/A	2024/11/21	CAM SOP-00445	Carter 2nd ed 70.2 m
Moisture	12	N/A	2024/11/06	CAM SOP-00445	Carter 2nd ed 70.2 m
Nitrate& Nitrite as Nitrogen in Leachate	1	N/A	2024/11/12	CAM SOP-00440	SM 24 4500-NO3I/NO2E
PAH Compounds in Soil by GC/MS (SIM)	1	2024/11/22	2024/11/22	CAM SOP-00318	EPA 8270E
PAH Compounds in Soil by GC/MS (SIM)	8	2024/11/08	2024/11/08	CAM SOP-00318	EPA 8270E
pH CaCl2 EXTRACT	9	2024/11/21	2024/11/21	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	3	2024/11/22	2024/11/22	CAM SOP-00413	EPA 9045 D m
oH CaCl2 EXTRACT	8	2024/11/09	2024/11/09	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	8	N/A	2024/11/12	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	10	N/A	2024/11/22	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	2	N/A	2024/11/25	CAM SOP-00102	EPA 6010C
TCLP - % Solids	1	2024/11/07	2024/11/08	CAM SOP-00401	EPA 1311 Update I m
FCLP - Extraction Fluid	1	N/A	2024/11/08	CAM SOP-00401	EPA 1311 Update I m
ГСLP - Initial and final pH	1	N/A	2024/11/08	CAM SOP-00401	EPA 1311 Update I m
TCLP Zero Headspace Extraction	1	2024/11/07	2024/11/08	CAM SOP-00430	EPA 1311 m
Volatile Organic Compounds and F1 PHCs	3	N/A	2024/11/22	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs	8	N/A	2024/11/07	CAM SOP-00230	EPA 8260C m
VOCs in ZHE Leachates	1	2024/11/08	2024/11/08	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are

Your Project #: 122140392 Your C.O.C. #: 1019663-10-01

Attention: Marissa Lusito

Stantec Consulting Ltd 675 Cochrane Dr W. West Tower Suite 300 Markham, ON CANADA L3R 0B8

> Report Date: 2024/11/26 Report #: R8420115

> > Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4Y8641

Received: 2074/11/05, 15:20

reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Suils are reported on a dry weight basis unless otherwise specified.
- (2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated,
- (2) Notable extraction date is given for FIBILA & Vocashiples that each great victory in the Indian extraction date is given for FIBILA & Vocashiples that each great victory is a few field prescribed elements of the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to:
Julie Clement, Technical Account Manager
Email: Julie.CLEMENT@bureauveritas.com
Phone# (613)868-6079

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages: 3 Page 3 of 102

Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHZR54		AHZR56		AHZR57		
Sampling Date		2024/10/31 09:50		2024/10/31 15:25		2024/11/01 14:30		
COC Number		1019663-10-01		1019663-10-01		1019663-10-01		
	UNITS	MW3-4	RDL	MW4-8	RDL	MW6-5	RDL	QC Batch
Calculated Parameters						ń.		
Sodium Adsorption Ratio	N/A	1.6		4.5		22		9748632
Inorganics				-		-	-	
Conductivity	mS/cm	1.1	0.002	1.5	0.002	2.3	0.002	9757581
Available (CaCl2) pH	рН	12.1		7.13		7.39		9756537
WAD Cyanide (Free)	ug/g	<0.01	0.01	<0.01	0.01	<0.01	0.01	9755572
Chromium (VI)	ug/g	<0.18	0.18	<0.36	0.36	<0.18	0.18	9754630
Metals								
Hot Water Ext. Boron (B)	ug/g	0.22	0.050	0.67	0.050	1.5	0.050	9753952
Acid Extractable Antimony (Sb)	ug/g	0.24	0.20	2.4	0.20	3.6	0.20	9754367
Acid Extractable Arsenic (As)	ug/g	1.2	1.0	5.0	1.0	5.8	1.0	9754367
Acid Extractable Barium (Ba)	ug/g	36	0.50	59	0.50	71	0.50	9754367
Acid Extractable Beryllium (Be)	ug/g	0.23	0.20	0.21	0.20	0.27	0.20	9754367
Acid Extractable Boron (B)	ug/g	<5.0	5.0	<5.0	5.0	7.1	5.0	9754367
Acid Extractable Cadmium (Cd)	ug/g	0.14	0.10	1.1	0.10	0.41	0.10	9754367
Acid Extractable Chromium (Cr)	ug/g	11	1.0	13	1.0	160	1.0	9754367
Acid Extractable Cobalt (Co)	ug/g	2.6	0.10	4.0	0.10	3.5	0.10	9754367
Acid Extractable Copper (Cu)	ug/g	5.2	0.50	28	0.50	12	0.50	9754367
Acid Extractable Lead (Pb)	ug/g	13	1.0	200	1.0	130	1.0	9754367
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	1.4	0.50	1.4	0.50	9754367
Acid Extractable Nickel (Ni)	ug/g	5.4	0.50	12	0.50	7.9	0.50	9754367
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	<0.50	0.50	0.89	0.50	9754367
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	<0.20	0.20	<0.20	0.20	9754367
Acid Extractable Thallium (TI)	ug/g	<0.050	0.050	0.090	0.050	0.13	0.050	9754367
Acid Extractable Uranium (U)	ug/g	0.38	0.050	0.43	0.050	0.47	0.050	9754367
Acid Extractable Vanadium (V)	ug/g	22	5.0	20	5.0	23	5.0	9754367
Acid Extractable Zinc (Zn)	ug/g	44	5.0	520	5.0	150	5.0	9754367
Acid Extractable Mercury (Hg)	ug/g	0.13	0.050	0.63	0.050	0.13	0.050	9754367
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHZR58			AHZR58			AHZR59		
Sampling Date		2024/11/01 09:17			2024/11/01 09:17			2024/10/31 15:00		
COC Number		1019663-10-01			1019663-10-01			1019663-10-01		
	UNITS	MW7-4	RDL	QC Batch	MW7-4 Lab-Dup	RDL	QC Batch	BH11-2	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	18		9748632				94		9748632
Inorganics										
Conductivity	mS/cm	1,3	0.002	9757581				5.6	0.002	9757581
Available (CaCl2) pH	pН	7.78		9756537	7.78		9756537	7.95		9756537
WAD Cyanide (Free)	ug/g	<0.01	0.01	9755572	<0.01	0.01	9755572	<0.01	0.01	9755572
Chromium (VI)	ug/g	<0.18	0.18	9754630	<0.18	0.18	9754630	<0.18	0.18	9754630
Metals										
Hot Water Ext. Boron (B)	ug/g	0.15	0.050	9754031				0.11	0.050	9753952
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	9754367				<0.20	0.20	9754367
Acid Extractable Arsenic (As)	ug/g	1.1	1.0	9754367				2.4	1.0	9754367
Acid Extractable Barium (Ba)	ug/g	9.6	0.50	9754367				28	0.50	9754367
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.20	9754367				<0.20	0.20	9754367
Acid Extractable Boron (B)	ug/g	<5.0	5.0	9754367				<5.0	5.0	9754367
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.10	9754367				<0.10	0.10	9754367
Acid Extractable Chromium (Cr)	ug/g	8.9	1.0	9754367				6.0	1.0	9754367
Acid Extractable Cobalt (Co)	ug/g	2.4	0.10	9754367				2.0	0.10	9754367
Acid Extractable Copper (Cu)	ug/g	4.4	0.50	9754367				3.3	0.50	9754367
Acid Extractable Lead (Pb)	ug/g	6.4	1.0	9754367				1.6	1.0	9754367
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	9754367				<0.50	0.50	9754367
Acid Extractable Nickel (Ni)	ug/g	5.2	0.50	9754367				3.6	0.50	9754367
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	9754367				<0.50	0.50	9754367
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	9754367				<0.20	0.20	9754367
Acid Extractable Thallium (TI)	ug/g	<0.050	0.050	9754367				<0.050	0.050	9754367
Acid Extractable Uranium (U)	ug/g	0.50	0.050	9754367				0.28	0.050	9754367
Acid Extractable Vanadium (V)	ug/g	28	5.0	9754367				14	5.0	9754367
Acid Extractable Zinc (Zn)	ug/g	17	5.0	9754367				14	5.0	9754367
Acid Extractable Mercury (Hg)	ug/g	0.060	0.050	9754367				<0.050	0.050	9754367

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHZR62		AHZR63			AHZR66		
Sampling Date		2024/11/01		2024/10/31 13:15			2024/10/31 09:31		
COC Number		1019663-10-01		1019663-10-01			1019663-10-01		
	UNITS	QC-2	QC Batch	MW12-2	RDL	QC Batch	BH13-5	RDL	QC Batch
Calculated Parameters		<u> </u>	,			//			
Sodium Adsorption Ratio	N/A	17	9748632	16		9748632	0.54		9748632
Inorganics	-		-						
Conductivity	mS/cm	1.2	9757581	2.3	0.002	9757581	0.35	0.002	9757581
Available (CaCl2) pH	pН	7.80	9756537	7.78		9756537	7.37		9756537
WAD Cyanide (Free)	ug/g	<0.01	9755572	<0.01	0.01	9755572	<0.01	0.01	9755572
Chromium (VI)	ug/g	<0.18	9754630	<0.18	0.18	9754630	<0.18	0.18	9754630
Metals									
Hot Water Ext. Boron (B)	ug/g	0.19	9754031	0.36	0.050	9753952	0.66	0.050	9754031
Acid Extractable Antimony (Sb)	ug/g	<0.20	9754367	0.22	0.20	9754367	0.39	0.20	9754367
Acid Extractable Arsenic (As)	ug/g	1.1	9754367	2.1	1.0	9754367	7.1	1.0	9754367
Acid Extractable Barium (Ba)	ug/g	8.1	9754367	44	0.50	9754367	130	0.50	9754367
Acid Extractable Beryllium (Be)	ug/g	<0.20	9754367	0.26	0.20	9754367	0.20	0.20	9754367
Acid Extractable Boron (B)	ug/g	<5.0	9754367	<5.0	5.0	9754367	11	5.0	9754367
Acid Extractable Cadmium (Cd)	ug/g	<0.10	9754367	0.24	0.10	9754367	3.0	0.10	9754367
Acid Extractable Chromium (Cr)	ug/g	7.9	9754367	12	1.0	9754367	15	1.0	9754367
Acid Extractable Cobalt (Co)	ug/g	1.9	9754367	3.7	0.10	9754367	2.5	0.10	9754367
Acid Extractable Copper (Cu)	ug/g	4.0	9754367	8.9	0.50	9754367	18	0.50	9754367
Acid Extractable Lead (Pb)	ug/g	4.4	9754367	70	1.0	9754367	360	1.0	9754367
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	9754367	<0.50	0.50	9754367	<0.50	0.50	9754367
Acid Extractable Nickel (Ni)	ug/g	4.5	9754367	7.8	0.50	9754367	5.0	0.50	9754367
Acid Extractable Selenium (Se)	ug/g	<0.50	9754367	<0.50	0.50	9754367	<0.50	0.50	9754367
Acid Extractable Silver (Ag)	ug/g	<0.20	9754367	<0.20	0.20	9754367	0.59	0.20	9754367
Acid Extractable Thallium (TI)	ug/g	<0.050	9754367	0.056	0.050	9754367	0.094	0.050	9754367
Acid Extractable Uranium (U)	ug/g	0.39	9754367	0.44	0.050	9754367	0.37	0.050	9754367
Acid Extractable Vanadium (V)	ug/g	22	9754367	26	5.0	9754367	19	5.0	9754367
Acid Extractable Zinc (Zn)	ug/g	14	9754367	45	5.0	9754367	1700	5.0	9754367
Acid Extractable Mercury (Hg)	ug/g	<0.050	9754367	0.068	0.050	9754367	52	0.50	9754367
RDL = Reportable Detection Limit									
OC Batch = Quality Control Batch									

QC Batch = Quality Control Batch

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHZR66			AHZR86	AHZR91		
Sampling Date		2024/10/31			2024/10/31	2024/11/01		
Sampling Date		09:31			15:55	14:40		
COC Number		1019663-10-01			1019663-10-01	1019663-10-01		
	UNITS	BH13-5 Lab-Dup	RDL	QC Batch	MW4-9	MW6-8	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A				15	17		9780245
Inorganics								
Conductivity	mS/cm	0.35	0.002	9757581	1.6	4.3	0.002	9782811
Available (CaCl2) pH	рН				9.56	7.46		9782879
WAD Cyanide (Free)	ug/g				<0.01	<0.01	0.01	9781975
Chromium (VI)	ug/g				<0.18	<0.18	0.18	9782200
Metals								
Hot Water Ext. Boron (B)	ug/g				0.17	0.58	0.050	9782283
Acid Extractable Antimony (Sb)	ug/g				<0.20	5.2	0.20	9782920
Acid Extractable Arsenic (As)	ug/g				1.1	9.2	1.0	9782920
Acid Extractable Barium (Ba)	ug/g				18	200	0.50	9782920
Acid Extractable Beryllium (Be)	ug/g				<0.20	0.36	0.20	9782920
Acid Extractable Boron (B)	ug/g				<5.0	7.7	5.0	9782920
Acid Extractable Cadmium (Cd)	ug/g		-		<0.10	0.19	0.10	9782920
Acid Extractable Chromium (Cr)	ug/g				5.8	35	1.0	9782920
Acid Extractable Cobalt (Co)	ug/g				1.7	4.4	0.10	9782920
Acid Extractable Copper (Cu)	ug/g				3.8	880	0.50	9782920
Acid Extractable Lead (Pb)	ug/g				2.3	560	1.0	9782920
Acid Extractable Molybdenum (Mo)	ug/g				<0.50	0.74	0.50	9782920
Acid Extractable Nickel (Ni)	ug/g				3.1	12	0.50	9782920
Acid Extractable Selenium (Se)	ug/g				<0.50	<0.50	0.50	9782920
Acid Extractable Silver (Ag)	ug/g				<0.20	0.75	0.20	9782920
Acid Extractable Thallium (TI)	ug/g				<0.050	0.083	0.050	9782920
Acid Extractable Uranium (U)	ug/g				0.46	0.53	0.050	9782920
Acid Extractable Vanadium (V)	ug/g				14	28	5.0	9782920
Acid Extractable Zinc (Zn)	ug/g				13	540	5.0	9782920
Acid Extractable Mercury (Hg)	ug/g				<0.050	0.38	0.050	9782920

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHZS16		AHZS17		AHZS18		
Sampling Date		2024/10/31		2024/10/31		2024/10/31		
Sampling Date		08:50		09:00		09:10		
COC Number		1019663-10-01	4	1019663-10-01		1019663-10-01		
	UNITS	BH13-1	QC Batch	BH13-2	QC Batch	BH13-3	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	25	9771384	5.6	9771384	3.2		9771384
Inorganics								
Conductivity	mS/cm	0.76	9780464	0.74	9780464	0.57	0.002	9780464
Available (CaCl2) pH	рΗ	7.97	9780505	7.70	9780505	7.59		9781125
WAD Cyanide (Free)	ug/g	<0.01	9781287	<0.01	9781287	<0.01	0.01	9781307
Chromium (VI)	ug/g	<0.18	9780512	<0.18	9780512	<0.18	0.18	9781254
Metals								
Hot Water Ext. Boron (B)	ug/g	<0.050	9782634	0.18	9782456	0.10	0.050	9782634
Acid Extractable Antimony (Sb)	ug/g	<0.20	9780686	<0.20	9780686	<0.20	0.20	9780686
Acid Extractable Arsenic (As)	ug/g	<1.0	9780686	1.3	9780686	1.7	1.0	9780686
Acid Extractable Barium (Ba)	ug/g	15	9780686	38	9780686	27	0.50	9780686
Acid Extractable Beryllium (Be)	ug/g	<0.20	9780686	0.28	9780686	0.26	0.20	9780686
Acid Extractable Boron (B)	ug/g	<5.0	9780686	<5.0	9780686	<5.0	5.0	9780686
Acid Extractable Cadmium (Cd)	ug/g	<0.10	9780686	0.11	9780686	<0.10	0.10	9780686
Acid Extractable Chromium (Cr)	ug/g	6.8	9780686	9.4	9780686	9.3	1.0	9780686
Acid Extractable Cobalt (Co)	ug/g	2.2	9780686	3.1	9780686	2.9	0.10	9780686
Acid Extractable Copper (Cu)	ug/g	4.7	9780686	5.6	9780686	4.5	0.50	9780686
Acid Extractable Lead (Pb)	ug/g	2.2	9780686	8.6	9780686	8.4	1.0	9780686
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	9780686	<0.50	9780686	<0.50	0.50	9780686
Acid Extractable Nickel (Ni)	ug/g	3.9	9780686	6.0	9780686	5.3	0.50	9780686
Acid Extractable Selenium (Se)	ug/g	<0.50	9780686	<0.50	9780686	<0.50	0.50	9780686
Acid Extractable Silver (Ag)	ug/g	<0.20	9780686	<0.20	9780686	<0.20	0.20	9780686
Acid Extractable Thallium (TI)	ug/g	<0.050	9780686	0.058	9780686	0.050	0.050	9780686
Acid Extractable Uranium (U)	ug/g	0.40	9780686	0.33	9780686	0.39	0.050	9780686
Acid Extractable Vanadium (V)	ug/g	16	9780686	24	9780686	24	5.0	9780686
Acid Extractable Zinc (Zn)	ug/g	13	9780686	28	9780686	23	5.0	9780686
Acid Extractable Mercury (Hg)	ug/g	<0.050	9780686	<0.050	9780686	<0.050	0.050	9780686
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHZS19			AHZS20			AHZS21		
Sampling Date		2024/10/31 09:20			2024/10/31 09:40			2024/10/31 10:00		
COC Number		1019663-10-01			1019663-10-01			1019663-10-01		
	UNITS	BH13-4	RDL	QC Batch	BH13-6	RDL	QC Batch	BH13-7	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	2.8		9771384	0.58		9771384	0.21		9771384
Inorganics										
Conductivity	mS/cm	1.1	0.002	9780464	0.78	0.002	9780464	0.27	0.002	9780464
Available (CaCl2) pH	рН	7.41		9781125	7.32		9780505	7.63		9783050
WAD Cyanide (Free)	ug/g	<0.01	0.01	9781307	<0.01	0.01	9781287	<0.01	0.01	9781287
Chromium (VI)	ug/g	<0.18	0.18	9781254	<0.18	0.18	9780512	<0.36 (1)	0.36	9780512
Metals										
Hot Water Ext. Boron (B)	ug/g	0.80	0.050	9782456	0.68	0.050	9782634	0.29	0.050	9782456
Acid Extractable Antimony (Sb)	ug/g	0.86	0.20	9780686	0.23	0.20	9780686	<0.20	0.20	9780686
Acid Extractable Arsenic (As)	ug/g	8.6	1.0	9780686	3.1	1.0	9780686	1.7	1.0	9780686
Acid Extractable Barium (Ba)	ug/g	160	0.50	9780686	100	0.50	9780686	38	0.50	9780686
Acid Extractable Beryllium (Be)	ug/g	0.38	0.20	9780686	<0.20	0.20	9780686	<0.20	0.20	9780686
Acid Extractable Boron (B)	ug/g	9.3	5.0	9780686	8.9	5.0	9780686	<5.0	5.0	9780686
Acid Extractable Cadmium (Cd)	ug/g	0.33	0.10	9780686	0.34	0.10	9780686	<0.10	0.10	9780686
Acid Extractable Chromium (Cr)	ug/g	14	1.0	9780686	11	1.0	9780686	7.7	1.0	9780686
Acid Extractable Cobalt (Co)	ug/g	4.5	0.10	9780686	2.2	0.10	9780686	2.3	0.10	9780686
Acid Extractable Copper (Cu)	ug/g	29	0.50	9780686	14	0.50	9780686	6.3	0.50	9780686
Acid Extractable Lead (Pb)	ug/g	260	1.0	9780686	180	1.0	9780686	12	1.0	9780686
Acid Extractable Molybdenum (Mo)	ug/g	0.70	0.50	9780686	<0.50	0.50	9780686	<0.50	0.50	9780686
Acid Extractable Nickel (Ni)	ug/g	11	0.50	9780686	4.8	0.50	9780686	4.8	0.50	9780686
Acid Extractable Selenium (Se)	ug/g	0.84	0.50	9780686	<0.50	0.50	9780686	<0.50	0.50	9780686
Acid Extractable Silver (Ag)	ug/g	0.30	0.20	9780686	0.57	0.20	9780686	<0.20	0.20	9780686
Acid Extractable Thallium (TI)	ug/g	0.17	0.050	9780686	0.076	0.050	9780686	<0.050	0.050	9780686
Acid Extractable Uranium (U)	ug/g	0.42	0.050	9780686	0.38	0.050	9780686	0.41	0.050	9780686
Acid Extractable Vanadium (V)	ug/g	25	5.0	9780686	16	5.0	9780686	15	5.0	9780686
Acid Extractable Zinc (Zn)	ug/g	240	5.0	9780686	680	5.0	9780686	58	5.0	9780686
Acid Extractable Mercury (Hg)	ug/g	0.77	0.050	9780686	18	0.25	9780686	0.20	0.050	9780686

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Detection Limits were raised due to high moisture content.

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHZS22	AHZS23	AHZS24			AHZS24		
Sampling Date		2024/10/31	2024/10/31	2024/10/31			2024/10/31		
Bamping Date		10:10	10:15	10:25			10:25		
COC Number		1019663-10-01	1019663-10-01	1019663-10-01			1019663-10-01		
	UNITS	BH13-8	BH13-9	BH13-10	RDL	QC Batch	BH13-10 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Sodium Adsorption Ratio	N/A	0.31 (1)	0.35 (1)	0.33 (1)		9771384			
Inorganics									
Conductivity	mS/cm	0.15	0.10	0.11	0.002	9780464	0.11	0.002	9780464
Available (CaCl2) pH	рН	7.81	7.89	7.87		9780505			
WAD Cyanide (Free)	ug/g	<0.01	<0.01	<0.01	0.01	9781287			
Chromium (VI)	ug/g	<0.18	<0.18	<0.18	0.18	9780512			
Metals							M		
Hot Water Ext. Boron (B)	ug/g	<0.050	<0.050	<0.050	0.050	9782634			
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20	0.20	9780686			
Acid Extractable Arsenic (As)	ug/g	1.4	<1.0	<1.0	1.0	9780686			
Acid Extractable Barium (Ba)	ug/g	21	18	19	0.50	9780686			
Acid Extractable Beryllium (Be)	ug/g	<0.20	<0.20	<0.20	0.20	9780686			
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	<5.0	5.0	9780686			
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	<0.10	0.10	9780686			
Acid Extractable Chromium (Cr)	ug/g	5.7	5.3	5.6	1,0	9780686			
Acid Extractable Cobalt (Co)	ug/g	2.1	1.8	1.8	0.10	9780686			
Acid Extractable Copper (Cu)	ug/g	4.3	3.6	4.7	0.50	9780686			
Acid Extractable Lead (Pb)	ug/g	2.4	1.6	1.7	1.0	9780686			
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	<0.50	0.50	9780686			
Acid Extractable Nickel (Ni)	ug/g	3.7	3.3	3.4	0.50	9780686			
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	0.50	9780686			
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	0.20	9780686			
Acid Extractable Thallium (TI)	ug/g	<0.050	<0.050	<0.050	0.050	9780686			
Acid Extractable Uranium (U)	ug/g	0.65	0.52	0.42	0.050	9780686			
Acid Extractable Vanadium (V)	ug/g	13	12	13	5.0	9780686			
Acid Extractable Zinc (Zn)	ug/g	12	9.9	10	5.0	9780686			
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	<0.050	0.050	9780686			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio,

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AHZS26		
Sampling Date		2024/10/31 10:50		
COC Number		1019663-10-01		
	UNITS	BH13-11	RDL	QC Batch
Calculated Parameters				
Sodium Adsorption Ratio	N/A	0.33 (1)		9771384
Inorganics				
Conductivity	mS/cm	0.12	0.002	9780464
Available (CaCl2) pH	рН	7.78		9780505
WAD Cyanide (Free)	ug/g	<0.01	0.01	9781287
Chromium (VI)	ug/g	<0.18	0.18	9780512
Metals		*		
Hot Water Ext. Boron (B)	ug/g	<0.050	0.050	9782456
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	9780686
Acid Extractable Arsenic (As)	ug/g	<1.0	1.0	9780686
Acid Extractable Barium (Ba)	ug/g	20	0.50	9780686
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.20	9780686
Acid Extractable Boron (B)	ug/g	<5.0	5.0	9780686
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.10	9780686
Acid Extractable Chromium (Cr)	ug/g	5.9	1.0	9780686
Acid Extractable Cobalt (Co)	ug/g	1.9	0.10	9780686
Acid Extractable Copper (Cu)	ug/g	4.4	0.50	9780686
Acid Extractable Lead (Pb)	ug/g	1.9	1.0	9780686
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	9780686
Acid Extractable Nickel (Ni)	ug/g	3.6	0.50	9780686
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	9780686
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	9780686
Acid Extractable Thallium (TI)	ug/g	<0.050	0.050	9780686
Acid Extractable Uranium (U)	ug/g	0.48	0.050	9780686
Acid Extractable Vanadium (V)	ug/g	14	5.0	9780686
Acid Extractable Zinc (Zn)	ug/g	12	5.0	9780686
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	9780686
RDI = Reportable Detection Limit				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

O.REG 153 PAHS (SOIL)

Bureau Veritas ID		AHZR54		AHZR56		AHZR57		AHZR58		
Sampling Date		2024/10/31		2024/10/31		2024/11/01		2024/11/01		
		09:50		15:25		14:30		09:17		
COC Number		1019663-10-01		1019663-10-01		1019663-10-01		1019663-10-01		
	UNITS	MW3-4	RDL	MW4-8	RDL	MW6-5	RDL	MW7-4	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	0.030	0.014	0.037	0.0071	<0.071	0.071	9748849
Polyaromatic Hydrocarbons		· · · · · · · · · · · · · · · · · · ·						-		
Acenaphthene	ug/g	<0.0050	0.0050	0.040	0.010	0.020	0.0050	<0.050	0.050	9753795
Acenaphthylene	ug/g	<0.0050	0.0050	0.014	0.010	0.018	0.0050	<0.050	0.050	9753795
Anthracene	ug/g	<0.0050	0.0050	0.066	0.010	0.059	0.0050	0.051	0.050	9753795
Benzo(a)anthracene	ug/g	0.0093	0.0050	0.15	0.010	0.072	0.0050	0.21	0.050	9753795
Benzo(a)pyrene	ug/g	0.011	0.0050	0.16	0.010	0.077	0.0050	0.34	0.050	9753795
Benzo(b/j)fluoranthene	ug/g	0.014	0.0050	0.20	0.010	0.098	0.0050	0.35	0.050	9753795
Benzo(g,h,i)perylene	ug/g	0.0091	0.0050	0.085	0.010	0.075	0.0050	0.24	0.050	9753795
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	0.061	0.010	0.035	0.0050	0.12	0.050	9753795
Chrysene	ug/g	0.0095	0.0050	0.15	0.010	0.067	0.0050	0.18	0.050	9753795
Dibenzo(a,h)anthracene	ug/g	<0.0050	0.0050	0.019	0.010	0.013	0.0050	<0.050	0.050	9753795
Fluoranthene	ug/g	0.024	0.0050	0.40	0.010	0.23	0.0050	0.39	0.050	9753795
Fluorene	ug/g	<0.0050	0.0050	0.044	0.010	0.033	0.0050	<0.050	0.050	9753795
Indeno(1,2,3-cd)pyrene	ug/g	0.0080	0.0050	0.090	0.010	0.073	0.0050	0.23	0.050	9753795
1-Methylnaphthalene	ug/g	<0.0050	0.0050	0.015	0.010	0.024	0.0050	<0.050	0.050	9753795
2-Methylnaphthalene	ug/g	<0.0050	0.0050	0.014	0.010	0.013	0.0050	<0.050	0.050	9753795
Naphthalene	ug/g	<0.0050	0.0050	0.029	0.010	0.016	0.0050	<0.050	0.050	9753795
Phenanthrene	ug/g	0.016	0.0050	0.39	0.010	0.31	0.0050	0.21	0.050	9753795
Pyrene	ug/g	0.021	0.0050	0.33	0.010	0.19	0.0050	0.39	0.050	9753795
Surrogate Recovery (%)										
D10-Anthracene	%	86		82		90		102		9753795
D14-Terphenyl (FS)	%	80		80		85		84		9753795
D8-Acenaphthylene	%	78		88		89		93		9753795

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 PAHS (SOIL)

Bureau Veritas ID		AHZR59		AHZR62	AHZR63	AHZR66		
Sampling Date		2024/10/31 15:00		2024/11/01	2024/10/31 13:15	2024/10/31 09:31		
COC Number	1	1019663-10-01		1019663-10-01	1019663-10-01	1019663-10-01		
COC Nulliber	UNITS	BH11-2	RDL	QC-2	MW12-2	BH13-5	RDL	QC Batch
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	<0.071	<0.071	<0.071	0.071	9748849
Polyaromatic Hydrocarbon								
Acenaphthene	ug/g	<0.0050	0.0050	<0.050	<0.050	<0.050	0.050	9753795
Acenaphthylene	ug/g	<0.0050	0.0050	<0.050	<0.050	<0.050	0.050	9753795
Anthracene	ug/g	<0.0050	0.0050	<0.050	<0.050	<0.050	0.050	9753795
Benzo(a)anthracene	ug/g	<0.0050	0.0050	0.17	<0.050	0.16	0.050	9753795
Benzo(a)pyrene	ug/g	<0.0050	0.0050	0.42	<0.050	0.18	0.050	9753795
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.0050	0.41	0.058	0.24	0.050	9753795
Benzo(g,h,i)perylene	ug/g	<0.0050	0.0050	0.34	<0.050	0.12	0.050	9753795
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	0.12	<0.050	0.075	0.050	9753795
Chrysene	ug/g	<0.0050	0.0050	0.17	<0.050	0.16	0.050	9753795
Dibenzo(a,h)anthracene	ug/g	<0.0050	0.0050	0.059	<0.050	<0.050	0.050	9753795
Fluoranthene	ug/g	<0.0050	0.0050	0.33	0.072	0.36	0.050	9753795
Fluorene	ug/g	<0.0050	0.0050	<0.050	<0.050	<0.050	0.050	9753795
Indeno(1,2,3-cd)pyrene	ид/д	< 0.0050	0.0050	0.30	<0.050	0.11	0.050	9753795
1-Methyinaphthalene	ug/g	<0.0050	0.0050	<0.050	<0.050	<0.050	0.050	9753795
2-Methylnaphthalene	ug/g	<0.0050	0.0050	0.061	<0.050	<0.050	0.050	9753795
Naphthalene	ug/g	<0.0050	0.0050	<0.050	<0.050	<0.050	0.050	9753795
Phenanthrene	ug/g	<0.0050	0.0050	0.17	<0.050	0.24	0.050	9753795
Pyrene	ug/g	<0.0050	0.0050	0.38	0.074	0.32	0.050	9753795
Surrogate Recovery (%)								
D10-Anthracene	%	91		89	87	99		9753795
D14-Terphenyl (FS)	%	86		88	81	85		9753795
D8-Acenaphthylene	%	85		99	87	92		9753795

QC Batch = Quality Control Batch

O.REG 153 PAHS (SOIL)

Bureau Veritas ID		AHZR97		
Sampling Date		2024/11/01		
		09:55		
COC Number		1019663-10-01		
	UNITS	MW7-7	RDL	QC Batch
Calculated Parameters				
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	9779565
Polyaromatic Hydrocarbons				
Acenaphthene	ug/g	<0.0050	0.0050	9781986
Acenaphthylene	ug/g	<0.0050	0.0050	9781986
Anthracene	ug/g	<0.0050	0.0050	9781986
Benzo(a)anthracene	ug/g	<0.0050	0.0050	9781986
Benzo(a)pyrene	ug/g	<0.0050	0.0050	9781986
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.0050	9781986
Benzo(g,h,i)perylene	ug/g	<0.0050	0.0050	9781986
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	9781986
Chrysene	ug/g	<0.0050	0.0050	9781986
Dibenzo(a,h)anthracene	ug/g	<0.0050	0.0050	9781986
Fluoranthene	ug/g	<0.0050	0.0050	9781986
Fluorene	ug/g	<0.0050	0.0050	9781986
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.0050	9781986
1-Methylnaphthalene	ug/g	<0.0050	0.0050	9781986
2-Methylnaphthalene	ug/g	<0.0050	0.0050	9781986
Naphthalene	ug/g	<0.0050	0.0050	9781986
Phenanthrene	ug/g	<0.0050	0.0050	9781986
Pyrene	ug/g	<0.0050	0.0050	9781986
Surrogate Recovery (%)		•		
D10-Anthracene	%	94		9781986
	%	105		9781986
D14-Terphenyl (FS)				

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Veritas ID		AHZR64			AHZS09		AHZS16	AHZS17		
Sampling Date		2024/10/31 15:30			2024/10/31 15:25		2024/10/31 08:50	2024/10/31 09:00		
COC Number		1019663-10-01			1019663-10-01		1019663-10-01	1019663-10-01		
	UNITS	MW12-7	RDL	QC Batch	BH11-8	RDL	BH13-1	BH13-2	RDL	QC Batcl
BTEX & F1 Hydrocarbons										
Benzene	ug/g	<0.020	0.020	9750293	<0.020	0.020	<0.020	<0.020	0.020	9771947
Toluene	ug/g	<0.020	0.020	9750293	<0.020	0.020	<0.020	<0.020	0.020	9771947
Ethylbenzene	ug/g	<0.020	0.020	9750293	<0.020	0.020	<0.020	<0.020	0.020	9771947
o-Xylene	ug/g	<0.020	0.020	9750293	<0.020	0.020	<0.020	<0.020	0.020	9771947
p+m-Xylene	ug/g	<0.040	0.040	9750293	<0.040	0.040	<0.040	<0.040	0.040	9771947
Total Xylenes	ug/g	<0.040	0.040	9750293	<0.040	0.040	<0.040	<0.040	0.040	9771947
F1 (C6-C10)	ug/g	<10	10	9750293	<10	10	<10	<10	10	9771947
F1 (C6-C10) - BTEX	ug/g	<10	10	9750293	<10	10	<10	<10	10	9771947
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	7.0	9755061	<14	14	<7.0	<7.0	7.0	9773009
F3 (C16-C34 Hydrocarbons)	ug/g	51	50	9755061	330	100	99	57	50	9773009
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	9755061	110	100	170	53	50	9773009
Reached Baseline at C50	ug/g	Yes		9755061	Yes		Yes	Yes		9773009
Surrogate Recovery (%)										
1,4-Difluorobenzene	26	104		9750293	102		102	103		9771947
4-Bromofluorobenzene	%	99		9750293	92		92	91		9771947
D10-o-Xylene	%	91		9750293	111		100	96		9771947
D4-1,2-Dichloroethane	%	97		9750293	78		78	79		9771947
o-Terphenyl	%	94		9755061	91		79	70		9773009

QC Batch = Quality Control Batch

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Veritas ID		AHZS18	AHZS19	AHZS20	AHZS21	AHZS22		
Sampling Date		2024/10/31	2024/10/31	2024/10/31	2024/10/31	2024/10/31		
Sampling Date		09:10	09:20	09:40	10:00	10:10		
COC Number		1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01		
	UNITS	BH13-3	BH13-4	BH13-6	BH13-7	BH13-8	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9771947
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9771947
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9771947
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9771947
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9771947
Total Xylenes	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9771947
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	9771947
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	9771947
F2-F4 Hydrocarbons	-							
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	<7.0	<7.0	<7.0	<7.0	7.0	9773009
F3 (C16-C34 Hydrocarbons)	ug/g	860	560	120	250	<50	50	9773009
F4 (C34-C50 Hydrocarbons)	ug/g	320	450	120	280	<50	50	9773009
Reached Baseline at C50	ug/g	No	No	Yes	No	Yes		9773009
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	104	103	103	103	101		9771947
4-Bromofluorobenzene	%	92	93	91	91	92		9771947
D10-o-Xylene	%	96	99	105	110	100		9771947
D4-1,2-Dichloroethane	%	77	78	77	78	79		9771947
o-Terphenyl	%	78	84	80	89	86		9773009
RDL = Reportable Detection L	imit							
QC Batch = Quality Control B	atch							

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Verltas ID		AHZS23	AHZS24	AHZS26		
Sampling Date		2024/10/31 10:15	2024/10/31 10:25	2024/10/31 10:50		
COC Number		1019663-10-01	1019663-10-01	1019663 10 01		
	UNITS	BH13-9	BH13-10	BH13-11	RDL	QC Batch
BTEX & F1 Hydrocarbons						
Benzene	ug/g	<0.020	<0.020	<0.020	0.020	9771947
Toluene	ug/g	<0.020	<0.020	<0.020	0.020	9771947
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	0.020	9771947
o-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	9771947
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	0.040	9771947
Total Xylenes	ug/g	<0.040	<0.040	<0.040	0.040	9771947
F1 (C6-C10)	ug/g	<10	<10	<10	10	9771947
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	10	9771947
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	<7.0	<7.0	7.0	9773009
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	50	9773009
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	50	9773009
Reached Baseline at C50	ug/g	Yes	Yes	Yes		9773009
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	102	103	103		9771947
4-Bromofluorobenzene	%	92	91	92		9771947
D10-o-Xylene	%	99	97	105		9771947
D4-1,2-Dichloroethane	%	79	79	77		9771947
o-Terphenyl	%	90	91	92		9773009

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

			B1 113	& F1-F4 (3UIL	,			
Bureau Veritas ID		AHZR55		AHZR56		AHZR57		
Sampling Date		2024/10/31 10:15		2024/10/31 15:25		2024/11/01 14:30		
COC Number		1019663-10-01		1019663-10-01		1019663-10-01		
	UNITS	MW3-5	RDL	MW4-8	RDL	MW6-5	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	<0.10	0.10	<0.050	0.050	9748691
Volatile Organics						-		
Acetone (2-Propanone)	ug/g	<0.49	0.49	1.3	0.98	<0.49	0.49	9751403
Benzene	ug/g	<0.0060	0.0060	0.014	0.012	0.012	0.0060	9751403
Bromodichloromethane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Bromoform	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Bromomethane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Carbon Tetrachloride	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Chlorobenzene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Chloroform	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Dibromochloromethane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
1,2-Dichlorobenzene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
1,3-Dichlorobenzene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
1,4-Dichlorobenzene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
1,1-Dichloroethane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
1,2-Dichloroethane	ug/g	<0.049	0.049	<0.098	0.098	<0.049	0.049	9751403
1,1-Dichloroethylene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
cis-1,2-Dichloroethylene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
trans-1,2-Dichloroethylene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
1,2-Dichloropropane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	<0.060	0.060	< 0.030	0.030	9751403
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Ethylbenzene	ug/g	<0.010	0.010	<0.020	0.020	0.082	0.010	9751403
Ethylene Dibromide	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Hexane	ug/g	<0.040	0.040	<0.080	0.080	0.14	0.040	9751403
Methylene Chloride(Dichloromethane)	ug/g	<0.049	0.049	<0.098	0.098	<0.049	0.049	9751403
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	0.40	<0.80	0.80	<0.40	0.40	9751403
Methyl Isobutyl Ketone	ug/g	<0.40	0.40	<0.80	0.80	<0.40	0.40	9751403
Methyl t-butyl ether (MTBE)	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Styrene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
RDL = Reportable Detection Limit					-			
QC Batch = Quality Control Batch								

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHZR55		AHZR56		AHZR57		
Samuellia - Data		2024/10/31		2024/10/31		2024/11/01		
Sampling Date		10:15		15:25		14:30		
COC Number		1019663-10-01		1019663-10-01		1019663-10-01		
	UNITS	MW3-5	RDL	MW4-8	RDL	MW6-5	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
1,1,2,2-Tetrachloroethane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Tetrachloroethylene	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Toluene	ug/g	<0.020	0.020	<0.040	0.040	0.034	0.020	9751403
1,1,1-Trichloroethane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
1,1,2-Trichloroethane	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Trichloroethylene	ug/g	<0.010	0.010	<0.020	0.020	<0.010	0.010	9751403
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	0.040	<0.080	0.080	<0.040	0.040	9751403
Vinyl Chloride	ug/g	<0.019	0.019	<0.038	0.038	<0.019	0.019	9751403
p+m-Xylene	ug/g	<0.020	0.020	0.053	0.040	0.23	0.020	9751403
o-Xylene	ug/g	<0.020	0.020	<0.040	0.040	0.024	0.020	9751403
Total Xylenes	ug/g	<0.020	0.020	0.053	0.040	0.26	0.020	9751403
F1 (C6-C10)	ug/g	<10	10	<20	20	60	10	9751403
F1 (C6-C10) - BTEX	ug/g	<10	10	<20	20	59	10	9751403
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	7.0	<7.0	7.0	28	7.0	9755061
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	90	50	94	50	9755061
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	52	50	61	50	9755061
Reached Baseline at C50	ug/g	Yes		Yes		Yes		9755061
Surrogate Recovery (%)								
o-Terphenyl	%	92		74		91		9755061
4-Bromofluorobenzene	%	107		105		107		9751403
D10-o-Xylene	%	117		132 (1)		106		9751403
D4-1,2-Dichloroethane	%	93		95		94		9751403
D8-Toluene	%	96		94		95		9751403

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) The recovery for the extraction surrogate compound was above the upper control limit for the analysis of the soil sample. Visible loss of methanol was observed in this sample, with abnormally low soil weight calculated. As a result, there is an increased level of uncertainty associated with the values reported for this sample.

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHZR58		AHZR61		AHZR62		
Sampling Date		2024/11/01 09:17		2024/10/31 15:20		2024/11/01		
COC Number		1019663-10-01		1019663-10-01		1019663-10-01		
	UNITS	MW7-4	RDL	BH11-6	RDL	QC-2	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	<0.050	0.050	<0.050	0.050	9748691
Volatile Organics								
Acetone (2-Propanone)	ug/g	<0.49	0.49	<0.49	0.49	<0.49	0.49	9751403
Benzene	ug/g	<0.0060	0.0060	<0.0060	0.0060	<0.0060	0.0060	9751403
Bromodichloromethane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Bromoform	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Bromomethane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Carbon Tetrachloride	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Chlorobenzene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Chloroform	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Dibromochloromethane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
1,2-Dichlorobenzene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
1,3-Dichlorobenzene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
1,4-Dichlorobenzene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
1,1-Dichloroethane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
1,2-Dichloroethane	ug/g	<0.049	0.049	<0.049	0.049	<0.049	0.049	9751403
1,1-Dichloroethylene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
cis-1,2-Dichloroethylene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
trans-1,2-Dichloroethylene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
1,2-Dichloropropane	ug/g	< 0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	<0.030	0.030	<0.030	0.030	9751403
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Ethylbenzene	ug/g	<0.010	0.010	<0.010	0.010	<0.020 (1)	0.020	9751403
Ethylene Dibromide	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Hexane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Methylene Chloride(Dichloromethane)	ug/g	<0.049	0.049	<0.049	0.049	<0.049	0.049	9751403
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	0.40	<0.40	0.40	<0.40	0.40	9751403
Methyl Isobutyl Ketone	ug/g	<0.40	0.40	<0.40	0.40	<0.40	0.40	9751403
Methyl t-butyl ether (MTBE)	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Styrene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Detection limit was raised due to matrix interference.

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHZR58		AHZR61		AHZR62		
Sampling Date		2024/11/01 09:17		2024/10/31 15:20		2024/11/01		
COC Number		1019663-10-01		1019663-10-01		1019663-10-01		
	UNITS	MW7-4	RDL	BH11-6	KDL	QC-2	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9/51403
1,1,2,2-Tetrachloroethane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Tetrachloroethylene	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Toluene	ug/g	<0.020	0.020	<0.020	0.020	<0.020	0.020	9751403
1,1,1-Trichloroethane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
1,1,2-Trichloroethane	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Trichloroethylene	ug/g	<0.010	0.010	<0.010	0.010	<0.010	0.010	9751403
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	0.040	<0.040	0.040	<0.040	0.040	9751403
Vinyl Chloride	ug/g	<0.019	0.019	<0.019	0.019	<0.019	0.019	9751403
p+m-Xylene	ug/g	<0.020	0.020	<0.020	0.020	<0.020	0.020	9751403
o-Xylene	ug/g	<0.020	0.020	<0.020	0.020	<0.020	0.020	9751403
Total Xylenes	ug/g	<0.020	0.020	<0.020	0.020	<0.020	0.020	9751403
F1 (C6-C10)	ug/g	360	20	<10	10	320	20	9751403
F1 (C6-C10) - BTEX	ug/g	360	20	<10	10	320	20	9751403
F2-F4 Hydrocarbons				1				
F2 (C10-C16 Hydrocarbons)	ug/g	99	7.0	7.7	7.0	110	7.0	9755061
F3 (C16-C34 Hydrocarbons)	ug/g	340	50	820	50	450	50	9755061
F4 (C34-C50 Hydrocarbons)	ug/g	650	50	320	50	920	50	9755061
Reached Baseline at C50	ug/g	No		Yes		No		9755061
Surrogate Recovery (%)								
o-Terphenyl	%	86		93		91		9755061
4-Bromofluorobenzene	%	105		106		105		9751403
D10-o-Xylene	%	102		98		101		9751403
D4-1,2-Dichloroethane	%	93		96		95		9751403
D8-Toluene	%	97		95		97		9751403

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHZR65			AHZR65			AHZR66		
Sampling Date		2024/10/31			2024/10/31			2024/10/31		
Sampling Date		13:50			13:50			09:31		
COC Number		1019663-10-01			1019663-10-01			1019663-10-01		
	UNITS	MW12-8	RDL	QC Batch	MW12-8 Lab-Dup	RDL	QC Batch	BH13-5	RDL	QC Batch
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	9748691		ľ		<0.050	0.050	9748691
Volatile Organics										
Acetone (2-Propanone)	ug/g	<0.49	0.49	9751403				<0.49	0.49	9751403
Benzene	ug/g	<0.0060	0.0060	9751403				<0.0060	0.0060	9751403
Bromodichloromethane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Bromoform	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Bromomethane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Carbon Tetrachloride	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Chlorobenzene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Chloroform	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Dibromochloromethane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
1,2-Dichlorobenzene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
1,3-Dichlorobenzene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
1,4-Dichlorobenzene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	0.040	9751403			- "	<0.040	0.040	9751403
1,1-Dichloroethane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
1,2-Dichloroethane	ug/g	<0.049	0.049	9751403				<0.049	0.049	9751403
1,1-Dichloroethylene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
cis-1,2-Dichloroethylene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
trans-1,2-Dichloroethylene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
1,2-Dichloropropane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	9751403				<0.030	0.030	9751403
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Ethylbenzene	ug/g	<0.010	0.010	9751403				<0.010	0.010	9751403
Ethylene Dibromide	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Hexane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Methylene Chloride(Dichloromethane)	ug/g	<0.049	0.049	9751403				<0.049	0.049	9751403
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	0.40	9751403				<0.40	0.40	9751403
Methyl Isobutyl Ketone	ug/g	<0.40	0.40	9751403				<0.40	0.40	9751403
Methyl t-butyl ether (MTBE)	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Styrene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHZR65			AHZR65			AHZR66		
Sampling Date		2024/10/31 13:50			2024/10/31 13:50			2024/10/31 09:31		
COC Number		1019663-10-01			1019663-10-01			1019663-10-01		
	UNITS	MW12-8	RDL	QC Batch	MW12-8 Lab-Dup	RDL	QC Batch	BH13-5	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
1,1,2,2-Tetrachloroethane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Tetrachloroethylene	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Toluene	ug/g	<0.020	0.020	9751403				0.024	0.020	9751403
1,1,1-Trichloroethane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
1,1,2-Trichloroethane	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Trichloroethylene	ug/g	<0.010	0.010	9751403				<0.010	0.010	9751403
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	0.040	9751403				<0.040	0.040	9751403
Vinyl Chloride	ug/g	<0.019	0.019	9751403				<0.019	0.019	9751403
p+m-Xylene	ug/g	<0.020	0.020	9751403				<0.020	0.020	9751403
o-Xylene	ug/g	<0.020	0.020	9751403				<0.020	0.020	9751403
Total Xylenes	ug/g	<0.020	0.020	9751403				<0.020	0.020	9751403
F1 (C6-C10)	ug/g	<10	10	9751403				<10	10	9751403
F1 (C6-C10) - BTEX	ug/g	<10	10	9751403				<10	10	9751403
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	7.0	9755061	<7.0	7.0	9755061	<7.0	7.0	9755061
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	9755061	<50	50	9755061	220	50	9755061
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	9755061	<50	50	9755061	210	50	9755061
Reached Baseline at C50	ug/g	Yes		9755061	Yes		9755061	Yes		9755061
Surrogate Recovery (%)										
o-Terphenyl	%	96		9755061	96		9755061	91		9755061
4-Bromofluorobenzene	%	107		9751403				106		9751403
D10-o-Xylene	%	106		9751403				102		9751403
D4-1,2-Dichloroethane	%	93		9751403				97		9751403
D8-Toluene	%	96		9751403				94		9751403

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHZR86	AHZR91	AHZR97		
Sampling Date		2024/10/31 15:55	2024/11/01 14:40	2024/11/01 09:55		
COC Number		1019663-10-01	1019663-10-01	1019663-10-01		
	UNITS	MW4-9	MW6-8	MW7-7	RDL	QC Batch
Calculated Parameters		'	V			
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	0.050	9779775
Volatile Organics	-0/6	0.000			5.000	31.737.75
Acetone (2-Propanone)	ug/g	<0.49	<0.49	<0.49	0.49	9782343
Benzene	ug/g	<0.0060	<0.0060	<0.0060	0.0060	9782343
Bromodichloromethane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Bromoform	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Bromomethane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Carbon Tetrachloride	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Chlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Chloroform	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Dibromochloromethane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
1,2-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
1,3-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
1,4-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	<0.040	<0.040	0.040	9782343
1,1-Dichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
1,2-Dichloroethane	ug/g	<0.049	<0.049	<0.049	0.049	9782343
1,1-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
cis-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
trans-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
1,2-Dichloropropane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	0.030	9782343
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	0.010	9782343
Ethylene Dibromide	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Hexane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Methylene Chloride(Dichloromethane)	ug/g	<0.049	<0.049	<0.049	0.049	9782343
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	<0.40	<0.40	0.40	9782343
Methyl Isobutyl Ketone	ug/g	<0.40	<0.40	<0.40	0.40	9782343
Methyl t-butyl ether (MTBE)	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Styrene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

Stantec Consulting Ltd
Client Project #: 122140392

Sampler Initials: HM

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AHZR86	AHZR91	AHZR97		
Counties Date		2024/10/31	2024/11/01	2024/11/01		
Sampling Date		15:55	14:40	09:55		
COC Number		1019663-10-01	1019663-10-01	1019663-10-01		
	UNITS	MW4-9	MW6-8	MW7-7	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
1,1,2,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Tetrachloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Toluene	ug/g	<0.020	<0.020	<0.020	0.020	9782343
1,1,1-Trichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
1,1,2-Trichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Trichloroethylene	ug/g	<0.010	<0.010	<0.010	0.010	9782343
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	<0.040	<0.040	0.040	9782343
Vinyl Chloride	ug/g	<0.019	<0.019	<0.019	0.019	9782343
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	9782343
o-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	9782343
Total Xylenes	ug/g	<0.020	<0.020	<0.020	0.020	9782343
F1 (C6-C10)	ug/g	<10	<10	<10	10	9782343
F1 (CG-C10) - BTEX	ug/g	<10	<10	<10	10	9782343
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	<7.0	<7.0	7.0	9781962
F3 (C16-C34 Hydrocarbons)	ug/g	<50	88	73	50	9781962
F4 (C34-C50 Hydrocarbons)	ug/g	<50	69	<50	50	9781962
Reached Baseline at C50	ug/g	Yes	Yes	Yes		9781962
Surrogate Recovery (%)						
o-Terphenyl	%	96	94	92		9781962
4-Bromofluorobenzene	%	103	103	102		9782343
D10-o-Xylene	%	141 (1)	89	91		9782343
D4-1,2-Dichloroethane	%	110	113	111		9782343
D8-Toluene	%	93	92	93		9782343

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) The recovery for the extraction surrogate compound was above the upper control limit for duplicate analyses of the soil sample. Visible loss of methanol was observed in this sample. As a result, there is an increased level of uncertainty associated with the values reported for this sample.

O.REG 558 TCLP INORGANICS PACKAGE (SOIL)

Bureau Veritas ID		AHZR67			
Sampling Date		2024/10/31			
COC Number		1019663-10-01			
	UNITS	TCLP	RDL	QC Batch	
Inorganics					
Leachable Fluoride (F-)	mg/L	0.21	0.10	9754357	
Leachable WAD Cyanide (Free)	mg/L	<0.010	0.010	9754368	
Leachable Nitrite (N)	mg/L	<0.10	0.10	9754364	
Leachable Nitrate (N)	mg/L	<1.0	1.0	9754364	
Leachable Nitrate + Nitrite (N)	mg/L	<1.0	1.0	9754364	
Metals					
Leachable Arsenic (As)	mg/L	<0.2	0.2	9754504	
Leachable Barium (Ba)	mg/L	0.2	0.2	9754504	
Leachable Boron (B)	mg/L	<0.1	0.1	9754504	
Leachable Cadmium (Cd)	mg/L	<0.05 0.05		9754504	
Leachable Chromium (Cr)	mg/L	<0.1 0.1		9754504	
Leachable Lead (Pb)	mg/L	<0.1	0.1	9754504	
Leachable Mercury (Hg)	mg/L	<0.001	0.001	9754504	
Leachable Selenium (Se)	mg/L	<0.1	0.1	9754504	
Leachable Silver (Ag)	mg/L	<0.01	0.01	9754504	
Leachable Uranium (U)	mg/L	<0.01	0.01	9754504	
RDL = Reportable Detection Lim QC Batch = Quality Control Batcl					

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

TCLP LEACHATE PREPARATION (SOIL)

Bureau Veritas ID		AHZR67						
Sampling Date		2024/10/31						
COC Number		1019663-10-01						
	UNITS	TCLP	RDL QC Batch					
Inorganics								
Final pH	pH	5.77		9755028				
Initial pH	рН	9.62		9755028				
TCLP - % Solids	%	100	0.2	9751747				
TCLP Extraction Fluid	N/A	FLUID II		9755020				
RDL = Reportable Detection QC Batch = Quality Control								

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 558 TCLP SEMI-VOLATILE ORGANICS (SOIL)

Bureau Veritas ID		AHZR67	AHZR67		
Sampling Date		2024/10/31	2024/10/31		
COC Number		1019663-10-01	1019663-10-01		
	UNITS	TCLP	TCLP Lab-Dup	RDL	QC Batch
Semivolatile Organics					
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	0.10	9758575
Leachable m/p-Cresol	ug/L	<2.5	<2.5	2.5	9758575
Leachable o-Cresol	ug/L	<2.5	<2.5	2.5	9758575
Leachable Cresol Total	ug/L	<2.5	<2.5	2.5	9758575
Leachable 2,4-Dichlorophenol	ug/L	<2.5	<2.5	2.5	9758575
Leachable 2,4-Dinitrotoluene	ug/L	<10	<10	10	9758575
Leachable Hexachlorobenzene	ug/L	<10	<10	10	9758575
Leachable Hexachlorobutadiene	ug/L	<10	<10	10	9758575
Leachable Hexachloroethane	ug/L	<10	<10	10	9758575
Leachable Nitrobenzene	ug/L	<10	<10	10	9758575
Leachable Pentachlorophenol	ug/L	<2.5	<2.5	2.5	9758575
Leachable Pyridine	ug/L	<10	<10	10	9758575
Leachable 2,3,4,6-Tetrachlorophenol	ug/L	<2.5	<2.5	2.5	9758575
Leachable 2,4,5-Trichlorophenol	ug/L	<0.50	<0.50	0.50	9758575
Leachable 2,4,6-Trichlorophenol	ug/L	<2.5	<2.5	2.5	9758575
Surrogate Recovery (%)					
Leachable 2,4,6-Tribromophenol	%	92	90		9758575
Leachable 2-Fluorobiphenyl	%	74	76		9758575
Leachable 2-Fluorophenol	%	70	74		9758575
Leachable D14-Terphenyl (FS)	%	100	99		9758575
Leachable D5-Nitrobenzene	%	95	94		9758575
Leachable D5-Phenol	%	40	39		9758575

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

O.REG 558 TCLP VOCS BY HS (SOIL)

Bureau Veritas ID		AHZR67		
Sampling Date		2024/10/31		
COC Number		1019663-10-01		
	UNITS	TCLP	RDL	QC Batch
Charge/Prep Analysis				
Amount Extracted (Wet Weight) (g)	N/A	25	N/A	9752117
Volatile Organics				
Leachable Benzene	mg/L	<0.020	0.020	9753977
Leachable Carbon Tetrachloride	mg/L	<0.020	0.020	9753977
Leachable Chlorobenzene	mg/L	<0.020	0.020	9753977
Leachable Chloroform	mg/L	<0.020	0.020	9753977
Leachable 1,2-Dichlorobenzene	mg/L	<0.050	0.050	9753977
Leachable 1,4-Dichlorobenzene	mg/L	<0.050	0.050	9753977
Leachable 1,2-Dichloroethane	mg/L	<0.050	0.050	9753977
Leachable 1,1-Dichloroethylene	mg/L	<0.020	0.020	9753977
Leachable Methylene Chloride(Dichloromethane)	mg/L	<0.20	0.20	9753977
Leachable Methyl Ethyl Ketone (2-Butanone)	mg/L	<1.0	1.0	9753977
Leachable Tetrachloroethylene	mg/L	<0.020	0.020	9753977
Leachable Trichloroethylene	mg/L	<0.020	0.020	9753977
Leachable Vinyl Chloride	mg/L	<0.020	0.020	9753977
Surrogate Recovery (%)				
Leachable 4-Bromofluorobenzene	%	105		9753977
Leachable D4-1,2-Dichloroethane	%	101		9753977
Leachable D8-Toluene	%	93		9753977
RDL = Reportable Detection Limit				
ΩC Batch = Quality Control Batch				
N/A = Not Applicable				

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AHZR54	AHZR55	AHZR56	AHZR57	AHZR58	AHZR59				
Sampling Date		2024/10/31	2024/10/31	2024/10/31	2024/11/01	2024/11/01	2024/10/31				
		09:50	10:15	15:25	14:30	09:17	15:00				
COC Number		1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01				
	UNITS	MW3-4	MW3-5	MW4-8	MW6-5	MW7-4	BH11-2	RDL	QC Batch		
Inorganics											
Moisture	%	18	18	38	16	17	18	1.0	9750496		
		18	18	38	16	17	18	1.0	9750496		
Moisture	imit	18	18	38	16	17	18	1.0	9750496		

Bureau Veritas ID		AHZR61	AHZR62	AHZR63	AHZR64	AHZR65	AHZR66		
Sampling Date		2024/10/31	2024/11/01	2024/10/31	2024/10/31	2024/10/31	2024/10/31		
Sampling Date		15:20	2024/11/01	13:15	15:30	13:50	09:31		
COC Number		1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01		
	UNITS	BH11-6	QC-2	MW12-2	MW12-7	MW12-8	BH13-5	RDL	QC Batch
Inorganics									
Moisture	%	20	14	15	19	22	26	1.0	9750496
2DI - Papartahla Dataction Limit									

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

QC Batch = Quality Control Batch

Inorganics Moisture % 17 31 9781054 19 19 1.0 9781582									
	UNITS	MW4-9	MW6-8	QC Batch	MW7-7	MW7-7 Lab-Dup	RDL	QC Batch	
COC Number		1019663-10-01	1019663-10-01		1019663-10-01	1019663-10-01			
Sampling Date		2024/10/31 15:55	2024/11/01 14:40		2024/11/01 09:55	2024/11/01 09:55			
Bureau Veritas ID		AHZR86	AHZR91		AHZR97	AHZR97			

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch
Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		AHZS09	AHZS16	AHZS17	AHZS18	AHZS19	AHZS20		
Sampling Date		2024/10/31	2024/10/31	2024/10/31	2024/10/31	2024/10/31	2024/10/31		
Sampling Date		15:25	08:50	09:00	09:10	09:20	09:40		
COC Number		1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01		
	UNITS	BH11-8	BH13-1	BH13-2	BH13-3	BH13-4	BH13-6	RDL	QC Batch
Inorganics									
Moisture	%	43	11	7.6	9.8	25	34	1.0	9771979
RDL = Reportable Detect	ion Limit	2	· · · · · · · · · · · · · · · · · · ·		·				

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AHZS21	AHZS22	AHZS23	AHZS23	AHZS24	AHZS26			
Sampling Date		2024/10/31	2024/10/31	2024/10/31	2024/10/31	2024/10/31	2024/10/31			
Sampling Sate		10:00	10:10	10:15	10:15	10:25	10:50			
COC Number		1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01	1019663-10-01			
	UNITS	BH13-7	BH13-8	BH13-9	BH13-9 Lab-Dup	BH13-10	BH13-11	RDL	QC Batch	
Inorganics	Inorganics									
Moisture	%	36	20	18	19	15	20	1.0	9771979	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		AHZR58	AHZR62		AHZS18	AHZS19		
Sampling Date		2024/11/01 09:17	2024/11/01		2024/10/31 09:10	2024/10/31 09:20		,
COC Number		1019663-10-01	1019663-10-01		1019663-10-01	1019663-10-01		
	UNITS	MW7-4	QC-2	QC Batch	BH13-3	BH13-4	RDL	QC Batch
F2-F4 Hydrocarbons								
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	2400	3000	9761928	1300	1600	100	9776419

Bureau Veritas ID		AHZS19	AHZS21		
Sampling Date		2024/10/31 09:20	2024/10/31 10:00		
COC Number		1019663-10-01	1019663-10-01		
	UNITS	BH13-4 Lab-Dup	BH13-7	RDL	QC Batch
F2-F4 Hydrocarbons					
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	1600	830	100	9776419
RDL = Reportable Detection Limit		· · · · · · · · · · · · · · · · · · ·			
QC Batch = Quality Control Batch					
Lab-Dup = Laboratory Initiated Duplic	ate				

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

MISCELLANEOUS (SOIL)

Bureau Veritas ID		AHZR67		
Sampling Date		2024/10/31		
COC Number		1019663-10-01		
	UNITS	TCLP	QC Batch	
Inorganics				
Ignitability N/A NF/NI S				
QC Batch = Quality Cont	trol Batch			

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZR54 Sample ID: MW3-4 Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9748849	N/A	2024/11/10	Automated Statchk
Hot Water Extractable Boron	ICP	9753952	2024/11/08	2024/11/08	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal
Conductivity	AT	9757581	2024/11/11	2024/11/11	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9754367	2024/11/08	2024/11/08	Jaswinder Kaur
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9753795	2024/11/08	2024/11/08	Lingyun Feng
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9748632	N/A	2024/11/12	Automated Statchk

Bureau Veritas ID: AHZR55 Sample ID: MW3-5

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9748691	N/A	2024/11/08	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/10	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9751403	N/A	2024/11/07	Cheng-Yu Sha

Bureau Veritas ID: AHZR56

Sample ID: MW4-8

Matrix: Soil

2024/10/31 Collected:

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9748849	N/A	2024/11/10	Automated Statchk
Hot Water Extractable Boron	ICP	9753952	2024/11/08	2024/11/08	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9748691	N/A	2024/11/08	Automated Statchk
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal
Conductivity	AT	9757581	2024/11/11	2024/11/11	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/10	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9754367	2024/11/08	2024/11/08	Jaswinder Kaur
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9753795	2024/11/08	2024/11/08	Lingyun Feng
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9748632	N/A	2024/11/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9751403	N/A	2024/11/07	Cheng-Yu Sha

Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZR57 Sample ID: MW6-5

Matrix: Soil

Collected: 2024/11/01

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9748849	N/A	2024/11/10	Automated Statchk
Hot Water Extractable Boron	ICP	9753952	2024/11/08	2024/11/08	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9748691	N/A	2024/11/08	Automated Statchk
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal
Conductivity	AT	9757581	2024/11/11	2024/11/11	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/10	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9754367	2024/11/08	2024/11/08	Jaswinder Kaur
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9753795	2024/11/08	2024/11/08	Lingyun Feng
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9748632	N/A	2024/11/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9751403	N/A	2024/11/07	Cheng-Yu Sha

Bureau Veritas ID: AHZR58 Sample ID: MW7-4 Matrix: Soil

Collected: 2024/11/01

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9748849	N/A	2024/11/10	Automated Statchk
Hot Water Extractable Boron	ICP	9754031	2024/11/08	2024/11/08	Thuy Linh Nguyen
1,3-Dichloropropene Sum	CALC	9748691	N/A	2024/11/11	Automated Statchk
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal
Conductivity	AT	9757581	2024/11/11	2024/11/11	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
F4G (CCME Hydrocarbons Gravimetric)	BAL	9761928	2024/11/13	2024/11/13	Rashmi Dubey
Acid Extractable Metals by ICPMS	ICP/MS	9754367	2024/11/08	2024/11/08	Jaswinder Kaur
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9753795	2024/11/08	2024/11/08	Lingyun Feng
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9748632	N/A	2024/11/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9751403	N/A	2024/11/07	Cheng-Yu Sha

Bureau Veritas ID: AHZR58 Dup Sample ID: MW7-4 Matrix: Soil

Collected: 2024/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZR59
Sample ID: BH11-2
Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9748849	N/A	2024/11/10	Automated Statchk
Hot Water Extractable Boron	ICP	9753952	2024/11/08	2024/11/08	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal
Conductivity	AT	9757581	2024/11/11	2024/11/11	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9754367	2024/11/08	2024/11/08	Jaswinder Kaur
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9753795	2024/11/08	2024/11/08	Lingyun Feng
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9748632	N/A	2024/11/12	Automated Statchk

Bureau Veritas ID: AHZR61 Sample ID: BH11-6 Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9748691	N/A	2024/11/08	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/10	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9751403	N/A	2024/11/07	Cheng-Yu Sha

Bureau Veritas ID: AHZR62

Sample ID: QC-2

Matrix: Soil

Collected: Shipped:

2024/11/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9748849	N/A	2024/11/10	Automated Statchk
Hot Water Extractable Boron	ICP	9754031	2024/11/08	2024/11/08	Thuy Linh Nguyen
1,3-Dichloropropene Sum	CALC	9748691	N/A	2024/11/11	Automated Statchk
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal
Conductivity	AT	9757581	2024/11/11	2024/11/11	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
F4G (CCME Hydrocarbons Gravimetric)	BAL	9761928	2024/11/13	2024/11/13	Rashmi Dubey
Acid Extractable Metals by ICPMS	ICP/MS	9754367	2024/11/08	2024/11/08	Jaswinder Kaur
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9753795	2024/11/08	2024/11/08	Lingyun Feng
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9748632	N/A	2024/11/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9751403	N/A	2024/11/07	Cheng-Yu Sha

Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZR63 Sample ID: MW12-2

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9748849	N/A	2024/11/10	Automated Statchk
Hot Water Extractable Boron	ICP	9753952	2024/11/08	2024/11/08	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal
Conductivity	AT	9757581	2024/11/11	2024/11/11	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9754367	2024/11/08	2024/11/08	Jaswinder Kaur
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9753795	2024/11/08	2024/11/08	Lingyun Feng
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9748632	N/A	2024/11/12	Automated Statchk

Bureau Veritas ID: AHZR64 Sample ID: MW12-7

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9750293	N/A	2024/11/07	Ravinder Galdhu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan

Bureau Veritas ID: AHZR65

Sample ID: MW12-8 Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9748691	N/A	2024/11/08	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
Volatile Organic Compounds and E1 PHCs	GC/MSFD	9751403	N/A	2024/11/07	Cheng-Yu Sha

Bureau Veritas ID: AHZR65 Dup

Sample ID: MW12-8

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb

Bureau Veritas ID: AHZR66

Sample ID: BH13-5

Matrix: Soil

Collected: 2024/10/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9748849	N/A	2024/11/10	Automated Statchk
Hot Water Extractable Boron	ICP	9754031	2024/11/08	2024/11/08	Thuy Linh Nguyen
1,3-Dichloropropene Sum	CALC	9748691	N/A	2024/11/08	Automated Statchk
Free (WAD) Cyanide	TECH	9755572	2024/11/08	2024/11/12	Prgya Panchal

Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZR66

BH13-5 Sample ID:

Matrix: Soil

Collected:

2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	9757581	2024/11/11	2024/11/11	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9755061	2024/11/08	2024/11/11	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9754367	2024/11/08	2024/11/08	Jaswinder Kaur
Moisture	BAL	9750496	N/A	2024/11/06	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9753795	2024/11/08	2024/11/08	Lingyun Feng
pH CaCl2 EXTRACT	AT	9756537	2024/11/09	2024/11/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9748632	N/A	2024/11/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9751403	N/A	2024/11/07	Cheng-Yu Sha

Bureau Veritas ID: AHZR66 Dup

Sample ID: BH13-5

Matrix: Soil Collected:

2024/10/31

Shipped: Received: 2024/11/05

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst Conductivity 9757581 2024/11/11 2024/11/11 ΑT Kien Tran

Bureau Veritas ID: AHZR67

Sample ID: TCLP

Matrix: Soil

Collected:

2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Semivolatile Organic Compounds (TCLP)	GC/MS	9758575	2024/11/11	2024/11/12	Wendy Zhao
Cyanide (WAD) in Leachates	SKAL/CN	9754368	N/A	2024/11/08	Jency Sara Johnson
Fluoride by ISE in Leachates	ISE	9754357	2024/11/08	2024/11/09	Nachiketa Gohil
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	9754504	2024/11/08	2024/11/08	Nan Raykha
Ignitability of a Sample	BAL	9758094	2024/11/11	2024/11/11	Jeremy Apoon
Nitrate& Nitrite as Nitrogen in Leachate	LACH	9754364	N/A	2024/11/12	Chandra Nandlal
TCLP - % Solids	BAL	9751747	2024/11/07	2024/11/08	Abdul Rahman Mohammed
TCLP - Extraction Fluid		9755020	N/A	2024/11/08	Abdul Rahman Mohammed
TCLP - Initial and final pH	PH	9755028	N/A	2024/11/08	Abdul Rahman Mohammed
TCLP Zero Headspace Extraction		9752117	2024/11/07	2024/11/08	Arshdeep Jagayat
VOCs in ZHE Leachates	GC/MS	9753977	2024/11/08	2024/11/08	Noel Ramos

Bureau Veritas ID: AHZR67 Dup

Sample ID: TCLP

> Matrix: Soil

Collected: Shipped:

2024/10/31

2024/11/05 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Semivolatile Organic Compounds (TCLP)	GC/MS	9758575	2024/11/11	2024/11/12	Wendy Zhao

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZR86 Sample ID: MW4-9 Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hut Water Extractable Boron	ICP	9782283	2024/11/22	2024/11/22	Medhat Nasr
1,3-Dichloropropene Sum	CALC	9779775	N/A	2024/11/25	Automated Statchk
Free (WAD) Cyanide	TECH	9781975	2024/11/22	2024/11/22	Prgya Panchal
Conductivity	AT	9782811	2024/11/22	2024/11/22	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9782200	2024/11/22	2024/11/22	Sousan Besharatlou
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9781962	2024/11/22	2024/11/22	Jeevaraj Jeevaratrnam
Acid Extractable Metals by ICPMS	ICP/MS	9782920	2024/11/22	2024/11/22	Daniel Teclu
Moisture	BAL	9781054	N/A	2024/11/21	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9782879	2024/11/22	2024/11/22	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9780245	N/A	2024/11/25	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9782343	N/A	2024/11/22	Anna Gabrielyan

Bureau Veritas ID: AHZR91 Sample ID: MW6-8 Matrix: Soil

Collected: 2024/11/01 Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782283	2024/11/22	2024/11/22	Medhat Nasr
1,3-Dichloropropene Sum	CALC	9779775	N/A	2024/11/25	Automated Statchk
Free (WAD) Cyanide	TECH	9781975	2024/11/22	2024/11/22	Prgya Panchal
Conductivity	AT	9782811	2024/11/22	2024/11/22	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9782200	2024/11/22	2024/11/22	Sousan Besharatlou
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9781962	2024/11/22	2024/11/22	Jeevaraj Jeevaratrnam
Acid Extractable Metals by ICPMS	ICP/MS	9782920	2024/11/22	2024/11/22	Daniel Teclu
Moisture	BAL	9781054	N/A	2024/11/21	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9782879	2024/11/22	2024/11/22	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9780245	N/A	2024/11/25	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9782343	N/A	2024/11/22	Anna Gabrielyan

Bureau Veritas ID: AHZR97 Sample ID: MW7-7 Matrix: Soil

Collected: 2024/11/01

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9779565	N/A	2024/11/25	Automated Statchk
1,3-Dichloropropene Sum	CALC	9779775	N/A	2024/11/25	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9781962	2024/11/22	2024/11/22	Jeevaraj Jeevaratrnam
Moisture	BAL	9781582	N/A	2024/11/21	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9781986	2024/11/22	2024/11/22	Margaret Kulczyk-Stanko
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9782343	N/A	2024/11/22	Anna Gabrielyan

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZR97 Dup

Sample ID: MW7-7

Matrix: Soil Collected: 2024/11/01 Shipped:

Received:

2024/11/05

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst

Moisture BAL 9781582 N/A 2024/11/21 Muhammad Chhaidan

Bureau Veritas ID: AHZS09 Sample ID: BH11-8

Matrix: Soil Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description Instrumentation **Extracted Date Analyzed** Batch Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 9771947 N/A 2024/11/18 Georgeta Rusu Petroleum Hydrocarbons F2-F4 in Soil GC/FID 9773009 2024/11/18 2024/11/19 Mohammed Abdul Nafay Shoeb Moisture BAL 9771979 N/A 2024/11/18 Joe Thomas

Bureau Veritas ID: AHZS16 Sample ID: BH13-1

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782634	2024/11/22	2024/11/22	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9781287	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780512	2024/11/21	2024/11/22	Sousan Besharatlou
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/18	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9780505	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Bureau Veritas ID: AHZS17 Sample ID: BH13-2

Matrix: Soil

Collected: 2024/10/31

Shipped:

2024/11/05 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782456	2024/11/22	2024/11/23	Japneet Gill
Free (WAD) Cyanide	TECH	9781287	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780512	2024/11/21	2024/11/22	Sousan Besharatlou
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/18	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9780505	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZS18
Sample ID: BH13-3
Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782634	2024/11/22	2024/11/22	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9781307	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9781254	2024/11/21	2024/11/22	Rupinder Sihota
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/18	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
F4G (CCME Hydrocarbons Gravimetric)	BAL	9776419	2024/11/20	2024/11/20	Rashmi Dubey
Acid Extractable Metals by ICPMS	ICP/IVIS	9780686	2024/11/21	2024/11/23	Thuy Linh Ngayen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9781125	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Bureau Veritas ID: AHZS19
Sample ID: BH13-4
Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782456	2024/11/22	2024/11/23	Japneet Gill
Free (WAD) Cyanide	TECH	9781307	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9781254	2024/11/21	2024/11/22	Rupinder Sihota
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/18	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
F4G (CCME Hydrocarbons Gravimetric)	BAL	9776419	2024/11/20	2024/11/20	Rashmi Dubey
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9781125	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Bureau Veritas ID: AHZS19 Dup Sample ID: BH13-4 Matrix: Soil Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
F4G (CCME Hydrocarbons Gravimetric)	BAL	9776419	2024/11/20	2024/11/20	Rashmi Dubey

Bureau Veritas ID: AHZS20 Sample ID: BH13-6

Matrix: Soil

Collected: 2024/10/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782634	2024/11/22	2024/11/22	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9781287	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780512	2024/11/21	2024/11/22	Sousan Besharatlou

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZS20 Sample ID: BH13-6

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/19	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9780505	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Bureau Veritas ID: AHZS21 Sample ID: BH13-7

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782456	2024/11/22	2024/11/23	Japneet Gill
Free (WAD) Cyanide	TECH	9781287	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780512	2024/11/21	2024/11/22	Sousan Besharatiou
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/19	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
F4G (CCME Hydrocarbons Gravimetric)	BAL	9776419	2024/11/20	2024/11/20	Rashmi Dubey
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9783050	2024/11/22	2024/11/22	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Bureau Veritas ID: AHZS22 Sample ID: BH13-8 Matrix: Soil

Collected: 2024/10/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782634	2024/11/22	2024/11/22	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9781287	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780512	2024/11/21	2024/11/22	Sousan Besharatlou
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/19	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9780505	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZS23 Sample ID: BH13-9

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782634	2024/11/22	2024/11/22	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9781287	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780512	2024/11/21	2024/11/22	Sousan Besharatlou
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/19	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	RAI	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9780505	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Bureau Veritas ID: AHZS23 Dup

Sample ID: BH13-9

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas

Bureau Veritas ID: AHZS24

Sample ID: BH13-10

Matrix: Soil

Collected: 2024/10/31

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782634	2024/11/22	2024/11/22	Thuy linh Nguyen
Free (WAD) Cyanide	TECH	9781287	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780512	2024/11/21	2024/11/22	Sousan Besharatlou
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/19	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9780505	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

Bureau Veritas ID: AHZS24 Dup Sample ID: BH13-10

Matrix: Soil

Collected: 2024/10/31

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

TEST SUMMARY

Bureau Veritas ID: AHZS26 Sample ID: BH13-11 Matrix: Soil Collected: 2024/10/31

Shipped: Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9782456	2024/11/22	2024/11/23	Japneet Gill
Free (WAD) Cyanide	TECH	9781287	2024/11/21	2024/11/22	Prgya Panchal
Conductivity	AT	9780464	2024/11/21	2024/11/21	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9780512	2024/11/21	2024/11/22	Sousan Besharatiou
Petroleum Hydro, CCME F1 & BTEX in Soil	HSGC/MSFD	9771947	N/A	2024/11/19	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9773009	2024/11/18	2024/11/19	Mohammed Abdul Nafay Shoeb
Acid Extractable Metals by ICPMS	ICP/MS	9780686	2024/11/21	2024/11/23	Thuy Linh Nguyen
Moisture	BAL	9771979	N/A	2024/11/18	Joe Thomas
pH CaCl2 EXTRACT	AT	9780505	2024/11/21	2024/11/21	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9771384	N/A	2024/11/22	Automated Statchk

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.0°C
Package 2	3.7°C
Package 3	7.7°C

Revised Report [2024/11/25]: Additional analysis requested.

F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

F1/BTEX Analysis: Analysis was performed past the sample holding time. This may increase the variability associated with these results.

F24 Analysis: Analysis was performed past the sample holding time. This may increase the variability associated with these results.

Sample AHZR55 [MW3-5]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AHZR56 [MW4-8]: PAH Analysis: Detection limits were adjusted for high moisture content.

Hexavalent Chromium: Detection Limits were raised due to high moisture content.

Sample AHZR56 [MW4-8]: VOC/F1 Analysis: Detection limits were raised due to high moisture content and/or low weight of soil provided.

Sample AHZR58 [MW7-4]: PALL Analysis: Due to the sample matrix, sample required dilution. Detections limit were adjusted accordingly.

VOC/F1 Analysis: Due to a level of petroleum hydrocarbon compounds beyond the appropriate range, the sample required dilution. The detection limits were adjusted accordingly. In order to meet required regulatory criteria, results for selected compounds (obtained by a separate analysis using an appropriate low dilution) are included in the report.

Sample AHZR58 [MW7-4]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AHZR59 [BH11-2]: F24: Analysis was performed past the sample holding time. This may increase the variability associated with these results.

Sample AHZR62 [QC-2]: PAH Analysis: Due to the sample matrix, sample required dilution. Detections limit were adjusted accordingly.

VOC/F1 Analysis: Due to a level of petroleum hydrocarbon compounds beyond the appropriate range, the sample required dilution. The detection limits were adjusted accordingly. In order to meet required regulatory criteria, results for selected compounds (obtained by a separate analysis using an appropriate low dilution) are included in the report.

Sample AHZR62 [QC-2]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AHZR63 [MW12-2]: PAH Analysis: Due to the sample matrix, sample required dilution. Detections limit were adjusted accordingly.

Sample AHZR64 [MW12-7]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AHZR65 [MW12-8]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AHZR66 [BH13-5]: PAH Analysis: Due to the sample matrix, sample required dilution, Detections limit were adjusted accordingly.

Sample AHZR67 [TCLP]: NF/NI = Non Flammable and Non Ignitable

Sample AHZR86 [MW4-9]: VOC/F1 Analysis: The sample was analyzed after the 14 day holding time specified by the method had expired.

Sample AHZR91 [MW6-8]: VOC/F1 Analysis: The sample was analyzed after the 14 day holding time specified by the method had expired.

Sample AHZR97 [MW7-7]: VOC/F1 Analysis: The sample was analyzed after the 14 day holding time specified by the method had expired.

Sample AHZS09 [BH11-8]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

Results relate only to the items tested.

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9750293	RGA	Matrix Spike	1,4-Difluorobenzene	2024/11/06		99	%	60 - 140
		'	4-Bromofluorobenzene	2024/11/06		105	%	60 - 140
			D10-o-Xylene	2024/11/06		115	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/06		96	%	60 - 140
			Benzene	2024/11/06		88	%	50 - 140
			Toluene	2024/11/06		87	%	50 - 140
			Ethylbenzene	2024/11/06		104	%	50 - 140
			o-Xylene	2024/11/06		103	%	50 - 140
			p+m-Xylene	2024/11/06		96	%	50 - 140
			F1 (C6-C10)	2024/11/06		94	%	60 - 140
9750293	RGA	Spiked Blank	1,4-Difluorobenzene	2024/11/06		102	%	60 - 140
			4-Bromofluorobenzene	2024/11/06		103	%	60 - 140
			D10-o-Xylene	2024/11/06		98	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/06		94	%	60 - 140
			Benzene	2024/11/06		85	%	50 - 140
			Toluene	2024/11/06		84	%	50 - 140
			Ethylbenzene	2024/11/06		101	%	50 - 140
			o-Xylene	2024/11/06		100	%	50 - 140
			p+m-Xylene	2024/11/06		92	%	50 - 140
			F1 (C6-C10)	2024/11/06		104	%	80 - 120
9750293	RGA	Method Blank	1,4-Difluorobenzene	2024/11/06		101	%	60 - 140
			4-Bromofluorobenzene	2024/11/06		95	%	60 - 140
			D1U-o-Xylene	2024/11/06		81	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/06		99	%	60 - 140
			Benzene	2024/11/06	<0.020		ug/g	
			Toluene	2024/11/06	<0.020		ug/g	
			Ethylbenzene	2024/11/06	<0.020		ug/g	
			o-Xylene	2024/11/06	<0.020		ug/g	
			p+m Xylene	2024/11/06	<0.040		ug/g	
			Total Xylenes	2024/11/06	< 0.040		ug/g	
			F1 (C6-C10)	2024/11/06	<10		ug/g	
			F1 (C6-C10) - BTEX	2024/11/06	<10		ug/g	
9750293	RGA	RPD	Benzene	2024/11/06	NC		%	50
			Toluene	2024/11/06	NC		%	50
			Ethylbenzene	2024/11/06	NC		%	50
			o-Xylene	2024/11/06	NC		%	50
			p+m-Xylene	2024/11/06	NC		%	50
			Total Xylenes	2024/11/06	NC		%	50
			F1 (C6-C10)	2024/11/06	NC		%	30
			F1 (C6-C10) - BTEX	2024/11/06	NC		%	30
9750496	MUC	RPD	Moisture	2024/11/06	4.0		%	20
9751403	CYS	Matrix Spike	4-Bromofluorobenzene	2024/11/07		106	%	60 - 140
			D10-o-Xylene	2024/11/07		106	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/07		93	%	60 - 140
			D8-Toluene	2024/11/07		97	%	60 - 140
			Acetone (2-Propanone)	2024/11/07		84	%	60 - 140
			Benzene	2024/11/07		98	%	60 - 140
			Bromodichloromethane	2024/11/07		95	%	60 - 140
			Bromoform	2024/11/07		104	%	60 - 140
			Bromomethane	2024/11/07		86	%	60 - 140
			Carbon Tetrachloride	2024/11/07		112	%	60 - 140
			Chlorobenzene	2024/11/07		96	%	60 - 140

QA/QC		(SACTA 7-44)		2 5				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Chloroform	2024/11/07		99	%	60 - 140
			Dibromochloromethane	2024/11/07		101	%	60 - 140
			1,2-Dichlorobenzene	2024/11/07		104	%	60 - 140
			1,3-Dichlorobenzene	2024/11/07		106	%	60 - 140
			1,4-Dichlorobenzene	2024/11/07		107	%	60 - 140
	-		Dichlorodifluoromethane (FREON 12)	2024/11/07		96	%	60 - 140
			1,1-Dichloroethane	2024/11/07		90	%	60 - 140
			1,2-Dichloroethane	2024/11/07		96	%	60 - 140
			1,1-Dichloroethylene	2024/11/07		98	%	60 - 140
			cis-1,2-Dichloroethylene	2024/11/07		107	%	60 - 140
			trans-1,2-Dichloroethylene	2024/11/07		109	%	60 - 140
			1,2-Dichloropropane	2024/11/07		92	%	60 - 140
			cis-1,3-Dichloropropene	2024/11/07		88	%	60 - 140
			trans-1,3-Dichloropropene	2024/11/07		92	%	60 - 140
			Ethylbenzene	2024/11/07		94	%	60 - 140
			Ethylene Dibromide	2024/11/07		98	%	60 - 140
			Hexane	2024/11/07		100	%	60 - 140
			Methylene Chloride(Dichloromethane)	2024/11/07		99	%	60 - 140
			Methyl Ethyl Ketone (2-Butanone)	2024/11/07		79	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/07		78	%	60 - 140
			Methyl t-butyl ether (MTBE)	2024/11/07		94	%	60 - 140
			Styrene	2024/11/07		93	%	60 - 140
			1,1,1,2-Tetrachloroethane	2024/11/07		109	%	60 - 140
			1,1,2,2-Tetrachloroethane	2024/11/07		86	%	60 - 140
			Tetrachloroethylene	2024/11/07		106	%	60 - 140
			Toluene	2024/11/07		98	%	60 - 140
			1,1,1-Trichloroethane	2024/11/07		103	%	60 - 140
			1,1,2-Trichloroethane	2024/11/07		90	%	60 - 140
			Trichloroethylene	2024/11/07		109	%	60 - 140
			Trichlorofluoromethane (FREON 11)	2024/11/07		108	%	60 - 140
			Vinyl Chloride	2024/11/07		96	%	60 - 140
			p+m-Xylene	2024/11/07		93	%	60 - 140
			o-Xylene	2024/11/07		102	%	60 - 140
			F1 (C6-C10)	2024/11/07		88	%	60 - 140
9751403	CYS	Spiked Blank	4-Bromofluorobenzene	2024/11/07		105	%	60 - 140
7731-03	CIS	Spiked blank	D10-o-Xylene	2024/11/07		99	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/07		96	%	60 - 140
			D8-Toluene	2024/11/07		96	%	60 - 140
			Acetone (2-Propanone)	2024/11/07		90 87	%	60 - 140
			Benzene Bromodichloromethane	2024/11/07		97	%	60 - 130
			Bromoform	2024/11/07		95	%	60 - 130
			Bromomethane	2024/11/07		103	%	60 - 130
				2024/11/07		85	%	60 - 140
			Carbon Tetrachloride	2024/11/07		110	%	60 - 130
			Chloroforese	2024/11/07		93	%	60 - 130
			Chloroform	2024/11/07		99	%	60 - 130
			Dibromochloromethane	2024/11/07		99	%	60 - 130
			1,2-Dichlorobenzene	2024/11/07		101	%	60 - 130
			1,3-Dichlorobenzene	2024/11/07		103	%	60 - 130
			1,4-Dichlorobenzene	2024/11/07		104	%	60 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/07		94	%	60 - 140
			1,1-Dichloroethane	2024/11/07		90	%	60 - 130

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			1,2-Dichloroethane	2024/11/07		97	%	60 - 130
			1,1-Dichloroethylene	2024/11/07		97	%	60 - 130
			cis-1,2-Dichloroethylene	2024/11/07		106	%	60 - 130
			trans-1,2-Dichloroethylene	2024/11/07		108	%	60 - 130
			1,2 Dichloropropane	2024/11/07		92	%	60 - 130
			cis-1,3-Dichloropropene	2024/11/07		88	%	60 - 130
			trans-1,3-Dichloropropene	2024/11/07		90	%	60 - 130
			Ethylbenzene	2024/11/07		91	%	60 - 130
			Ethylene Dibromide	2024/11/07		96	%	60 - 130
			Hexane	2024/11/07		98	%	60 - 130
			Methylene Chloride(Dichloromethane)	2024/11/07		99	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/07		82	%	60 - 140
			Methyl Isobutył Ketone	2024/11/07		82	%	60 - 130
			Methyl t-butyl ether (MTBE)	2024/11/07		96	%	60 - 130
		Styrene	2024/11/07		90	%	60 - 130	
			1,1,1,2-Tetrachloroethane	2024/11/07		106	%	60 - 130
			1,1,2,2-Tetrachloroethane	2024/11/07		85	%	60 - 130
			Tetrachloroethylene	2024/11/07		102	%	60 - 130
			Toluene	2024/11/07		96	%	60 - 130
			1,1,1-Trichloroethane	2024/11/07		101	%	60 - 130
			1,1,2-Trichloroethane	2024/11/07		88	%	60 - 130
			Trichloroethylene	2024/11/07		108	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/07		106	Y/n	60 - 130
			Vinyl Chloride	2024/11/07		94	%	60 - 13
			p+m-Xylene	2024/11/07		89	%	60 - 13
			o-Xylene	2024/11/07		100	%	60 - 13
			F1 (C6-C10)	2024/11/07		86	%	80 - 12
751403	CYS	Method Blank	4-Bromofluorobenzene	2024/11/07		107	%	60 - 14
			D10-o Xylene	2024/11/07		98	%	60 - 13
			D4-1,2-Dichloroethane	2024/11/07		94	%	60 - 14
			D8-Toluene	2024/11/07		96	%	60 - 14
			Acetone (2-Propanone)	2024/11/07	< 0.49		ug/g	
			Benzene	2024/11/07	< 0.0060		ug/g	
			Bromodichloromethane	2024/11/07	<0.040		ug/g	
			Bromoform	2024/11/07	< 0.040		ug/g	
			Bromomethane	2024/11/07	< 0.040		ug/g	
			Carbon Tetrachloride	2024/11/07	<0.040		ug/g	
			Chlorobenzene	2024/11/07	< 0.040		ug/g	
			Chloroform	2024/11/07	<0.040		ug/g	
			Dibromochloromethane	2024/11/07	< 0.040		ug/g	
			1,2-Dichlorobenzene	2024/11/07	<0.040		ug/g	
			1,3-Dichlorobenzene	2024/11/07	<0.040		ug/g	
			1,4-Dichlorobenzene	2024/11/07	<0.040		ug/g	
			Dichlorodifluoromethane (FREON 12)	2024/11/07	<0.040		ug/g	
			1,1-Dichloroethane	2024/11/07	<0.040		ug/g	
			1,2-Dichloroethane	2024/11/07	<0.040		ug/g ug/g	
			•	2024/11/07	<0.049			
			1,1-Dichloroethylene				ug/g	
			cis-1,2-Dichloroethylene	2024/11/07	<0.040		ug/g	
			trans-1,2-Dichloroethylene	2024/11/07	<0.040		ug/g	
			1,2-Dichloropropane	2024/11/07	<0.040		ug/g	
			cis-1,3-Dichloropropene	2024/11/07	<0.030		ug/g	
			trans-1,3-Dichloropropene	2024/11/07	<0.040		ug/g	

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		·/F-	Ethylbenzene	2024/11/07	<0.010		ug/g	aço cirrile.
			Ethylene Dibromide	2024/11/07	<0.040		ug/g	
			Hexane	2024/11/07	<0.040		ug/g	
			Methylene Chloride(Dichloromethane)	2024/11/07	< 0.049		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2024/11/07	<0.40		чь/ь ug/g	
			Methyl Isobutyl Ketone	2024/11/07	<0.40		ug/g	
			Methyl t-butyl ether (MTBE)	2024/11/07	<0.040		ug/g	
			Styrene	2024/11/07	<0.040		ug/g	
			1,1,1,2-Tetrachloroethane	2024/11/07	<0.040			
			1,1,2,2-Tetrachloroethane	2024/11/07	<0.040		ug/g	
			Tetrachloroethylene	2024/11/07	<0.040		ug/g	
			Toluene		<0.040		ug/g	
				2024/11/07			ug/g	
			1,1,1-Trichloroethane	2024/11/07	<0.040		ug/g	
			1,1,2-Trichloroethane	2024/11/07	<0.040		ug/g	
			Trichloroethylene	2024/11/07	<0.010		ug/g	
			Trichlorofluoromethane (FREON 11)	2024/11/07	<0.040		ug/g	
			Vinyl Chloride	2024/11/07	<0.019		ug/g	
			p+m-Xylene	2024/11/07	<0.020		ug/g	
			o-Xylene	2024/11/07	<0.020		ug/g	
			Total Xylenes	2024/11/07	<0.020		ug/g	
			F1 (C6-C10)	2024/11/07	<10		ug/g	
754405			F1 (C6-C10) - BTEX	2024/11/07	<10		ug/g	
751403	CYS	RPD	Acetone (2-Propanone)	2024/11/07	NC		%	50
		Benzene	2024/11/07	NC		%	50	
		Bromodichloromethane	2024/11/07	NC		%	50	
			Bromoform	2024/11/07	NC		%	50
			Bromomethane	2024/11/07	NC		%	50
			Carbon Tetrachloride	2024/11/07	NC		%	50
			Chlorobenzene	2024/11/07	NC		%	50
			Chloroform	2024/11/07	NC		%	50
			Dibromochloromethane	2024/11/07	NC		%	50
			1,2-Dichlorobenzene	2024/11/07	NC		%	50
			1,3-Dichlorobenzene	2024/11/07	NC		%	50
			1,4-Dichlorobenzene	2024/11/07	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2024/11/07	NC		%	50
			1,1-Dichloroethane	2024/11/07	NC		%	50
			1,2-Dichloroethane	2024/11/07	NC		%	50
			1,1-Dichloroethylene	2024/11/07	NC		%	50
			cis-1,2-Dichloroethylene	2024/11/07	NC		%	50
			trans-1,2-Dichloroethylene	2024/11/07	NC		%	50
			1,2-Dichloropropane	2024/11/07	NC		%	50
			cis-1,3-Dichloropropene	2024/11/07	NC		%	50
			trans-1,3-Dichloropropene	2024/11/07	NC		%	50
			Ethylbenzene	2024/11/07	NC		%	50
			Ethylene Dibromide	2024/11/07	NC		%	50
			Hexane	2024/11/07	NC		%	50
			Methylene Chloride(Dichloromethane)	2024/11/07	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2024/11/07	NC		%	50 50
			Methyl Isobutyl Ketone					
			Methyl t-butyl ether (MTBE)	2024/11/07	NC NC		%	50
				2024/11/07	NC		%	50
			Styrene	2024/11/07	NC		%	50
			1,1,1,2-Tetrachloroethane	2024/11/07	NC		%	50

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,2,2-Tetrachloroethane	2024/11/07	NC		%	50
			Tetrachloroethylene	2024/11/07	NC		%	50
			Toluene	2024/11/07	NC		%	50
			1,1,1-Trichloroethane	2024/11/07	NC		%	50
			1,1,2-Trichloroethane	2024/11/07	NC		%	50
			Trichloroethylene	2024/11/07	NC		%	50
			Trichlorofluoromethane (FREON 11)	2024/11/07	NC		%	50
			Vinyl Chloride	2024/11/07	NC		%	50
			p+m-Xylene	2024/11/07	NC		%	50
			o-Xylene	2024/11/07	NC		%	50
			Total Xylenes	2024/11/07	NC		%	50
			F1 (C6-C10)	2024/11/07	NC		%	30
			F1 (C6-C10) - BTEX	2024/11/07	NC		%	30
9753795	LFE	Matrix Spike	D10-Anthracene	2024/11/08		92	%	50 - 130
			D14-Terphenyl (FS)	2024/11/08		87	%	50 - 130
			D8-Acenaphthylene	2024/11/08		97	%	50 - 130
			Acenaphthene	2024/11/08		98	%	50 - 130
			Acenaphthylene	2024/11/08		116	%	50 - 130
			Anthracene	2024/11/08		107	%	50 - 130
			Benzo(a)anthracene	2024/11/08		NC	%	50 - 130
			Benzo(a)pyrene	2024/11/08		NC	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/08		NC	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/08		NC	%	50 - 130
			Benzo(k)fluoranthene	2024/11/08		121	%	50 - 130
			Chrysene	2024/11/08		NC	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/08		104	%	50 - 130
			Fluoranthene	2024/11/08		NC	%	50 - 130
			Fluorene	2024/11/08		100	%	50 - 130
			Indeno(1,2,3 cd)pyrene	2024/11/08		NC	%	50 - 130
			1-Methylnaphthalene	2024/11/08		89	%	50 - 130
			2-Methylnaphthalene	2024/11/08		92	%	50 - 130
			Naphthalene	2024/11/08		86	%	50 - 130
			Phenanthrene	2024/11/08		NC	%	50 - 130
			Pyrene	2024/11/08		NC	%	50 - 130
9753795	LFE	Spiked Blank	D10-Anthracene	2024/11/08		94	%	50 - 130
3733733	C1 L	opined oldin	D14-Terphenyl (FS)	2024/11/08		87	%	50 - 130
			D8-Acenaphthylene	2024/11/08		100	%	50 - 130
			Acenaphthene	2024/11/08		95	%	50 - 130
			Acenaphthylene	2024/11/08		106	%	50 - 130
			Anthracene	2024/11/08		98	%	50 - 130
			Benzo(a)anthracene	2024/11/08		100	%	50 - 130
			Benzo(a)pyrene	2024/11/08		97	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/08		99	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/08		93	%	50 - 130
			Benzo(g,n,r)peryierie Benzo(k)fluoranthene	2024/11/08		97	%	50 - 130
			Chrysene	2024/11/08		100	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/08		86	%	50 - 130
			Fluoranthene	2024/11/08		99	%	50 - 130
				2024/11/08		99 95	% %	50 - 130
			Fluorene	2024/11/08		93	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/08		93	% %	50 - 130
			1-Methylnaphthalene			93	% %	50 - 130
			2-Methylnaphthalene	2024/11/08		34	70	20 - 120

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Naphthalene	2024/11/08		92	%	50 - 130
			Phenanthrene	2024/11/08		97	%	50 - 130
			Pyrene	2024/11/08		96	%	50 - 130
9753795	LFE	Method Blank	D10-Anthracene	2024/11/08		95	%	50 - 130
			D14-Terphenyl (FS)	2024/11/08		87	%	50 - 130
			D8-Acenaphthylene	2024/11/08		98	%	50 - 130
			Acenaphthene	2024/11/08	<0.0050		ug/g	
			Acenaphthylene	2024/11/08	<0.0050		ug/g	
			Anthracene	2024/11/08	<0.0050		ug/g	
			Benzo(a)anthracene	2024/11/08	<0.0050		ug/g	
			Benzo(a)pyrene	2024/11/08	<0.0050		ug/g	
			Benzo(b/j)fluoranthene	2024/11/08	<0.0050		ug/g	
			Benzo(g,h,i)perylene	2024/11/08	<0.0050		ug/g	
			Benzo(k)fluoranthene	2024/11/08	<0.0050		ug/g	
			Chrysene	2024/11/08	<0.0050		ug/g	
			Dibenzo(a,h)anthracene	2024/11/08	<0.0050		ug/g	
			Fluoranthene	2024/11/08	<0.0050		ug/g	
			Fluorene	2024/11/08	<0.0050		ug/g	
			Indeno(1,2,3-cd)pyrene	2024/11/08	<0.0050		ug/g	
			1-Methylnaphthalene	2024/11/08	<0.0050		ug/g	
			2-Methylnaphthalene	2024/11/08	<0.0050		ug/g	
			Naphthalene	2024/11/08	<0.0050		ug/g	
			Phenanthrene	2024/11/08	<0.0050		ug/g	
			Pyrene	2024/11/08	<0.0050		ug/g	
753795 LFE	LFE	RPD	Acenaphthene	2024/11/08	31		%	40
			Acenaphthylene	2024/11/08	0.071		%	40
			Anthracene	2024/11/08	9.3		%	40
			Benzo(a)anthracene	2024/11/08	4.4		%	40
			Benzo(a) pyrene	2024/11/08	0.24		%	40
			Benzo(b/j)fluoranthene	2024/11/08	4.7		%	40
			Benzo(g,h,i)perylene	2024/11/08	0.46		%	40
			Benzo(k)fluoranthene	2024/11/08	1.2		%	40
			Chrysene	2024/11/08	6.6		%	40
			Dibenzo(a,h)anthracene	2024/11/08	1.1		%	40
			Fluoranthene	2024/11/08	2.3		%	40
			Fluorene	2024/11/08	25		%	40
			Indeno(1,2,3-cd)pyrene	2024/11/08	4.2		%	40
			1-Methylnaphthalene	2024/11/08	NC		%	40
			2-Methylnaphthalene	2024/11/08	32		%	40
			Naphthalene	2024/11/08	NC		%	40
			Phenanthrene	2024/11/08	5.2		%	40
			Pyrene	2024/11/08	1.8		%	40
753952	ANF	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/08		96	%	75 - 125
753952	ANF	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/08		95	%	75 - 125
753952	ANF	Method Blank	Hot Water Ext. Boron (B)	2024/11/08	<0.050		ug/g	
753952	ANF	RPD	Hot Water Ext. Boron (B)	2024/11/08	0.81		%	40
753977	NRA	Matrix Spike	Leachable 4-Bromofluorobenzene	2024/11/08		102	%	70 - 130
			Leachable D4-1,2-Dichloroethane	2024/11/08		98	%	70 - 130
			Leachable D8-Toluene	2024/11/08		102	%	70 - 130
			Leachable Benzene	2024/11/08		102	%	70 - 130
			Leachable Carbon Tetrachloride	2024/11/08		109	%	70 - 130
			Leachable Chlorobenzene	2024/11/08		99	%	70 - 130

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Leachable Chloroform	2024/11/08		102	%	70 - 130
			Leachable 1,2-Dichlorobenzene	2024/11/08		107	%	70 - 130
			Leachable 1,4-Dichlorobenzene	2024/11/08		112	%	70 - 130
			Leachable 1,2-Dichloroethane	2024/11/08		103	%	70 - 130
			Leachable 1,1-Dichloroethylene	2024/11/08		99	%	70 - 130
			Leachable Methylene Chloride(Dichloromethan	2024/11/08		99	%	70 - 130
			Leachable Methyl Ethyl Ketone (2-Butanone)	2024/11/08		104	%	60 - 140
			Leachable Tetrachloroethylene	2024/11/08		104	%	70 - 130
			Leachable Trichloroethylene	2024/11/08		107	%	70 - 130
			Leachable Vinyl Chloride	2024/11/08		93	%	70 - 130
9753977	NRA	Spiked Blank	Leachable 4-Bromofluorobenzene	2024/11/08		102	%	70 - 130
			Leachable D4-1,2-Dichloroethane	2024/11/08		99	%	70 - 130
			Leachable D8-Toluene	2024/11/08		103	%	70 - 130
		10	Leachable Benzene	2024/11/08		102	%	70 - 130
			Leachable Carbon Tetrachloride	2024/11/08		108	%	70 - 130
			Leachable Chlorobenzene	2024/11/08		98	%	70 - 130
			Leachable Chloroform	2024/11/08		102	%	70 - 130
			Leachable 1,2-Dichlorobenzene	2024/11/08		106	%	70 - 130
			Leachable 1,4-Dichlorobenzene	2024/11/08		109	%	70 - 130
			Leachable 1,2-Dichloroethane	2024/11/08		104	%	70 - 130
			Leachable 1,1-Dichloroethylene	2024/11/08		99	%	70 - 130
			Leachable Methylene Chloride(Dichloromethan			100	%	70 - 130
			Leachable Methyl Ethyl Ketone (2-Butanone)	2024/11/08		107	%	60 - 140
			Leachable Tetrachloroethylene	2024/11/08		100	%	70 = 130
			Leachable Trichloroethylene	2024/11/08		105	%	70 - 130
			Leachable Vinyl Chloride	2024/11/08		92	%	70 - 130
9753977	NID A	Method Blank	Leachable 4-Bromofluorobenzene	2024/11/08		104	%	70 - 130
9/539//	NRA	Metuon plauk	Leachable D4-1,2-Dichloroethane	2024/11/08		102	%	70 = 130
			Leachable D8-Toluene	2024/11/08		93	%	70 - 130
			Leachable Benzene	2024/11/08	<0.020	23	mg/L	70 - 130
			Leachable Garbon Tetrachloride	2024/11/08	<0.020		mg/L	
					<0.020		mg/L	
			Leachable Chlorobenzene	2024/11/08	<0.020		mg/L	
			Leachable Chloroform	2024/11/08				
			Leachable 1,2-Dichlorobenzene	2024/11/08	<0.050		mg/L	
			Leachable 1,4-Dichlorobenzene	2024/11/08	<0.050		mg/L	
			Leachable 1,2-Dichloroethane	2024/11/08	<0.050		mg/L	
			Leachable 1,1-Dichloroethylene	2024/11/08	<0.020		mg/L	
			Leachable Methylene Chloride(Dichloromethan		<0.20		mg/L	
			Leachable Methyl Ethyl Ketone (2-Butanone)	2024/11/08	<1.0		mg/L	
			Leachable Tetrachloroethylene	2024/11/08	<0.020		mg/L	
			Leachable Trichloroethylene	2024/11/08	<0.020		mg/L	
			Leachable Vinyl Chloride	2024/11/08	<0.020		mg/L	
9753977	NRA	RPD	Leachable Benzene	2024/11/08	NC		%	30
			Leachable Carbon Tetrachloride	2024/11/08	NC		%	30
			Leachable Chlorobenzene	2024/11/08	NC		%	30
			Leachable Chloroform	2024/11/08	NC		%	30
			Leachable 1,2-Dichlorobenzene	2024/11/08	NC		%	30
			Leachable 1,4-Dichlorobenzene	2024/11/08	NC		%	30
			Leachable 1,2-Dichloroethane	2024/11/08	NC		%	30
			Leachable 1,1-Dichloroethylene	2024/11/08	NC		%	30
			Leachable Methylene Chloride(Dichloromethan	2024/11/08	NC		%	30
			Leachable Methyl Ethyl Ketone (2-Butanone)	2024/11/08	NC		%	30

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Leachable Tetrachloroethylene	2024/11/08	NC		%	30
			Leachable Trichloroethylene	2024/11/08	NC		%	30
			Leachable Vinyl Chloride	2024/11/08	NC		%	30
9754031	TLG	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/08		NC	%	75 - 125
9754031	TLG	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/08		101	%	75 - 125
9754031	TLG	Method Blank	Hot Water Ext. Boron (B)	2024/11/08	<0.050		ug/g	
9754031	TLG	RPD	Hot Water Ext. Boron (B)	2024/11/08	3.7		%	40
9754357	NGI	Matrix Spike	Leachable Fluoride (F-)	2024/11/09		97	%	80 - 120
9754357	NGI	Leachate Blank	Leachable Fluoride (F-)	2024/11/09	<0.10		mg/L	
9754357	NGI	Spiked Blank	Leachable Fluoride (F-)	2024/11/09		101	%	80 - 120
9754357	NGI	Method Blank	Leachable Fluoride (F-)	2024/11/09	<0.10		mg/L	
9754357	NGI	RPD	Leachable Fluoride (F-)	2024/11/09	1.9		%	25
9754364	C_N	Matrix Spike	Leachable Nitrite (N)	2024/11/12		99	%	80 - 120
			Leachable Nitrate (N)	2024/11/12		90	%	80 - 120
			Leachable Nitrate + Nitrite (N)	2024/11/12		92	%	80 - 120
9754364	C_N	Leachate Blank	Leachable Nitrite (N)	2024/11/12	<0.10		mg/L	
			Leachable Nitrate (N)	2024/11/12	<1.0		mg/L	
			Leachable Nitrate + Nitrite (N)	2024/11/12	<1.0		mg/L	
9754364	C_N	Spiked Blank	Leachable Nitrite (N)	2024/11/12		94	%	80 - 120
			Leachable Nitrate (N)	2024/11/12		96	%	80 - 120
			Leachable Nitrate + Nitrite (N)	2024/11/12		96	%	80 - 120
9754364	C_N	Method Blank	Leachable Nitrite (N)	2024/11/12	<0.10		mg/L	
			Leachable Nitrate (N)	2024/11/12	<1.0		mg/L	
			Leachable Nitrate + Nitrite (N)	2024/11/12	<1.0		mg/L	
9754364	C_N	RPD	Leachable Nitrite (N)	2024/11/12	NC		%	20
			Leachable Nitrate (N)	2024/11/12	NC		%	20
			Leachable Nitrate + Nitrite (N)	2024/11/12	NC		%	20
9754367	1MK	Matrix Spike	Acid Extractable Antimony (Sb)	2024/11/08		103	%	75 - 125
			Acid Extractable Arsenic (As)	2024/11/08		105	%	75 - 125
			Acid Extractable Barium (Ba)	2024/11/08		99	%	75 - 125
			Acid Extractable Beryllium (Be)	2024/11/08		100	%	75 - 125
			Acid Extractable Boron (B)	2024/11/08		92	%	75 - 125
			Acid Extractable Cadmium (Cd)	2024/11/08		102	%	75 - 125
			Acid Extractable Chromium (Cr)	2024/11/08		100	%	75 - 125
			Acid Extractable Cobalt (Co)	2024/11/08		98	%	75 - 125
			Acid Extractable Copper (Cu)	2024/11/08		97	%	75 - 125
			Acid Extractable Lead (Pb)	2024/11/08		92	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2024/11/08		96	%	75 - 125
			Acid Extractable Nickel (Ni)	2024/11/08		99	%	75 - 125
			Acid Extractable Selenium (Se)	2024/11/08		103	%	75 - 125
			Acid Extractable Silver (Ag)	2024/11/08		95	%	75 - 125
			Acid Extractable Thallium (TI)	2024/11/08		95	%	75 - 125
			Acid Extractable Uranium (U)	2024/11/08		99	%	75 - 125 75 - 125
			Acid Extractable Vanadium (V)	2024/11/08		101	%	75 - 125 75 - 125
			Acid Extractable Variation (V) Acid Extractable Zinc (Zn)	2024/11/08		NC	%	75 - 125 75 - 125
			Acid Extractable 2inc (2ii) Acid Extractable Mercury (Hg)	2024/11/08		91	%	75 - 125 75 - 125
9754367	JWK	Spiked Blank	Acid Extractable Melcury (Ag) Acid Extractable Antimony (Sb)	2024/11/08				
,,,,,,,,,,,,	2 44 17	Spincu Dialik	Acid Extractable Antimony (5b) Acid Extractable Arsenic (As)			104	%	80 - 120
			Acid Extractable Arsenic (As) Acid Extractable Barium (Ba)	2024/11/08		102	%	80 - 120
				2024/11/08		96	%	80 - 120
			Acid Extractable Beryllium (Be)	2024/11/08		98	%	80 - 120
			Acid Extractable Boron (B)	2024/11/08		96	%	80 - 120

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Chromium (Cr)	2024/11/08		97	%	80 - 120
			Acid Extractable Cobalt (Co)	2024/11/08		96	%	80 - 120
			Acid Extractable Copper (Cu)	2024/11/08		98	%	80 - 120
			Acid Extractable Lead (Pb)	2024/11/08		91	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2024/11/08		91	%	80 - 120
			Acid Extractable Nickel (Ni)	2024/11/08		98	%	80 - 120
			Acid Extractable Selenium (Se)	2024/11/08		100	%	80 - 120
			Acid Extractable Silver (Ag)	2024/11/08		93	%	80 - 120
			Acid Extractable Thallium (TI)	2024/11/08		93	%	80 - 120
			Acid Extractable Uranium (U)	2024/11/08		96	%	80 - 120
			Acid Extractable Vanadium (V)	2024/11/08		98	%	80 - 120
			Acid Extractable Zinc (Zn)	2024/11/08		100	%	80 - 120
			Acid Extractable Mercury (Hg)	2024/11/08		92	%	80 - 120
/5436/	JWK	Method Blank	Acid Extractable Antimony (Sb)	2024/11/08	<0.20		ug/g	
			Acid Extractable Arsenic (As)	2024/11/08	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2024/11/08	<0.50		ug/g	
			Acid Extractable Beryllium (Be)	2024/11/08	<0.20		ug/g	
			Acid Extractable Boron (B)	2024/11/08	<5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2024/11/08	<0.10		ug/g	
			Acid Extractable Chromium (Cr)	2024/11/08	<1.0		ug/g	
			Acid Extractable Cobalt (Co)	2024/11/08	<0.10		ug/g	
	Acid Extractable Cobalt (Co) 2024/11/08 <0.10	ug/g						
			Acid Extractable Molybdenum (Mo)	2024/11/08	< 0.50		ug/g	
			Acid Extractable Nickel (Ni)	2024/11/08	< 0.50		ug/g	
			Acid Extractable Selenium (Se)	2024/11/08	<0.50		ug/g	
			Acid Extractable Silver (Ag)	2024/11/08	< 0.20		ug/g	
			Acid Extractable Thallium (TI)	2024/11/08	< 0.050		ug/g	
			Acid Extractable Uranium (U)	2024/11/08	<0.050		ug/g	
			Acid Extractable Vanadium (V)	2024/11/08	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2024/11/08	<5.0		ug/g	
			Acid Extractable Mercury (Hg)	2024/11/08	< 0.050		ug/g	
754367	JWK	RPD	Acid Extractable Antimony (Sb)	2024/11/08	NC		%	30
75-1507	30010	5	Acid Extractable Arsenic (As)	2024/11/08	9.3		%	30
			Acid Extractable Barium (Ba)	2024/11/08	4.4		%	30
			Acid Extractable Beryllium (Be)	2024/11/08	NC		%	30
			Acid Extractable Boron (B)	2024/11/08	NC		%	30
			Acid Extractable Cadmium (Cd)	2024/11/08	NC		%	30
			Acid Extractable Chromium (Cr)	2024/11/08	6.4		%	30
			Acid Extractable Cobalt (Co)	2024/11/08	3.8		%	30
			Acid Extractable Copper (Cu)	2024/11/08	3.9		%	30
			Acid Extractable Copper (Cd) Acid Extractable Lead (Pb)	2024/11/08	5.0		%	30
			• •	2024/11/08	7.7		%	30
			Acid Extractable Molybdenum (Mo)				%	30
			Acid Extractable Nickel (Ni)	2024/11/08	3.3 NC		%	30
			Acid Extractable Selenium (Se)	2024/11/08	NC NC			
			Acid Extractable Silver (Ag)	2024/11/08	NC		%	30
			Acid Extractable Thallium (TI)	2024/11/08	NC C.4		%	30
			Acid Extractable Uranium (U)	2024/11/08	6.4		%	30
			Acid Extractable Vanadium (V)	2024/11/08	1.8		%	30
			Acid Extractable Zinc (Zn)	2024/11/08	2.5		%	30
754368	11H	Matrix Spike	Leachable WAD Cyanide (Free)	2024/11/08		94	%	80 - 120
9754368	IJН	Leachate Blank	Leachable WAD Cyanide (Free)	2024/11/08	<0.010		mg/L	

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9754368	JJH	Spiked Blank	Leachable WAD Cyanide (Free)	2024/11/08		106	%	80 - 120
9754368	JJH	Method Blank	Leachable WAD Cyanide (Free)	2024/11/08	< 0.0020		mg/L	
9754368	IJΗ	RPD	Leachable WAD Cyanide (Free)	2024/11/08	NC		%	20
9754504	N_R	Matrix Spike	Leachable Arsenic (As)	2024/11/08		102	%	80 - 120
			Leachable Barium (Ba)	2024/11/08		NC	%	80 - 120
			Leachable Boron (B)	2024/11/08		NC	%	80 - 120
			Leachable Cadmium (Cd)	2024/11/08		99	%	80 - 120
			Leachable Chromium (Cr)	2024/11/08		98	%	80 - 120
			Leachable Lead (Pb)	2024/11/08		NC	%	80 - 120
			Leachable Mercury (Hg)	2024/11/08		100	%	80 - 120
			Leachable Selenium (Se)	2024/11/08		39 (1)	%	80 - 120
			Leachable Silver (Ag)	2024/11/08		93	%	80 - 120
			Leachable Uranium (U)	2024/11/08		97	%	80 - 120
9754504	N_R	Leachate Blank	Leachable Arsenic (As)	2024/11/08	<0.2		mg/L	
			Leachable Barium (Ba)	2024/11/08	<0.2		mg/L	
	Leachable Boron (B)	Leachable Boron (B)	2024/11/08	<0.1		mg/L		
			Leachable Cadmium (Cd)	2024/11/08	<0.05		mg/L	
			Leachable Chromium (Cr)	2024/11/08	<0.1		mg/L	
			Leachable Lead (Pb)	2024/11/08	<0.1		mg/L	
			Leachable Mercury (Hg)	2024/11/08	<0.001		mg/L	
			Leachable Selenium (Se)	2024/11/08	<0.1		mg/L	
			Leachable Silver (Ag)	2024/11/08	<0.01		mg/L	
			Leachable Uranium (U)	2024/11/08	<0.01		mg/L	
9754504	N R	RPD	Leachable Arsenic (As)	2024/11/08	NC		%	35
			Leachable Barium (Ba)	2024/11/08	NC		%	35
			Leachable Boron (B)	2024/11/08	NC		%	35
			Leachable Cadmium (Cd)	2024/11/08	NC		%	35
			Leachable Chromium (Cr)	2024/11/08	NC		%	35
			Leachable Lead (Pb)	2024/11/08	NC		%	35
			Leachable Mercury (Hg)	2024/11/08	NC		%	35
			Leachable Selenium (Se)	2024/11/08	NC		%	35
			Leachable Silver (Ag)	2024/11/08	NC		%	35
			Leachable Uranium (U)	2024/11/08	NC		%	35
			Leachable Arsenic (As)	2024/11/08	NC NC			35
			Leachable Barium (Ba)	2024/11/08	2.0		%	
			Leachable Boron (B)	2024/11/08			%	35
			Leachable Cadmium (Cd)		2.0		%	35
			Leachable Chromium (Cr)	2024/11/08	NC NC		%	35
			Leachable Chromidin (Cr)	2024/11/08	NC		%	35
				2024/11/08	3.3		%	35
			Leachable Mercury (Hg)	2024/11/08	NC		%	35
			Leachable Selenium (Se) Leachable Silver (Ag)	2024/11/08	NC		%	35
			Leachable Uranium (U)	2024/11/08	NC		%	35
754504	N D	Spikad Blank	, ,	2024/11/08	NC		%	35
,,J4JU4	N_R	Spiked Blank	Leachable Arsenic (As)	2024/11/08		99	%	80 - 120
			Leachable Barium (Ba)	2024/11/08		101	%	80 - 120
			Leachable Boron (B)	2024/11/08		97	%	80 - 120
			Leachable Cadmium (Cd)	2024/11/08		97	%	80 - 120
			Leachable Chromium (Cr)	2024/11/08		98	%	80 - 120
			Leachable Lead (Pb)	2024/11/08		97	%	80 - 120
			Leachable Mercury (Hg)	2024/11/08		102	%	80 - 120
			Leachable Selenium (Se)	2024/11/08		99	%	80 - 120
			Leachable Silver (Ag)	2024/11/08		94	%	80 - 120

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Daten	mac	де турс	Leachable Uranium (U)	2024/11/08		97	%	80 - 120
9754504	N_R	Method Blank	Leachable Arsenic (As)	2024/11/08	<0.2		mg/L	
7734304	14 15	Wethod blank	Leachable Barium (Ba)	-2024/11/08	<0.2		mg/L	
			Leachable Boron (B)	2024/11/08	< 0.1		mg/L	
			Leachable Cadmlum (Cd)	2024/11/08	<0.05		mg/L	
			Leachable Chromium (Cr)	2024/11/08	<0.1		mg/L	
			Leachable Lead (Pb)	2024/11/08	<0.1		mg/L	
			Leachable Mercury (Hg)	2024/11/08	<0.001		mg/L	
			Leachable Selenium (Se)	2024/11/08	<0.1		mg/L	
			Leachable Silver (Ag)	2024/11/08	<0.01		mg/L	
			_	2024/11/08	<0.01		mg/L	
		A4-1-1- C-1- [A117DED 041]	Leachable Uranium (U)	2024/11/08	VO.01	60 (2)	%	70 - 130
9754630	SB5	Matrix Spike [AHZR58-01]	Chromium (VI)	2024/11/08		94	%	80 - 120
9754630	SB5	Spiked Blank	Chromium (VI)		<0.18	54	ug/g	00 120
9754630	SB5	Method Blank	Chromium (VI)	2024/11/08	NC		ив/в %	35
9754630	SB5	RPD [AHZR58-01]	Chromium (VI)	2024/11/08	INC	91	%	60 - 140
9755061	MSZ	Matrix Spike [AHZR65-02]	o-Terphenyl	2024/11/10			% %	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/10		96		60 - 140
			F3 (C16-C34 Hydrocarbons)	2024/11/10		98	%	
			F4 (C34-C50 Hydrocarbons)	2024/11/10		96	%	60 - 140
9755061	MSZ	Spiked Blank	o-Terphenyl	2024/11/10		90	%	60 - 140
			Γ2 (C10-C16 Hydrocarbons)	2021/11/10		102	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2024/11/10		104	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2024/11/10		102	%	80 - 120
9755061	MSZ	Method Blank	o-Terphenyl	2024/11/10		94	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/10	<7.0		ug/g	
			F3 (C16-C34 Hydrocarbons)	2024/11/10	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2024/11/10	<50		ug/g	
9755061	MSZ	RPD [AHZR65-02]	F2 (C10-C16 Hydrocarbons)	2024/11/11	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2024/11/11	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2024/11/11	NC		%	30
9755572	GYA	Matrix Spike [AHZR58-01]	WAD Cyanide (Free)	2024/11/12		67 (3)	%	75 - 125
9755572	GYA	Spiked Blank	WAD Cyanide (Free)	2024/11/12		108	%	80 - 120
9755572	GYA	Method Blank	WAD Cyanide (Free)	2024/11/12	< 0.01		ug/g	
9755572	GYA	RPD [AHZR58-01]	WAD Cyanide (Free)	2024/11/12	NC		%	35
9756537	KIT	Spiked Blank	Available (CaCl2) pH	2024/11/09		100	%	97 - 103
9756537	KIT	RPD [AHZR58-01]	Available (CaCl2) pH	2024/11/09	0.10		%	N/A
9757581	KIT	Spiked Blank	Conductivity	2024/11/11		103	%	90 - 110
9757581	KIT	Method Blank	Conductivity	2024/11/11	< 0.002		mS/cm	
9757581	KIT	RPD [AHZR66-01]	Conductivity	2024/11/11	0.28		%	10
9758575	WZ	Matrix Spike [AHZR67-02]	Leachable 2,4,6-Tribromophenol	2024/11/12		96	%	10 - 130
3730373	***	Width Spine (Williams SE)	Leachable 2-Fluorobiphenyl	2024/11/12		80	%	30 - 130
			Leachable 2-Fluorophenol	2024/11/12		74	%	10 - 130
			Leachable D14-Terphenyl (FS)	2024/11/12		100	%	30 - 130
			Leachable D5-Nitrobenzene	2024/11/12		94	%	30 - 130
			Leachable D5-Phenol	2024/11/12		40	%	10 - 130
			Leachable Benzo(a)pyrene	2024/11/12		105	%	30 - 130
			Leachable m/p-Cresol	2024/11/12		70	%	10 - 130
			* *			82	%	10 - 130
			Leachable o-Cresol	2024/11/12		76	%	10 - 13
			Leachable Cresol Total	2024/11/12		101	% %	10 - 130
			Leachable 2,4-Dichlorophenol	2024/11/12		90	% %	30 - 130
			Leachable 2,4-Dinitrotoluene	2024/11/12				30 - 130
			Leachable Hexachlorobenzene	2024/11/12		98	%	3U - 13

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Leachable Hexachlorobutadiene	2024/11/12		74	%	30 - 130
			Leachable Hexachloroethane	2024/11/12		68	%	30 - 130
			Leachable Nitrobenzene	2024/11/12		94	%	30 - 130
			Leachable Pentachlorophenol	2024/11/12		116	%	30 - 130
			Leachable Pyridine	2024/11/12		46	%	10 - 130
			Leachable 2,3,4,6-Tetrachlorophenol	2024/11/12		114	%	10 - 130
			Leachable 2,4,5-Trichlorophenol	2024/11/12		107	%	10 - 130
			Leachable 2,4,6-Trichlorophenol	2024/11/12		102	%	10 - 130
9758575	WZ	Spiked Blank	Leachable 2,4,6-Tribromophenol	2024/11/12		97	%	10 - 130
			Leachable 2-Fluorobiphenyl	2024/11/12		83	%	30 - 130
			Leachable 2-Fluorophenol	2024/11/12		69	%	10 - 130
			Leachable D14-Terphenyl (FS)	2024/11/12		100	%	30 - 130
			Leachable D5-Nitrobenzene	2024/11/12		96	%	30 - 130
			Leachable D5-Phenol	2024/11/12		43	%	10 - 130
			Leachable Benzo(a)pyrene	2024/11/12		106	%	30 - 130
			Leachable m/p-Cresol	2024/11/12		75	%	10 - 130
			Leachable o-Cresol	2024/11/12		85	%	10 - 130
			Leachable Cresol Total	2024/11/12		80	%	10 - 130
			Leachable 2,4-Dichlorophenol	2024/11/12		101	%	10 - 130
			Leachable 2,4-Dinitrotoluene	2024/11/12		92	%	30 - 130
			Leachable Hexachlorobenzene	2024/11/12		100	%	30 - 130
			Leachable Hexachlorobutadiene	2024/11/12		75	%	30 - 130
			Leachable Hexachloroethane	2024/11/12		68	%	30 - 13
			Leachable Nitrobenzene	2024/11/12		95	%	30 - 130
			Leachable Pentachlorophenol	2024/11/12		118	%	30 - 130
			Leachable Pyridine	2024/11/12		48	%	10 - 130
			Leachable 2,3,4,6-Tetrachlorophenol	2024/11/12		116	%	10 - 130
			Leachable 2,4,5-Trichlorophenol	2024/11/12		108	%	10 - 130
			Leachable 2,4,6-Trichlorophenol	2024/11/12		105	%	10 - 130
758575	WZ	Method Blank	Leachable 2,4,6-Tribromophenol	2024/11/12		90	%	10 - 130
			Leachable 2-Fluorobiphenyl	2024/11/12		84	%	30 - 130
			Leachable 2-Fluorophenol	2024/11/12		70	%	10 - 130
			Leachable D14-Terphenyl (FS)	2024/11/12		100	%	30 - 130
			Leachable D5-Nitrobenzene	2024/11/12		94	%	30 - 130
			Leachable D5-Phenol	2024/11/12		40	%	
			Leachable Benzo(a)pyrene	2024/11/12	<0.10	40		10 - 130
			Leachable m/p-Cresol	2024/11/12	<2.5		ug/L	
			Leachable o-Cresol		<2.5		ug/L	
			Leachable Cresol Total	2024/11/12			ug/L	
				2024/11/12	<2.5		ug/L	
			Leachable 2,4-Dichlorophenol	2024/11/12	<2.5		ug/L	
			Leachable 2,4-Dinitrotoluene	2024/11/12	<10		ug/L	
			Leachable Hexachlorobenzene	2024/11/12	<10		ug/L	
			Leachable Hexachlorobutadiene	2024/11/12	<10		ug/L	
			Leachable Hexachloroethane	2024/11/12	<10		ug/L	
			Leachable Nitrobenzene	2024/11/12	<10		ug/L	
			Leachable Pentachlorophenol	2024/11/12	<2.5		ug/L	
			Leachable Pyridine	2024/11/12	<10		ug/L	
			Leachable 2,3,4,6-Tetrachlorophenol	2024/11/12	<2.5		ug/L	
			Leachable 2,4,5-Trichlorophenol	2024/11/12	<0.50		ug/L	
			Leachable 2,4,6-Trichlorophenol	2024/11/12	<2.5		ug/L	
9758575	WZ	RPD [AHZR67-02]	Leachable Benzo(a)pyrene	2024/11/12	NC		%	40
			Leachable m/p-Cresol	2024/11/12	NC		%	40

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

QA/QC Batch	Init	QC Type	Paramete <i>r</i>	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Leachable o-Cresol	2024/11/12	NC		%	40
			Leachable Cresol Total	2024/11/12	NC		%	40
			Leachable 2,4-Dichlorophenol	2024/11/12	NC		%	40
			Leachable 2,4-Dinitrotoluene	2024/11/12	NC		%	40
			Leachable Hexachlorobenzene	2024/11/12	NC.		%	40
			Leachable Hexachlorobutadiene	2024/11/12	NC		%	40
			Leachable Hexachloroethane	2024/11/12	NC		%	40
			Leachable Nitrobenzene	2024/11/12	NC		%	40
			Leachable Pentachlorophenol	2024/11/12	NC		%	40
			Leachable Pyridine	2024/11/12	NC		%	40
			Leachable 2,3,4,6-Tetrachlorophenol	2024/11/12	NC		%	40
			Leachable 2,4,5-Trichlorophenol	2024/11/12	NC		%	40
			Leachable 2,4,6-Trichlorophenol	2024/11/12	NC		%	40
9761928	RDU	Matrix Spike	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/13		107	%	65 - 135
9761928	RDU	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/13		102	%	65 - 135
9761928	RDU	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/13	<100		ug/g	
9761928	RDU	RPD	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/13	5.1		%	50
9771947	GRU	Matrix Spike	1,4-Difluorobenzene	2024/11/18		99	%	60 - 140
			4-Bromofluorobenzene	2024/11/18		93	%	60 - 140
			D10-o-Xylene	2024/11/18		99	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/18		79	%	60 - 140
			Benzene	2024/11/18		83	%	50 - 140
			Joluene	2024/11/18		82	%	50 - 140
			Ethylbenzene	2024/11/18		94	%	50 - 140
			o-Xylene	2024/11/18		91	%	50 - 140
			p+m-Xylene	2024/11/18		87	%	50 - 140
			F1 (C6-C10)	2024/11/18		103	%	60 - 140
9771947	GRU	Spiked Blank	1,4-Difluorobenzene	2024/11/18		101	%	60 - 140
			1 Bromofluorobenzene	2024/11/18		95	%	60 - 140
			D10-o-Xylene	2024/11/18		94	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/18		79	%	60 - 140
			Benzene	2024/11/18		79	%	50 - 140
			Toluene	2024/11/18		80	%	50 - 140
			Ethylbenzene	2024/11/18		91	%	50 - 140
			o-Xylene	2024/11/18		88	%	50 - 140
			p+m-Xylene	2024/11/18		85	%	50 - 140
			F1 (C6-C10)	2024/11/18		101	%	80 - 120
9771947	GRU	Method Blank	1,4-Difluorobenzene	2024/11/18		103	%	60 - 140
3772317			4-Bromofluorobenzene	2024/11/18		93	%	60 - 140
			D10-o-Xylene	2024/11/18		97	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/18		78	%	60 - 140
			Benzene	2024/11/18	<0.020		ug/g	
			Toluene	2024/11/18	<0.020		ug/g	
			Ethylbenzene	2024/11/18	<0.020		ug/g	
			o-Xylene	2024/11/18	<0.020		ug/g	
			p+m-Xylene	2024/11/18	<0.040		ug/g	
			Total Xylenes	2024/11/18	< 0.040		ug/g	
			F1 (C6-C10)	2024/11/18	<10		ug/g	
			F1 (C6-C10) - BTEX	2024/11/18	<10		ug/g	
9771947	GRII	RPD	Benzene	2024/11/18	NC		%	50
J// 134/	GNO	5	Toluene	2024/11/18	NC		%	50
			Ethylbenzene	2024/11/18	NC		%	50

Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			o-Xylene	2024/11/18	NC		%	50
			p+m-Xylene	2024/11/18	NC		%	50
			Total Xylenes	2024/11/18	NC		%	50
			F1 (C6-C10)	2024/11/18	NC		%	30
			F1 (C6-C10) - BTEX	2024/11/18	NC		%	30
9771979	JTS	RPD [AHZS23-02]	Moisture	2024/11/18	1.6		%	20
9773009	MSZ	Matrix Spike	o-Terphenyl	2024/11/19		81	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/19		84	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2024/11/19		86	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2024/11/19		85	%	60 - 140
9773009	MSZ	Spiked Blank	o-Terphenyl	2024/11/19		82	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/19		84	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2024/11/19		88	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2024/11/19		87	%	80 - 120
9773009	MSZ	Method Blank	o-Terphenyl	2024/11/19		79	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/19	<7.0		ug/g	
			F3 (C16-C34 Hydrocarbons)	2024/11/19	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2024/11/19	<50		ug/g	
9773009	MSZ	RPD	F2 (C10-C16 Hydrocarbons)	2024/11/19	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2024/11/19	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2024/11/19	NC		%	30
9776419	RDU	Matrix Spike [AHZS18-02]	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/20		92	%	65 - 135
9776419	RDU	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/20		101	%	65 - 135
9776419	RDU	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/20	<100		ug/g	
9776419	RDU	RPD [AHZS19-02]	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/20	0		%	50
9780464	KIT	Spiked Blank	Conductivity	2024/11/21		101	%	90 - 110
9780464	KIT	Method Blank	Conductivity	2024/11/21	<0.002		mS/cm	
9780464	KIT	RPD [AHZS24-01]	Conductivity	2024/11/21	1.8		%	10
9780505	KIT	Spiked Blank	Available (CaCl2) pH	2024/11/21		100	%	97 = 103
9780505	KIT	RPD	Available (CaCl2) pH	2024/11/21	0.16		%	N/A
9780512	SB5	Matrix Spike	Chromium (VI)	2024/11/22		82	%	70 - 130
9780512	SB5	Spiked Blank	Chromium (VI)	2024/11/22		89	%	80 - 120
9780512	SB5	Method Blank	Chromium (VI)	2024/11/22	<0.18		ug/g	
9780512	SB5	RPD	Chromium (VI)	2024/11/22	NC		%	35
9780686	TLG	Matrix Spike	Acid Extractable Antimony (Sb)	2024/11/23		99	%	75 - 125
			Acid Extractable Arsenic (As)	2024/11/23		105	%	75 - 125
			Acid Extractable Barium (Ba)	2024/11/23		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2024/11/23		100	%	75 - 125
			Acid Extractable Boron (B)	2024/11/23		91	%	75 - 125
			Acid Extractable Cadmium (Cd)	2024/11/23		104	%	75 - 125
			Acid Extractable Chromium (Cr)	2024/11/23		104	%	75 - 125
			Acid Extractable Cobalt (Co)	2024/11/23		103	%	75 - 125
			Acid Extractable Copper (Cu)	2024/11/23		NC	%	75 - 125
			Acid Extractable Lead (Pb)	2024/11/23		94	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2024/11/23		96	%	75 - 125
			Acid Extractable Nickel (Ni)	2024/11/23		NC	%	75 - 125
			Acid Extractable Selenium (Se)	2024/11/23		104	%	75 - 12
			Acid Extractable Silver (Ag)	2024/11/23		100	%	75 - 12
			Acid Extractable Thallium (TI)	2024/11/23		101	%	75 - 12
			Acid Extractable Uranium (U)	2024/11/23		100	%	75 - 12
			Acid Extractable Vanadium (V)	2024/11/23		NC	%	75 - 12
			Acid Extractable Zinc (Zn)	2024/11/23		NC	%	75 - 12

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Datan		Q0.7FC	Acid Extractable Mercury (Hg)	2024/11/23		98	%	75 - 125
9780686	TLG	Spiked Blank	Acid Extractable Antimony (Sb)	2024/11/23		102	%	80 - 120
			Acid Extractable Arsenic (As)	2024/11/23		101	%	80 - 120
			Acid Extractable Barium (Ba)	2024/11/23		101	%	80 - 120
			Acid Extractable Beryllium (Be)	2024/11/23		96	%	80 - 120
			Acid Extractable Boron (B)	2024/11/23		94	%	80 - 120
			Acid Extractable Cadmium (Cd)	2024/11/23		97	%	80 - 120
			Acid Extractable Chromium (Cr)	2024/11/23		97	%	80 - 120
			Acid Extractable Cobalt (Co)	2024/11/23		97	%	80 - 120
			Acid Extractable Copper (Cu)	2024/11/23		95	%	80 - 120
			Acid Extractable Lead (Pb)	2024/11/23		92	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2024/11/23		90	%	80 - 120
			Acid Extractable Nickel (Ni)	2024/11/23		98	%	80 - 120
			Acid Extractable Selenium (Se)	2024/11/23		99	%	80 - 120
			Acid Extractable Silver (Ag)	2024/11/23		94	%	80 - 120
			Acid Extractable Thallium (TI)	2024/11/23		98	%	80 - 120
			Acid Extractable Uranium (U)	2024/11/23		95	%	80 - 120
			Acid Extractable Vanadium (V)	2024/11/23		98	%	80 - 120
			Acid Extractable Zinc (Zn)	2024/11/23		100	%	80 - 120
			Acid Extractable Mercury (Hg)	2024/11/23		97	%	80 - 120
780686	TIG	Method Blank	Acid Extractable Antimony (Sb)	2024/11/23	<0.20		ug/g	
	1131	IVII CIICATI IZIII IIK	Acid Extractable Arsenic (As)	2024/11/23	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2024/11/23	< 0.50		ug/g	
			Acid Extractable Beryllium (Be)	2024/11/23	<0.20		ug/g	
			Acid Extractable Boron (B)	2024/11/23	<5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2024/11/23	<0.10		ug/g	
			Acid Extractable Caumium (Cd) Acid Extractable Chromium (Cr)	2024/11/23	<1.0		ug/g	
			•	2024/11/23	<0.10		ug/g	
			Acid Extractable Cobalt (Co) Acid Extractable Copper (Cu)	2024/11/23	<0.10		ug/g	
				2024/11/23	<1.0		ug/g	
			Acid Extractable Lead (Pb)	2024/11/23	<0.50		ug/g	
			Acid Extractable Molybdenum (Mo)		<0.50		ug/g	
			Acid Extractable Nickel (Ni)	2024/11/23	<0.50			
			Acid Extractable Selenium (Se)	2024/11/23			ug/g	
			Acid Extractable Silver (Ag)	2024/11/23	<0.20		ug/g	
			Acid Extractable Thallium (TI)	2024/11/23	<0.050		ug/g	
			Acid Extractable Uranium (U)	2024/11/23	<0.050		ug/g	
			Acid Extractable Vanadium (V)	2024/11/23	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2024/11/23	<5.0		ug/g	
			Acid Extractable Mercury (Hg)	2024/11/23	<0.050		ug/g	20
780686	TLG	RPD	Acid Extractable Antimony (Sb)	2024/11/23	NC		%	30
			Acid Extractable Arsenic (As)	2024/11/23	1,2		%	30
			Acid Extractable Barium (Ba)	2024/11/23	2.9		%	30
			Acid Extractable Beryllium (Be)	2024/11/23	1.9		%	30
			Acid Extractable Boron (B)	2024/11/23	2.7		%	30
			Acid Extractable Cadmium (Cd)	2024/11/23	NC		%	30
			Acid Extractable Chromium (Cr)	2024/11/23	1.6		%	30
			Acid Extractable Cobalt (Co)	2024/11/23	0.86		%	30
			Acid Extractable Copper (Cu)	2024/11/23	0.11		%	30
			Acid Extractable Lead (Pb)	2024/11/23	0.39		%	30
			Acid Extractable Molybdenum (Mo)	2024/11/23	NC		%	30
			Acid Extractable Nickel (Ni)	2024/11/23	0.63		%	30
			Acid Extractable Selenium (Se)	2024/11/23	NC		%	30

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Silver (Ag)	2024/11/23	NC		%	30
			Acid Extractable Thallium (TI)	2024/11/23	3.3		%	30
			Acid Extractable Uranium (U)	2024/11/23	2.6		%	30
			Acid Extractable Vanadium (V)	2024/11/23	2.5		%	30
			Acid Extractable Zinc (Zn)	2024/11/23	1.9		%	30
			Acid Extractable Mercury (Hg)	2024/11/23	NC		%	30
9781054	MUC	RPD	Moisture	2024/11/21	3.3		%	20
9781125	KIT	Spiked Blank	Available (CaCl2) pH	2024/11/21		100	%	97 - 103
9781125	KIT	RPD	Available (CaCl2) pH	2024/11/21	0.88		%	N/A
9781254	RSU	Matrix Spike	Chromium (VI)	2024/11/22		87	%	70 - 130
9781254	RSU	Spiked Blank	Chromium (VI)	2024/11/22		90	%	80 - 120
9781254	RSU	Method Blank	Chromium (VI)	2024/11/22	<0.18		ug/g	
9781254	RSU	RPD	Chromium (VI)	2024/11/22	NC		%	35
9781287	GYA	Matrix Spike	WAD Cyanide (Free)	2024/11/22		112	%	75 - 125
9781287	GYA	Spiked Blank	WAD Cyanide (Free)	2024/11/22		110	%	80 - 120
9781287	GYA	Method Blank	WAD Cyanide (Free)	2024/11/22	<0.01		ug/g	
9781287	GYA	RPD	WAD Cyanide (Free)	2024/11/22	NC		%	35
9781307	GYA	Matrix Spike	WAD Cyanide (Free)	2024/11/22		107	%	75 - 125
9781307	GYA	Spiked Blank	WAD Cyanide (Free)	2024/11/22		104	%	80 - 120
9781307	GYA	Method Blank	WAD Cyanide (Free)	2024/11/22	< 0.01		ug/g	
9781307	GYA	RPD	WAD Cyanide (Free)	2024/11/22	NC		%	35
9781582	MUC	RPD [AHZR97-02]	Moisture	2024/11/21	0		%	20
9781962	JJE	Matrix Spike	o-Terphenyl	2024/11/22		91	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/22		97	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2024/11/22		100	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2024/11/22		94	%	60 - 140
9781962	JJE	Spiked Blank	o-Terphenyl	2024/11/22		94	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/22		98	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2024/11/22		101	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2024/11/22		94	%	80 - 120
9781962	JJE	Method Blank	o-Terphenyl	2024/11/22		94	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/22	<7.0		ug/g	
			F3 (C16-C34 Hydrocarbons)	2024/11/22	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2024/11/22	<50		ug/g	
9781962	JJE	RPD	F2 (C10-C16 Hydrocarbons)	2024/11/22	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2024/11/22	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2024/11/22	NC		%	30
9781975	GYA	Matrix Spike	WAD Cyanide (Free)	2024/11/22		96	%	75 - 12 5
9781975	GYA	Spiked Blank	WAD Cyanide (Free)	2024/11/22		106	%	80 - 120
9781975	GYA	Method Blank	WAD Cyanide (Free)	2024/11/22	<0.01	100	ug/g	00 120
9781975	GYA	RPD	WAD Cyanide (Free)	2024/11/22	NC NC		%	35
9781986	MKS	Matrix Spike	D10-Anthracene	2024/11/22		88	%	50 - 130
			D14-Terphenyl (FS)	2024/11/22		105	%	50 - 130
			D8-Acenaphthylene	2024/11/22		82	%	50 - 130
			Acenaphthene	2024/11/22		85	%	50 - 130
			Acenaphthylene	2024/11/22		83	%	50 - 130
			Anthracene	2024/11/22		89	%	50 - 130
			Benzo(a)anthracene	2024/11/22		96	%	50 - 130
			Benzo(a)pyrene	2024/11/22		93	%	50 - 130 50 - 130
			Benzo(b/j)fluoranthene	2024/11/22		92	%	
			Benzo(g,h,i)perylene	2024/11/22		94	%	50 - 130 50 - 130
			Benzo(k)fluoranthene	2024/11/22		94 96	%	50 - 130 50 - 130

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Chrysene	2024/11/22		94	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/22		105	%	50 - 130
			Fluoranthene	2024/11/22		96	%	50 - 13
			Fluorene	2024/11/22		94	%	50 - 13
			Indeno(1,2,3-cd)pyrene	2024/11/??		93	%	50 - 13
			1-Methylnaphthalene	2024/11/22		77	%	50 - 13
			2-Methylnaphthalene	2024/11/22		75	%	50 - 13
			Naphthalene	2024/11/22		64	%	50 - 13
			Phenanthrene	2024/11/22		90	%	50 - 13
			Pyrene	2024/11/22		96	%	50 - 13
781986	MKS	Spiked Blank	D10-Anthracene	2024/11/22		88	%	50 - 13
			D14-Terphenyl (FS)	2024/11/22		103	%	50 - 13
			D8-Acenaphthylene	2024/11/22		85	%	50 - 13
			Acenaphthene	2024/11/22		89	%	50 - 13
			Acenaphthylene	2024/11/22		89	%	50 - 13
			Anthracene	2024/11/22		90	%	50 - 13
			Benzo(a)anthracene	2024/11/22		95	%	50 - 1
			Benzo(a)pyrene	2024/11/22		93	%	50 - 13
			Benzo(b/j)fluoranthene	2024/11/22		93	%	50 - 13
			Benzo(g,h,i)perylene	2024/11/22		95	%	50 - 1
			Benzo(k)fluoranthene	2024/11/22		94	%	50 - 1
				2024/11/22		95	%	50 - 1
			Chrysene	2024/11/22		103	%	50 - 1
			Dibenzo(a,h)anthracene			97	%	50 - 1
			Fluoranthene	2024/11/22 2024/11/22		96	%	50 - 1
			Fluorene			93	%	50 - 1
			Indeno(1,2,3-cd)pyrene	2024/11/22		91	%	50 - 1
			1-Methylnaphthalene	2024/11/22		90	%	50 - 1
			2-Methylnaphthalene	2024/11/22			%	50 - 1
			Naphthalene	2024/11/22		86		
			Phenanthrene	2024/11/22		92	%	50 - 1
			Pyrene	2024/11/22		97	%	50 - 1
9781986	MKS	Method Blank	D10-Anthracene	2024/11/22		93	%	50 - 1
			D14-Terphenyl (FS)	2024/11/22		107	%	50 - 1
			D8-Acenaphthylene	2024/11/22		86	%	50 - 1
			Acenaphthene	2024/11/22	<0.0050		ug/g	
			Acenaphthylene	2024/11/22	<0.0050		ug/g	
			Anthracene	2024/11/22	<0.0050		ug/g	
			Benzo(a)anthracene	2024/11/22	<0.0050		ug/g	
			Benzo(a)pyrene	2024/11/22	<0.0050		ug/g	
			Benzo(b/j)fluoranthene	2024/11/22	<0.0050		ug/g	
			Benzo(g,h,i)perylene	2024/11/22	<0.0050		ug/g	
			Benzo(k)fluoranthene	2024/11/22	<0.0050		ug/g	
			Chrysene	2024/11/22	<0.0050		ug/g	
			Dibenzo(a,h)anthracene	2024/11/22	<0.0050		ug/g	
			Fluoranthene	2024/11/22	<0.0050		ug/g	
			Fluorene	2024/11/22	<0.0050		ug/g	
			Indeno(1,2,3-cd)pyrene	2024/11/22	<0.0050		ug/g	
			1-Methylnaphthalene	2024/11/22	<0.0050		ug/g	
			2-Methylnaphthalene	2024/11/22	<0.0050		ug/g	
			Naphthalene	2024/11/22	<0.0050		ug/g	
			Phenanthrene	2024/11/22	<0.0050		ug/g	
			Pyrene	2024/11/22	<0.0050		ug/g	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9781986	MKS	RPD	Acenaphthene	2024/11/22	NC	Hitely occupants	%	40
			Acenaphthylene	2024/11/22	NC		%	40
			Anthracene	2024/11/22	NC		%	40
			Benzo(a)anthracene	2024/11/22	NC		%	40
			Benzo(a)pyrene	2024/11/22	NC		%	40
			Benzo(b/j)fluoranthene	2024/11/22	NC		%	40
			Benzo(g,h,i)perylene	2024/11/22	NC		%	40
			Benzo(k)fluoranthene	2024/11/22	NC		%	40
			Chrysene	2024/11/22	NC		%	40
			Dibenzo(a,h)anthracene	2024/11/22	NC		%	40
			Fluoranthene	2024/11/22	NC		%	40
			Fluorene	2024/11/22	NC		%	40
			Indeno(1,2,3-cd)pyrene	2024/11/22	NC		%	40
			1-Methylnaphthalene	2024/11/22	NC		%	40
			2-Methylnaphthalene	2024/11/22	NC		%	40
			Naphthalene	2024/11/22	NC		%	40
			Phenanthrene	2024/11/22	NC		%	40
			Pyrene	2024/11/22	NC		%	40
9782200	SB5	Matrix Spike	Chromium (VI)	2024/11/22		19 (2)	%	70 - 130
9782200	SB5	Spiked Blank	Chromium (VI)	2024/11/22		90	%	80 - 120
9782200	SB5	Method Blank	Chromium (VI)	2024/11/22	< 0.18		ug/g	
9782200	SB5	RPD	Chromium (VI)	2024/11/22	NC		%	35
9782283	MEN	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/22		102	%	75 - 129
9782283	MEN	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/22		95	%	75 - 125
9782283	MEN	Method Blank	Hot Water Ext. Boron (B)	2024/11/22	<0.050	-	ug/g	,0 11.
9782283	MEN	RPD	Hot Water Ext. Boron (B)	2024/11/22	23		%	40
9782343	AYA	Matrix Spike	4-Bromofluorobenzene	2024/11/22	-5	102	%	60 - 140
			D10-o-Xylene	2024/11/22		106	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/22		101	%	60 - 140
			D8-Toluene	2024/11/22		106	%	60 - 140
			Acetone (2-Propanone)	2024/11/22		96	%	60 - 140
			Benzene	2024/11/22		99	%	60 - 140
			Bromodichloromethane	2024/11/22		97	%	60 - 140
			Bromoform	2024/11/22		91	%	60 - 140
			Bromomethane	2024/11/22		93	%	60 - 140
			Carbon Tetrachloride	2024/11/22		115	%	60 - 140
			Chlorobenzene	2024/11/22		92	%	60 - 140
			Chloroform	2024/11/22		102	%	60 - 140
			Dibromochloromethane	2024/11/22		98	%	60 - 140
			1,2-Dichlorobenzene	2024/11/22		98	%	60 - 140
			1,3-Dichlorobenzene	2024/11/22		101		60 - 140
			1,4-Dichlorobenzene	2024/11/22			%	
			Dichlorodifluoromethane (FREON 12)	2024/11/22		102 96	%	60 - 140
							%	60 - 140
			1,1-Dichloroethane 1,2-Dichloroethane	2024/11/22		99	%	60 - 140
			<u>.</u>	2024/11/22		103	%	60 - 140
			1,1-Dichloroethylene	2024/11/22		111	%	60 - 140
			cis-1,2-Dichloroethylene	2024/11/22		111	%	60 - 140
			trans-1,2-Dichloroethylene	2024/11/22		115	%	60 - 140
			1,2-Dichloropropane	2024/11/22		98	%	60 - 140
			cis-1,3-Dichloropropene	2024/11/22		89	%	60 - 140
			trans-1,3-Dichloropropene	2024/11/22		100	%	60 - 140
			Ethylbenzene	2024/11/22		98	%	60 - 14

Bureau Veritas Job #: C4Y8641 Report Date: 2024/11/26 Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Ethylene Dibromide	2024/11/22		95	%	60 - 140
			Hexane	2024/11/22		129	%	60 - 140
		3	Methylene Chloride(Dichloromethane)	2024/11/22		100	%	60 - 140
			Methyl Ethyl Ketone (2-Butanone)	2024/11/22		90	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/22		93	%	60 - 140
			Methyl t-butyl ether (MTBE)	2024/11/22		95	%	60 - 140
			Styrene	2024/11/22		100	%	60 - 140
			1,1,1,2-Tetrachloroethane	2024/11/22		107	%	60 - 140
			1,1,2,2-Tetrachloroethane	2024/11/22		87	%	60 - 140
			Tetrachloroethylene	2024/11/22		102	%	60 - 140
			Toluene	2024/11/22		99	%	60 - 140
			1,1,1-Trichloroethane	2024/11/22		104	%	60 - 140
			1,1,2-Trichloroethane	2024/11/22		97	%	60 - 140
			Trichloroethylene	2024/11/22		106	%	60 - 140
			Trichlorofluoromethane (FREON 11)	2024/11/22		111	%	60 - 140
			Vinyl Chloride	2024/11/22		104	%	60 - 140
			p+m-Xylene	2024/11/22		97	%	60 - 140
			o-Xylene	2024/11/22		104	%	60 - 140
			F1 (C6-C10)	2024/11/22		87	%	60 - 140
9782343	AYA	Spiked Blank	4-Bromofluorobenzene	2024/11/22		101	%	60 - 140
3,023.5	,,,,,	Op.	D10-o-Xylene	2024/11/22		100	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/22		100	%	60 - 140
			D8-Toluene	2024/11/22		105	%	60 - 140
			Acetone (2-Propanone)	2024/11/22		94	%	60 - 140
			Benzene	2024/11/22		98	%	60 - 130
			Bromodichloromethane	2024/11/22		96	%	60 - 130
			Bromoform	2024/11/22		92	%	60 - 13
			Bromomethane	2024/11/22		91	%	60 - 14
			Carbon Tetrachloride	2024/11/22		112	%	60 - 13
			Chlorobenzene	2024/11/22		92	%	60 - 13
			Chloroform	2024/11/22		100	%	60 - 13
			Dibromochloromethane	2024/11/22		98	%	60 - 13
				2024/11/22		97	%	60 - 13
			1,2-Dichlorobenzene			101	%	60 - 13
			1,3-Dichlorobenzene	2024/11/22			%	60 - 13
			1,4-Dichlorobenzene	2024/11/22		102		
			Dichlorodifluoromethane (FREON 12)	2024/11/22		94	%	60 - 14
			1,1-Dichloroethane	2024/11/22		97	%	60 - 13
			1,2-Dichloroethane	2024/11/22		101	%	60 - 13
			1,1-Dichloroethylene	2024/11/22		109	%	60 - 13
			cis-1,2-Dichloroethylene	2024/11/22		109	%	60 - 13
			trans-1,2-Dichloroethylene	2024/11/22		112	%	60 - 13
			1,2-Dichloropropane	2024/11/22		97	%	60 - 13
			cis-1,3-Dichloropropene	2024/11/22		90	%	60 - 13
			trans-1,3-Dichloropropene	2024/11/22		101	%	60 - 13
			Ethylbenzene	2024/11/22		97	%	60 - 13
			Ethylene Dibromide	2024/11/22		95	%	60 - 13
			Hexane	2024/11/22		128	%	60 - 13
			Methylene Chloride(Dichloromethane)	2024/11/22		99	%	60 - 13
			Methyl Ethyl Ketone (2-Butanone)	2024/11/22		90	%	60 - 14
			Methyl Isobutyl Ketone	2024/11/22		93	%	60 - 13
			Methyl t-butyl ether (MTBE)	2024/11/22		96	%	60 - 13
			Styrene	2024/11/22		101	%	60 - 13

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			1,1,1,2-Tetrachloroethane	2024/11/22		106	%	60 - 130
			1,1,2,2-Tetrachloroethane	2024/11/22		85	%	60 - 130
			Tetrachloroethylene	2024/11/22		101	%	60 - 130
			Toluene	2024/11/22		98	%	60 - 130
			1,1,1-Trichloroethane	2024/11/22		102	%	60 - 130
			1,1,2-Trichloroethane	2024/11/22		95	%	60 - 13
			Trichloroethylene	2024/11/22		105	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/22		109	%	60 - 13
			Vinyl Chloride	2024/11/22		103	%	60 - 13
			p+m-Xylene	2024/11/22		96	%	60 - 13
			o-Xylene	2024/11/22		104	%	60 - 13
			F1 (C6-C10)	2024/11/22		84	%	80 - 12
782343	AYA	Method Blank	4-Bromofluorobenzene	2024/11/22		101	%	60 - 14
			D10-o-Xylene	2024/11/22		90	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/22		103	%	60 - 14
			D8-Toluene	2024/11/22		95	%	60 - 14
			Acetone (2-Propanone)	2024/11/22	< 0.49		ug/g	
			Benzene	2024/11/22	< 0.0060		ug/g	
			Bromodichloromethane	2024/11/22	<0.040		ug/g	
			Bromoform	2024/11/22	<0.040		ug/g	
			Bromomethane	2024/11/22	<0.040		ug/g	
			Carbon Tetrachloride	2024/11/22	<0.040		ug/g	
			Chlorobenzene	2024/11/22	< 0.040		ug/g	
			Chloroform	2024/11/22	<0.040		ug/g	
			Dibromochloromethane	2024/11/22	<0.040		ug/g	
			1,2-Dichlorobenzene	2024/11/22	<0.040		ug/g	
			1,3-Dichlorobenzene	2024/11/22	< 0.040		ug/g	
			1,4-Dichlorobenzene	2024/11/22	<0.040		ug/g	
			Dichlorodifluoromethane (FREON 12)	2024/11/22	<0.040		ug/g	
			1,1-Dichloroethane	2024/11/22	<0.040		ug/g	
			1,2-Dichloroethane	2024/11/22	<0.049		ug/g	
			1,1-Dichloroethylene	2024/11/22	<0.040			
			cis-1,2-Dichloroethylene	2024/11/22	<0.040		ug/g	
			trans-1,2-Dichloroethylene	2024/11/22	<0.040		ug/g	
			1,2-Dichloropropane				ug/g	
			cis-1,3-Dichloropropene	2024/11/22	<0.040		ug/g	
				2024/11/22	<0.030		ug/g	
			trans-1,3-Dichloropropene	2024/11/22	<0.040		ug/g	
			Ethylbenzene	2024/11/22	<0.010		ug/g	
			Ethylene Dibromide	2024/11/22	<0.040		ug/g	
			Hexane	2024/11/22	<0.040		ug/g	
			Methylene Chloride(Dichloromethane)	2024/11/22	<0.049		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2024/11/22	<0.40		ug/g	
			Methyl Isobutyl Ketone	2024/11/22	<0.40		ug/g	
			Methyl t-butyl ether (MTBE)	2024/11/22	<0.040		ug/g	
			Styrene	2024/11/22	<0.040		ug/g	
			1,1,1,2-Tetrachloroethane	2024/11/22	<0.040		ug/g	
			1,1,2,2-Tetrachloroethane	2024/11/22	<0.040		ug/g	
			Tetrachloroethylene	2024/11/22	<0.040		ug/g	
			Toluene	2024/11/22	<0.020		ug/g	
			1,1,1-Trichloroethane	2024/11/22	<0.040		ug/g	
			1,1,2-Trichloroethane	2024/11/22	<0.040		ug/g	
			Trichloroethylene	2024/11/22	<0.010		ug/g	

Bureau Veritas Job #: C4Y864: Report Date: 2024/11/26 Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

Q//QC		007	D	Data Analyzad	Value	Docovoru	LIMITS	QC Limits
Batch	Init	QC Type	Parameter (52501111)	Date Analyzed	Value	Recovery	UNITS	QC LIMILS
			Trichlorofluoromethane (FREON 11)	2024/11/22	<0.040		ug/g	
			Vinyl Chloride	2024/11/22	<0.019		ug/g	
			p+m-Xylene	2024/11/22	<0.020		ug/g	
			o-Xylene	2024/11/22	<0.020		ug/g	
			Total Xylenes	2024/11/22	<0.020		ug/g	
			F1 (C6-C10)	2024/11/22	<10		ug/g	
			F1 (CG-C10) - BTEX	2024/11/22	<10		ug/g	
9782343	AYA	RPD	Acetone (2-Propanone)	2024/11/22	NC		%	50
			Benzene	2024/11/22	NC		%	50
			Bromodichloromethane	2024/11/22	NC		%	50
			Bromoform	2024/11/22	NC		%	50
			Bromomethane	2024/11/22	NC		%	50
			Carbon Tetrachloride	2024/11/22	NC		%	50
			Chlorobenzene	2024/11/22	NC		%	50
			Chloroform	2024/11/22	NC		%	50
			Dibromochloromethane	2024/11/22	NC		%	50
			1,2-Dichlorobenzene	2024/11/22	NC		%	50
			1,3-Dichlorobenzene	2024/11/22	NC		%	50
			1,4-Dichlorobenzene	2024/11/22	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2024/11/22	NC		%	50
			1,1-Dichloroethane	2024/11/22	NC		%	50
			1,2-Dichloroethane	2024/11/22	NC		%	50
			1,1-Dichloroethylene	2024/11/22	NC		%	50
			cis-1,2-Dichloroethylene	2024/11/22	NC		%	50
			trans-1,2-Dichloroethylene	2024/11/22	NC		%	50
			1,2-Dichloropropane	2024/11/22	NC		%	50
			cis-1,3-Dichloropropene	2024/11/22	NC		%	50
			trans-1,3-Dichloropropene	2024/11/22	NC		%	50
			Ethylbenzene	2024/11/22	NC		%	50
			Ethylene Dibromide	2024/11/22	NC		%	50
			Hexane	2024/11/22	NC		%	50
			Methylene Chloride(Dichloromethane)	2024/11/22	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2024/11/22	NC		%	50
			Methyl Isobutyl Ketone	2024/11/22	NC		%	50
			Methyl t-butyl ether (MTBE)	2024/11/22	NC		%	50
			Styrene	2024/11/22	NC		%	50
			1,1,1,2-Tetrachloroethane	2024/11/22	NC		%	50
			1,1,2,2-Tetrachloroethane	2024/11/22	NC		%	50
			Tetrachloroethylene	2024/11/22	1.1		%	50
			Toluene	2024/11/22	NC		%	50
			1,1,1-Trichloroethane	2024/11/22	NC		%	50
			1,1,2-Trichloroethane	2024/11/22	NC		%	50
			Trichloroethylene	2024/11/22	NC		%	50
			Trichlorofluoromethane (FREON 11)	2024/11/22	NC		%	50
			Vinyl Chloride	2024/11/22	NC		%	50
			•	2024/11/22	NC		%	50
			p+m-Xylene	2024/11/22	NC		%	50
			o-Xylene				%	50
			Total Xylenes	2024/11/22	NC			
			F1 (C6-C10)	2024/11/22	NC		%	30
			F1 (C6-C10) - BTEX	2024/11/22	NC	445	%	30
9782456	JGC	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/23		116	%	75 - 125
9782456	JGC	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/23		112	%	75 - 12

Bureau Veritas Job #: C4Y8641 Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

			QUALITY ASSURANCE RI	LPORTICONT DI				
QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9782456	JGC	Method Blank	Hot Water Ext. Boron (B)	2024/11/23	<0.050		ug/g	
9782456	JGC	RPD	Hot Water Ext. Boron (B)	2024/11/23	13		%	40
9782634	TLG	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/22		97	%	75 - 125
9782634	TLG	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/22		97	%	75 - 125
9782634	TLG	Method Blank	Hot Water Ext. Boron (B)	2024/11/22	<0.050		ug/g	
9782634	TLG	RPD	Hot Water Ext. Boron (B)	2024/11/22	4.7		%	40
9782811	KIT	Spiked Blank	Conductivity	2024/11/22		103	%	90 - 110
9782811	KIT	Method Blank	Conductivity	2024/11/22	<0.002		mS/cm	
9782811	KIT	RPD	Conductivity	2024/11/25	1.8		%	10
9782879	KIT	Spiked Blank	Available (CaCl2) pH	2024/11/22		100	%	97 - 103
9782879	KIT	RPD	Available (CaCl2) pH	2024/11/22	0.49		%	N/A
9782920	DT1	Matrix Spike	Acid Extractable Antimony (Sb)	2024/11/22		93	%	75 - 125
			Acid Extractable Arsenic (As)	2024/11/22		93	%	75 - 125
			Acid Extractable Barium (Ba)	2024/11/22		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2024/11/22		99	%	75 - 125
			Acid Extractable Boron (B)	2024/11/22		93	%	75 - 125
			Acid Extractable Cadmium (Cd)	2024/11/22		96	%	75 - 125
			Acid Extractable Chromium (Cr)	2024/11/22		91	%	75 - 125
			Acid Extractable Cobalt (Co)	2024/11/22		89	%	75 - 125
			Acid Extractable Copper (Cu)	2024/11/22		91	%	75 - 125
			Acid Extractable Lead (Pb)	2024/11/22		94	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2024/11/22		92	%	75 - 125
			Acid Extractable Nickel (Ni)	2024/11/22		93	%	75 - 125
			Acid Extractable Selenium (Se)	2024/11/22		91	%	75 - 125
			Acid Extractable Silver (Ag)	2024/11/22		95	%	75 - 125
			Acid Extractable Thallium (TI)	2024/11/22		94	%	75 - 125
			Acid Extractable Uranium (U)	2024/11/22		97	%	75 - 125
			Acid Extractable Vanadium (V)	2024/11/22		NC	%	75 - 125
			Acid Extractable Zinc (Zn)	2024/11/22		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2024/11/22		92	%	75 - 125 75 - 125
9782920	DT1	Spiked Blank	Acid Extractable Antimony (Sb)	2024/11/22		114	%	80 - 120
		op.ii.co olalik	Acid Extractable Arsenic (As)	2024/11/22		103	%	80 - 120
			Acid Extractable Barium (Ba)	2024/11/22		105	%	
			Acid Extractable Barrolli (Ba) Acid Extractable Beryllium (Be)	2024/11/22			%	80 - 120
			Acid Extractable Boron (B)	• •		102		80 - 120
			Acid Extractable Boron (B) Acid Extractable Cadmium (Cd)	2024/11/22		99 105	%	80 - 120
			· · ·	2024/11/22		105	%	80 - 120
			Acid Extractable Chromium (Cr)	2024/11/22		99	%	80 - 120
			Acid Extractable Cobalt (Co)	2024/11/22		98	%	80 - 120
			Acid Extractable Copper (Cu)	2024/11/22		99	%	80 - 120
			Acid Extractable Lead (Pb)	2024/11/22		103	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2024/11/22		100	%	80 - 120
			Acid Extractable Nickel (Ni)	2024/11/22		100	%	80 - 120
			Acid Extractable Selenium (Se)	2024/11/22		104	%	80 - 120
			Acid Extractable Silver (Ag)	2024/11/22		103	%	80 - 120
			Acid Extractable Thallium (TI)	2024/11/22		104	%	80 - 120
			Acid Extractable Uranium (U)	2024/11/22		106	%	80 - 120
			Acid Extractable Vanadium (V)	2024/11/22		101	%	80 - 120
			Acid Extractable Zinc (Zn)	2024/11/22		106	%	80 - 120
			Acid Extractable Mercury (Hg)	2024/11/22		103	%	80 - 120
9782920	DT1	Method Blank	Acid Extractable Antimony (Sb)	2024/11/22	<0.20		ug/g	
			Acid Extractable Arsenic (As)	2024/11/22	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2024/11/22	<0.50		ug/g	

Bureau Veritas Job #: C4Y8641 Stantec Consulting Ltd
Report Date: 2024/11/26 Client Project #: 122140392
Sampler Initials: HM

QA/QC					VESTVOOR	200-0-000000000000000000000000000000000	our ourse	NAME OF THE OWNER, THE
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Acid Extractable Beryllium (Be)	2024/11/22	<0.20		ug/g	
			Acid Extractable Boron (B)	2024/11/22	<5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2024/11/22	<0.10		ug/g	
			Acid Extractable Chromium (Cr)	2024/11/22	<1.0		ug/g	
			Acid Extractable Cobalt (Co)	2024/11/22	<0.10		ug/g	
			Acid Extractable Copper (Cu)	2024/11/22	<0.50		ug/g	
			Acid Extractable Lead (Pb)	2024/11/22	<1.0		ug/g	
			Acid Extractable Molybdenum (Mo)	2024/11/22	<0.50		ug/g	
			Acid Extractable Nickel (Ni)	2024/11/22	<0.50		ug/g	
			Acid Extractable Selenium (Se)	2024/11/22	<0.50		ug/g	
			Acid Extractable Silver (Ag)	2024/11/22	<0.20		ug/g	
			Acid Extractable Thallium (TI)	2024/11/22	<0.050		ug/g	
			Acid Extractable Uranium (U)	2024/11/22	< 0.050		ug/g	
			Acid Extractable Vanadium (V)	2024/11/22	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2024/11/22	<5.0		ug/g	
			Acid Extractable Mercury (Hg)	2024/11/22	<0.050		ug/g	
782920	DT1	RPD	Acid Extractable Antimony (Sb)	2024/11/22	NC		%	30
			Acid Extractable Arsenic (As)	2024/11/22	1.8		%	30
			Acid Extractable Barium (Ba)	2024/11/22	0.18		%	30
			Acid Extractable Beryllium (Be)	2024/11/22	0.047		%	30
			Acid Extractable Boron (B)	2024/11/22	2.0		%	30
			Acid Extractable Cadmium (Cd)	2024/11/22	4.1		%	30
			Acid Extractable Chromium (Cr)	2024/11/22	2.1		%	30
			Acid Extractable Cobalt (Co)	2024/11/22	0.62		%	30
			Acid Extractable Copper (Cu)	2024/11/22	1.0		%	30
			Acid Extractable Lead (Pb)	2024/11/22	1.9		%	30
			Acid Extractable Molybdenum (Mo)	2024/11/22	NC		%	30
			Acid Extractable Nickel (Ni)	2024/11/22	0.89		%	30
			Acid Extractable Selenium (Se)	2024/11/22	NC		%	30
			Acid Extractable Silver (Ag)	2024/11/22	NC		%	30
			Acid Extractable Thallium (TI)	2024/11/22	3.6		%	30
			Acid Extractable Uranium (U)	2024/11/22	0.75		%	30
			Acid Extractable Vanadium (V)	2024/11/22	0.95		%	30
			Acid Extractable Zinc (Zn)	2024/11/22	1.2		%	30
783050	KIT	Spiked Blank	Available (CaCl2) pH	2024/11/22		100	%	97 - 103

Bureau Veritas Job #: C4Y8641 Report Date: 2024/11/26

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: HM

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9783050	KIT	RPD	Available (CaCl2) pH	2024/11/22	0.013		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Matrix Spike exceeds acceptance limits, probable matrix interference
- (2) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.
- (3) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: HM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

ristina Carriere, Senior Scientific Sp	pecialist	
ristina carriere, semen salemmo sp		
1 1 11		
Louis A Danding		
Louis A Harden		

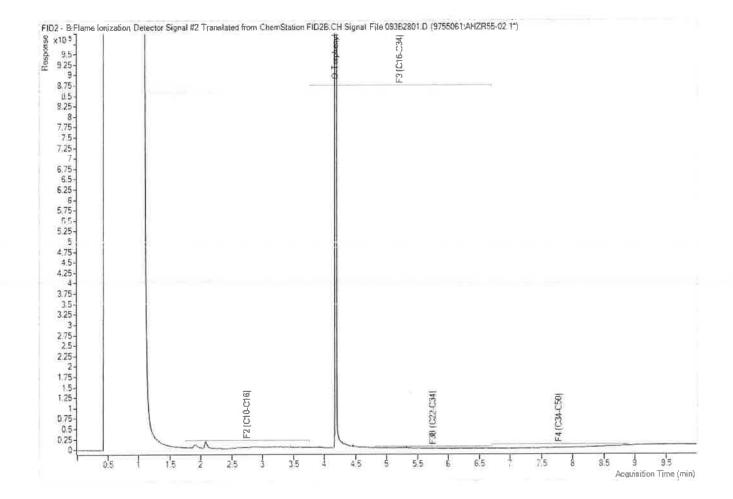
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports, For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

t 10 false A W .. Bhill 5/2/4, 5/8/b Bothe Order #: Project Menager Yerk Ke Дибе Сентан Tena Propieso SAMON! Job The cific Bush TAT (If applies to entire submission) NONT-2024-11-687 Zandard 7.4.1 - 5-7 Working days for most hasta. with the society of Such TAT is not specifical, BAMPER HOUTER CETTONS IN THE STROY THE DE STAMPER THE WELKELD Temperature (10) on Recei CDC #: Laboratory Use Only USP Conference Number 3 and Some a 12 3 a S W 60 STANTEC THE SECTION # jers timed and not submitted PROJECT INFORMATION: LINESS OTHERWISE ACREED TO IN WISHING, WORK STRIMITED ON THIS CHAIN OF CLISTODY IS SUBJECT TO EXERTIVESS STANDARD TERMS AND CONDITIONS. SOURCE THIS SHICK AND CHAIN OF CHISTODY COCUMENTS AND CONDITIONS. 15.20 IT IS THE REDPONSTALTY OF THE RED MOLIFIEST TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECURS. OF CUSTODY ANY RESULT IN ANALYTICAL TATOBLAYS. ** SAMPLE CONTAINER, PRESERVATION, HOLD THEE AND PACKAGE BIFORMATION CAN BE VIEWED AT WITH BIVILLOMEWINGHMENTAL ABORATORIES/RESCURCES/CHARK-US/TOOM-FORMS-GOGS. Profit Canins Task E. Project E. Salillaran Site A: Bureau VerRes Canada (2012) Inc. > \geq 7 JAG. 1919 125 7 1 7 Z Boron Varbes 8/40 Campabello Road, Missusaaqa, Croafo Canadie LSN 21.8 Tel/905) 317-5730 Tol-/roes60-663-6266 Fax(305) 917-577 www bross com BAM 45/180/onl & elston 52/1897.C 7 7 > / > HOS IZZI ACOP ON HER R EARTH (ECT) 7 REPORT INFORMATION(III dithers from (myolon) 5 > 7 7 JOS) SHIVE EST BOR Bun ä IV 10 \ gH \ BletsM RECEIVED BY: (Shopped) marlssa.husito@stantec.com assessme mo Filtered (please circle): SEWPHON MUST BE CUSTODY Special Instructions Tima Sampled 0360 9917 14 30 1520 5101 5251 1500 24/10/13/15 1 35 24/11/04 1245 Company Mame: Contact Name Address 19/1//1// W 114 01 24/20/31 (905) 944-7777 Fee. (905) 479-9326 Prever.
SAPInvoices@Stanfec.com Grab.
REGULATED DRINKING WATER ON WATER INTENDED FOR HUMAN DISJENITIED ON THE FURRAL VERTIAS DRINKING WATER CHAIR. Data Barncled 14/0/12 Suntary Sower Bytan Municipality

Reg 406 Tacile Other Regulations (905) 479-9326 Include Criteria on Cortificate of Analysis (VIN)? 675 Cochrane Dr W. West Tower Suite 300 Markham ON L3R 088 7-21 MW MWIZZ AW 4 - 9 H- t MW MN 6 - 5 2一日期 MIN 3 NH3-5 CCJARE
Ray 6688
INESA DA 11-6 2-20 Company Name #3072 Stantec Consulting Ltd INVOICE INFORMATION: * RELINCUISHED BY: (Signature/Print) 00 Glounask | Nookumining | Maccomining | Macco Accounts Payable ンかが Sample Rarrande Label Requisition 353 (2011) 2024/11/05 15:20 CTATAL ST Contact Names K C4Y8641 Phone: Emeli: 9

Page 72 of 102

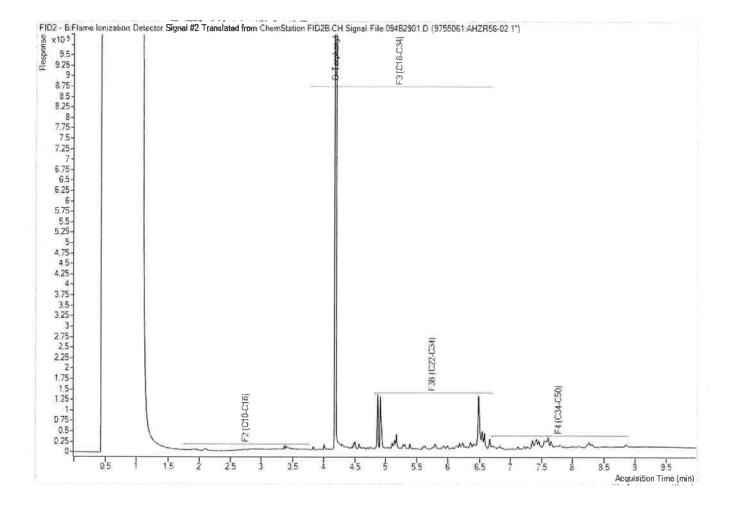
Page 74 of 102


Page 76 of 102

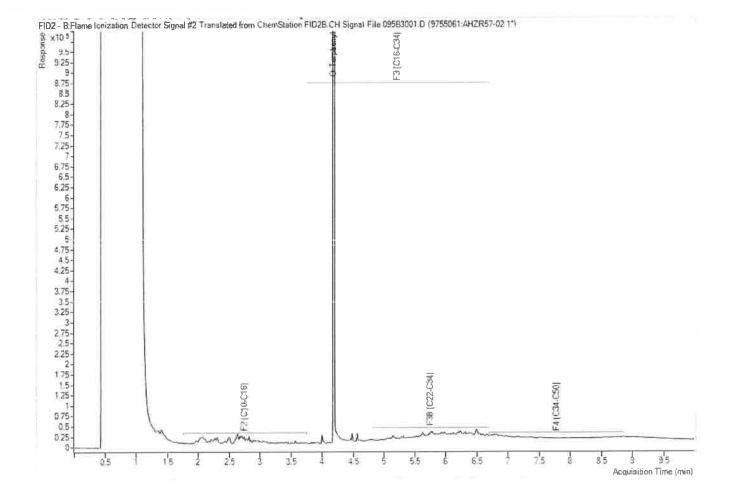
Page 77 of 102

Page 78 of 102

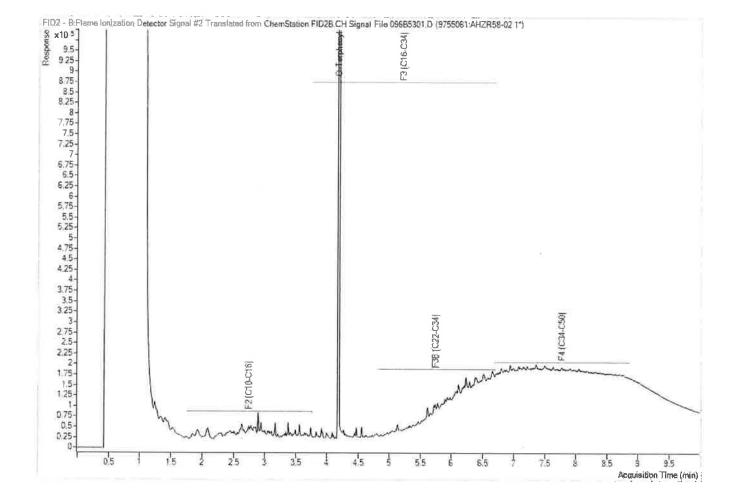
Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW3-5


Petroleum Hydrocarbons F2-F4 in Soll Chromatogram

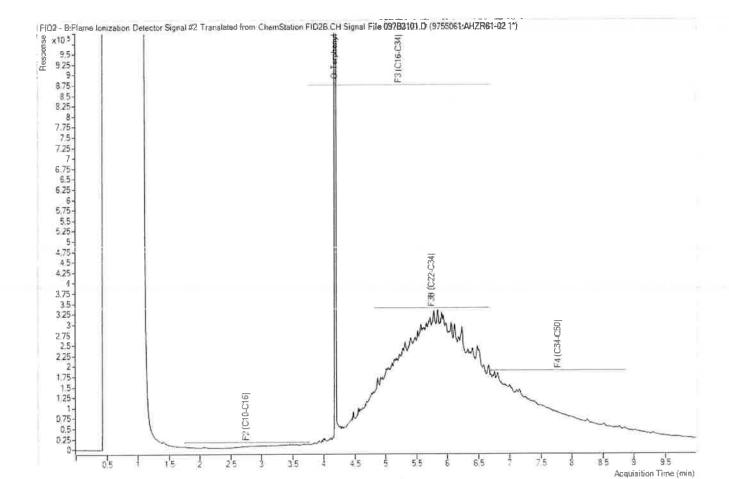
Stantec Consulting Ltd Client Project #: 122140392


Client ID: MW4-8

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

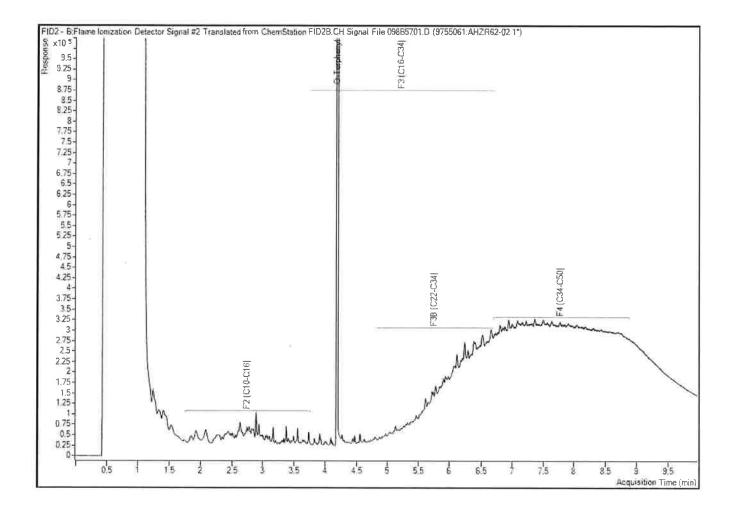

Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW6-5

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram


Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW7-4

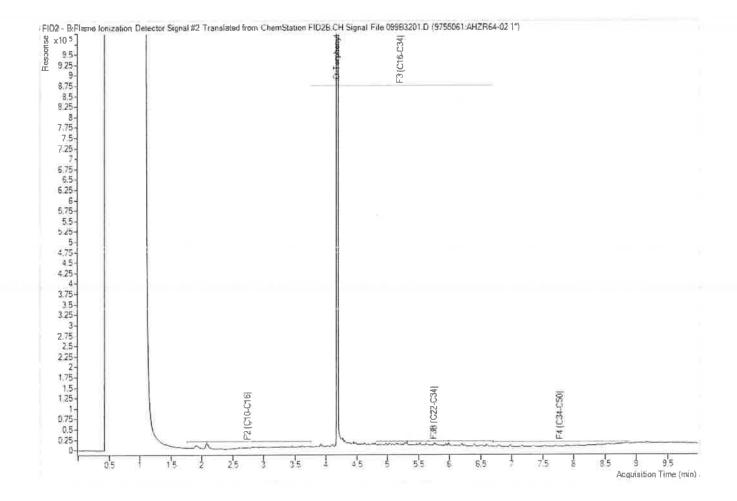
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392 Client ID: BH11-6

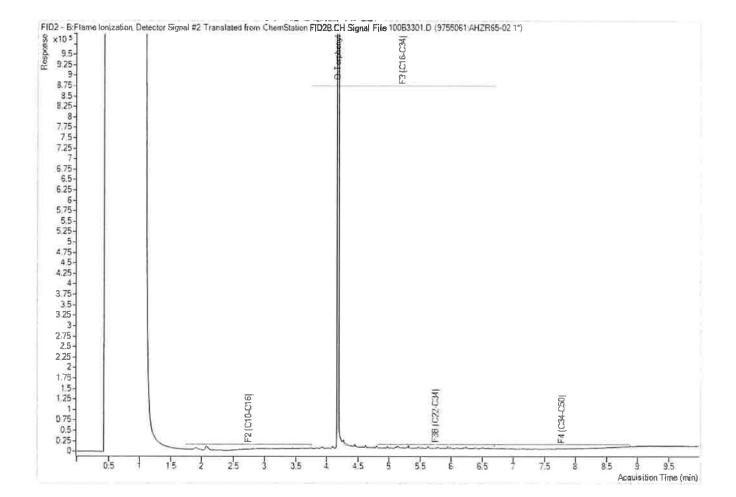

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

Client ID: QC-2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd
Client Project #: 122140392

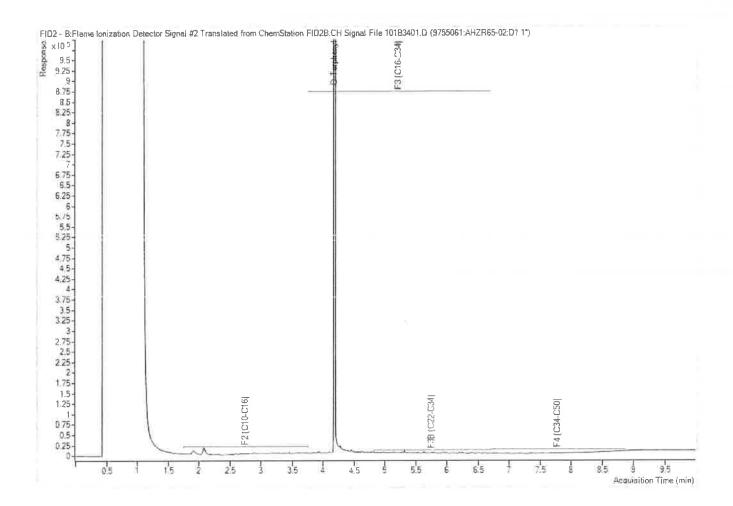

Client ID: MW12-7

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW12-8

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

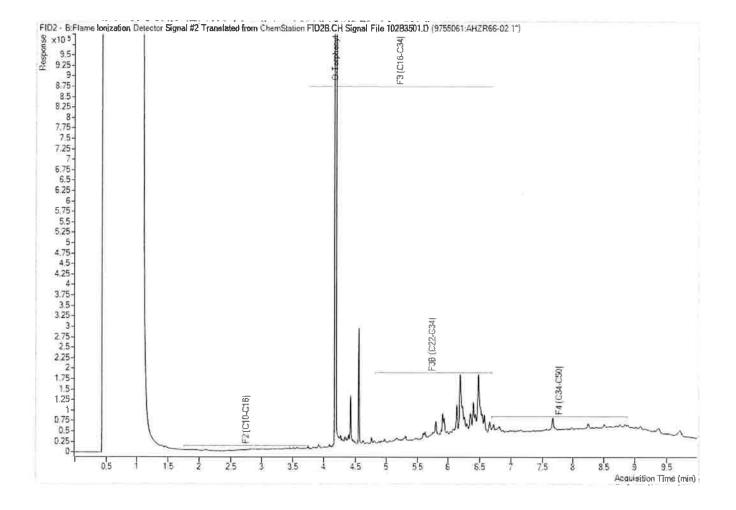
Bureau Veritas Job #: C4Y8641 Report Date: 2024/11/26


Bureau Veritas Sample: AHZR65 Lab-

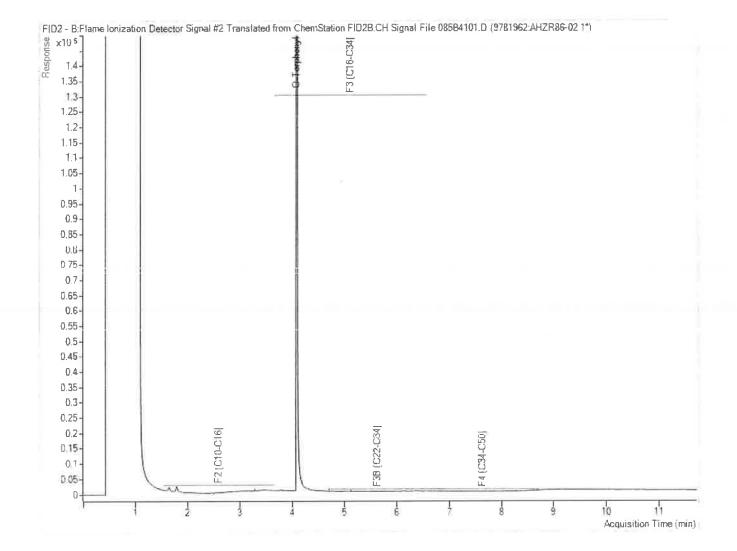
Dup

Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW12-8

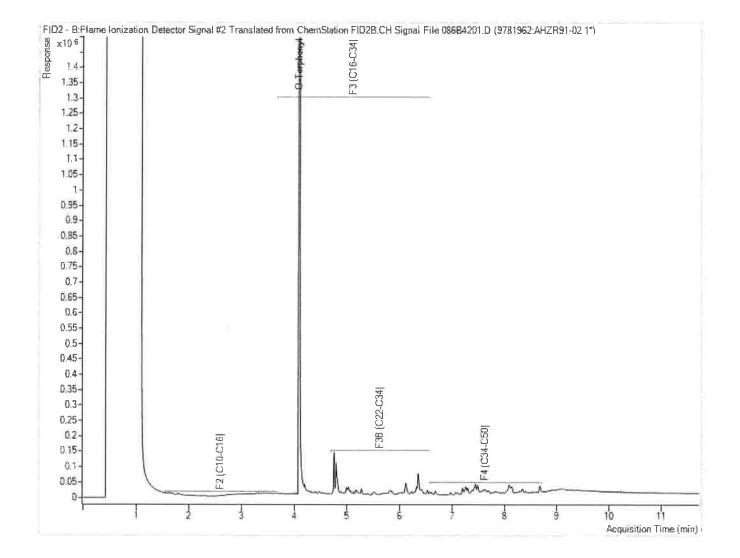

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392


Client ID: BH13-5

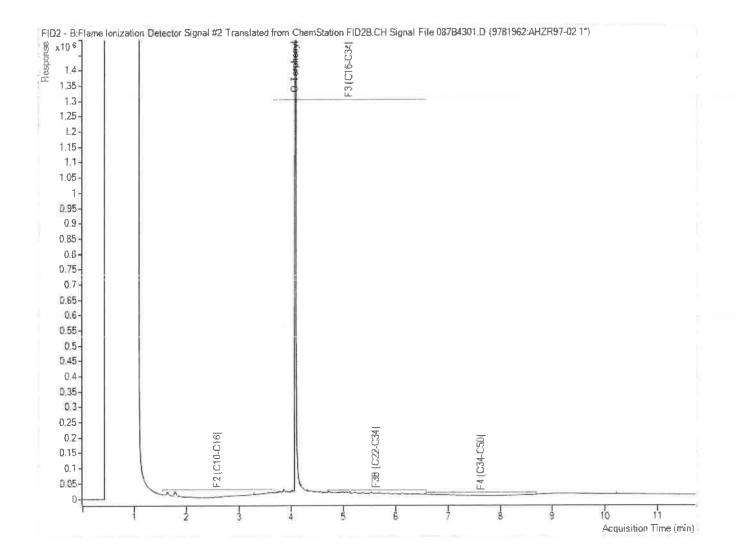
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW4-9


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

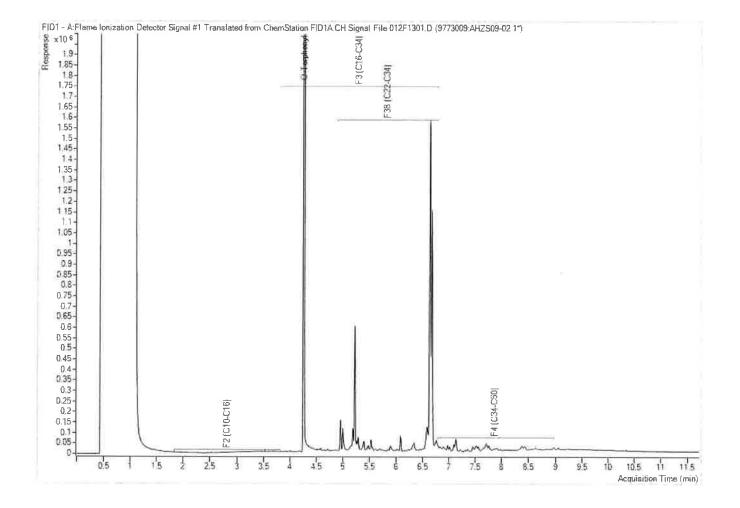
Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW6-8


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

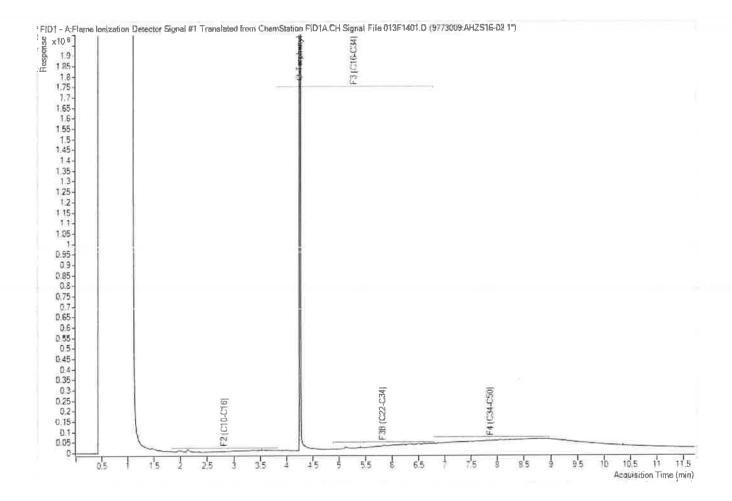
Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW7-7


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

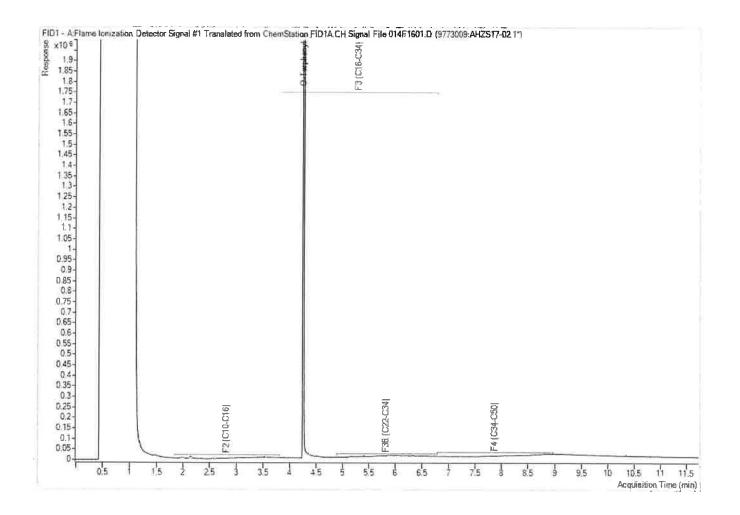
Stantec Consulting Ltd Client Project #: 122140392

Client ID: BH11-8

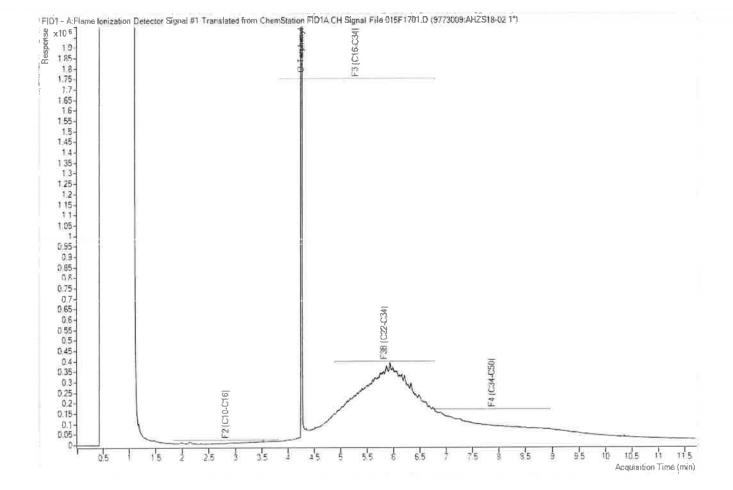

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

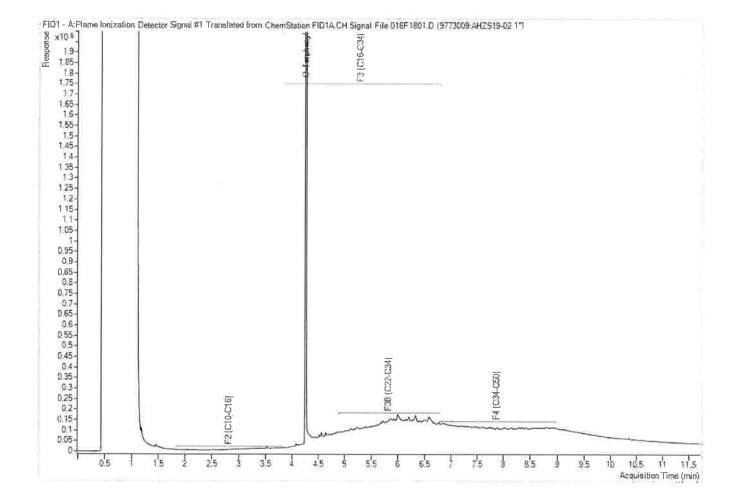
Client ID: BH13-1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

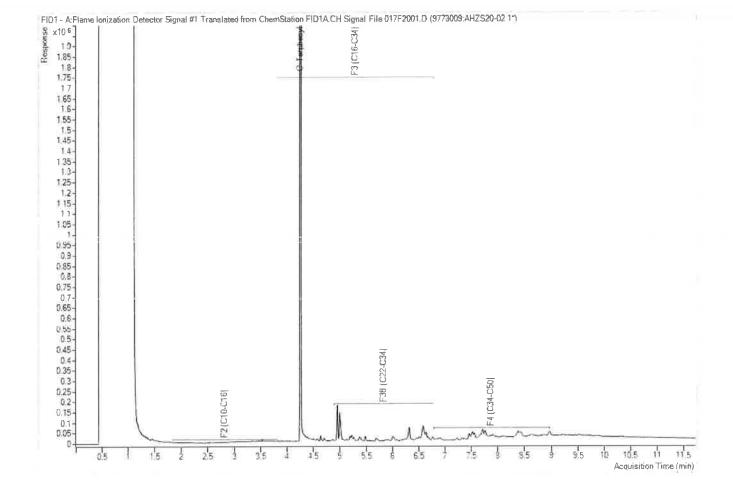
Stantec Consulting Ltd Client Project #: 122140392


Client ID: BH13-2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

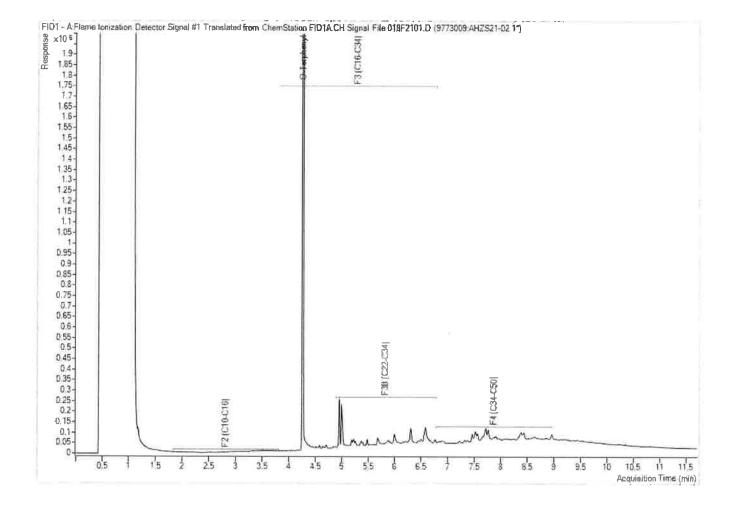

Stantec Consulting Ltd Client Project #: 122140392 Client ID: BH13-3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

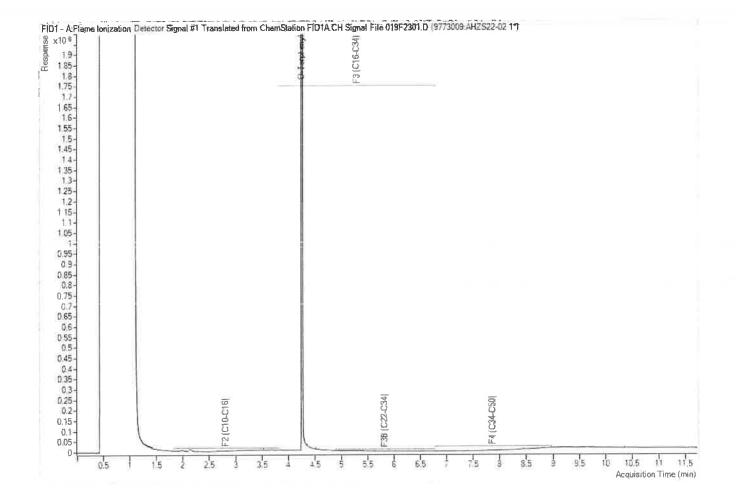

Stantec Consulting Ltd Client Project #: 122140392 Client ID: BH13-4

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392 Client ID: BH13-6

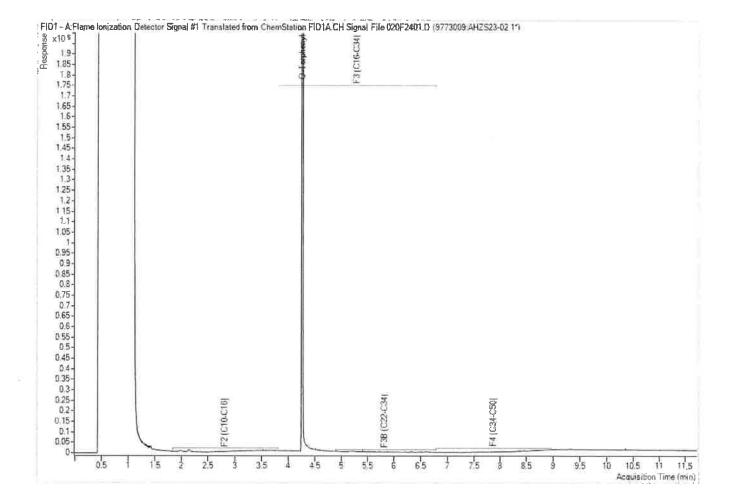

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

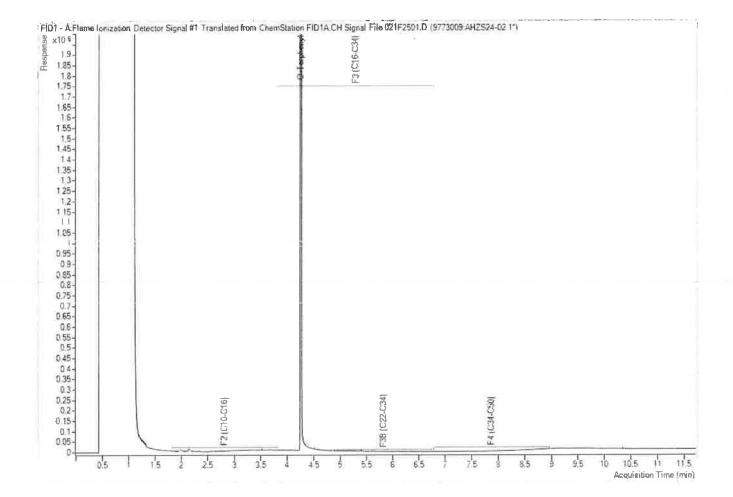

Client ID: BH13-7

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Stantec Consulting Ltd Client Project #: 122140392 Client ID: BH13-8


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

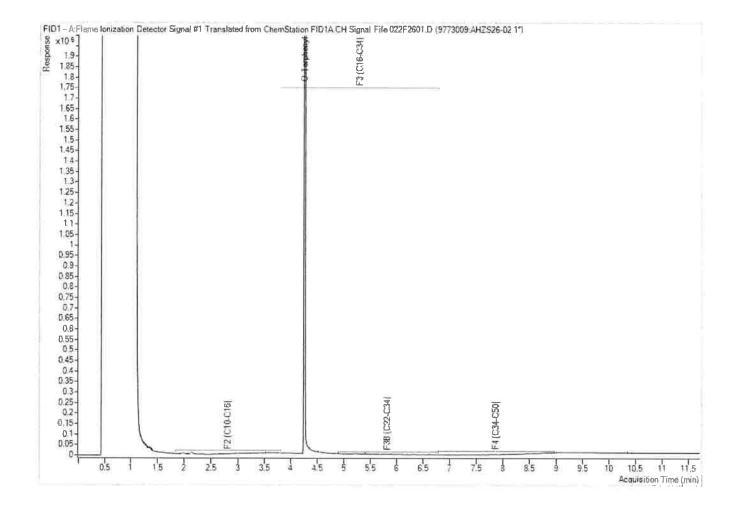
Stantec Consulting Ltd Client Project #: 122140392


Client ID: BH13-9

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Bureau Veritas Job #: C4Y8641 Report Date: 2024/11/26 Bureau Veritas Sample: AHZS24 Stantec Consulting Ltd Client Project #: 122140392 Client ID: BH13-10

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C4Y8641 Report Date: 2024/11/26 Bureau Veritas Sample: AHZS26

Stantec Consulting Ltd Client Project #: 122140392

Client ID: BH13-11

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 122140392 Your C.O.C. #: 1021069-02-01

Attention: Netta Benazon

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2024/11/12 Report #: R8401724

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Z0005 Received: 2024/11/05, 15:20

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2024/11/11	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2024/11/08	2024/11/08	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	2	N/A	2024/11/11		EPA 8260C m
Free (WAD) Cyanide	1	2024/11/08	2024/11/11	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2024/11/09	2024/11/09	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2024/11/08	2024/11/08	CAM SOP-00436	EPA 3060A/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2024/11/11	2024/11/11	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2024/11/09	2024/11/10	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	1	2024/11/08	2024/11/08	CAM SOP-00447	EPA 6020B m
Moisture	3	N/A	2024/11/07	CAM SOP-00115	Carter 2nd ed 70.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2024/11/09	2024/11/09	CAM SOP-00318	EPA 8270E
pH CaCl2 EXTRACT	1	2024/11/08	2024/11/08	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	1	N/A	2024/11/11	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	2	N/A	2024/11/08	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your Project #: 122140392 Your C.O.C. #: 1021069-02-01

Attention: Netta Benazon

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

Report Date: 2024/11/12

Report #: R8401724 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Z0005 Received: 2024/11/05, 15:20

dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Julie Clement, Technical Account Manager Email: Julie.CLEMENT@bureauveritas.com Phone# (613)868-6079

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: VP

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		AICG79			
Sampling Date		2024/11/04 08:20			
COC Number		1021069-02-01			
	UNITS	MW5-2	RDL	MDL	QC Batch
Calculated Parameters					
Sodium Adsorption Ratio	N/A	0.27			9751336
Inorganics					
Conductivity	mS/cm	0.23	0.002	0.0005	9756629
Available (CaCl2) pH	рН	7.73			9755294
WAD Cyanide (Free)	ug/g	<0.01	0.01	0.0019	9755655
Chromium (VI)	ug/g	<0.18	0.18	0.050	9754630
Metals					
Hot Water Ext. Boron (B)	ug/g	0.36	0.050	0.030	9754950
Acid Extractable Antimony (Sb)	ug/g	0.34	0.20	0.10	9754805
Acid Extractable Arsenic (As)	ug/g	2.1	1.0	0.10	9754805
Acid Extractable Barium (Ba)	ug/g	61	0.50	0.30	9754805
Acid Extractable Beryllium (Be)	ug/g	0.31	0.20	0.020	9754805
Acid Extractable Boron (B)	ug/g	<5.0	5.0	1.0	9754805
Acid Extractable Cadmium (Cd)	ug/g	0.17	0.10	0.030	9754805
Acid Extractable Chromium (Cr)	ug/g	14	1.0	0.20	9754805
Acid Extractable Cobalt (Co)	ug/g	4.2	0.10	0.020	9754805
Acid Extractable Copper (Cu)	ив/в	14	0.50	0.20	9754805
Acid Extractable Lead (Pb)	ug/g	68	1.0	0.10	9754805
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	0.10	9754805
Acid Extractable Nickel (Ni)	ug/g	8.9	0.50	0.20	9754805
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	0.10	9754805
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	0.040	9754805
Acid Extractable Thallium (TI)	ug/g	0.082	0.050	0.010	9754805
Acid Extractable Uranium (U)	ug/g	0.49	0.050	0.030	9754805
Acid Extractable Vanadium (V)	ug/g	26	5.0	0.50	9754805
Acid Extractable Zinc (Zn)	ug/g	56	5.0	0.50	9754805
Acid Extractable Mercury (Hg)	ug/g	0.17	0.050	0.030	9754805
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: VP

O.REG 153 PAHS (SOIL)

Bureau Veritas ID		AICG79			
Sampling Date		2024/11/04 08:20			
COC Number		1021069-02-01			
	UNITS	MW5-2	RDL	MDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/g	<0.071	0.071	N/A	9751326
Polyaromatic Hydrocarbons					
Acenaphthene	ug/g	<0.050	0.050	0.0050	9756705
Acenaphthylene	ug/g	<0.050	0.050	0.0060	9756705
Anthracene	ug/g	<0.050	0.050	0.0040	9756705
Benzo(a)anthracene	ug/g	0.13	0.050	0.0040	9756705
Benzo(a)pyrene	ug/g	0.16	0.050	0.0040	9756705
Benzo(b/j)fluoranthene	ug/g	0.20	0.050	0.0060	9756705
Benzo(g,h,i)perylene	ug/g	0.13	0.050	0.0050	9756705
Benzo(k)fluoranthene	ug/g	0.068	0.050	0.0030	9756705
Chrysene	ug/g	0.13	0.050	0.0030	9756705
Dibenzo(a,h)anthracene	ug/g	<0.050	0.050	0.0030	9756705
Fluoranthene	ug/g	0.28	0.050	0.0060	9756705
Fluorene	ug/g	<0.050	0.050	0.0050	9756705
Indeno(1,2,3-cd)pyrene	ug/g	0.093	0.050	0.0030	9756705
1-Methylnaphthalene	ug/g	<0.050	0.050	0.0060	9756705
2-Methylnaphthalene	ug/g	<0.050	0.050	0.0070	9756705
Naphthalene	ug/g	<0.050	0.050	0.0040	9756705
Phenanthrene	ug/g	0.19	0.050	0.0040	9756705
Pyrene	ug/g	0.28	0.050	0.0030	9756705
Surrogate Recovery (%)					
D10-Anthracene	%	105			9756705
D14-Terphenyl (FS)	%	93			9756705
D8-Acenaphthylene	%	103			9756705
RDL = Reportable Detection L QC Batch = Quality Control B: N/A = Not Applicable					

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: VP

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AICG80		AICG81			
Sampling Date		2024/11/04 11:50		2024/11/04 12:05			
COC Number		1021069-02-01		1021069-02-01			
(F184.10) 10 H) 10	UNITS	MW5-5	QC Batch	QC-3	RDL	MDL	QC Batch
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	9751327	<0.050	0.050	0.010	9751327
Volatile Organics							"
Acetone (2-Propanone)	ug/g	<0.49	9753885	<0.49	0.49	0.49	9753885
Benzene	ug/g	<0.0060	9753885	<0.0060	0.0060	0.0060	9753885
Bromodichloromethane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Bromoform	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Bromomethane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Carbon Tetrachloride	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Chlorobenzene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Chloroform	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Dibromochloromethane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
1,2-Dichlorobenzene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
1,3-Dichlorobenzene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
1,4-Dichlorobenzene	ug/g	<0.040	6/23882	<0.040	U.U4U	0.040	9753885
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
1,1-Dichloroethane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
1,2-Dichloroethane	ug/g	<0.049	9753885	<0.049	0.049	0.049	9753885
1,1-Dichloroethylene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
cis-1,2-Dichloroethylene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
trans-1,2-Dichloroethylene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
1,2-Dichloropropane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
cis-1,3-Dichloropropene	ug/g	<0.030	9753885	<0.030	0.030	0.030	9753885
trans-1,3-Dichloropropene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Ethylbenzene	ug/g	<0.010	9753885	<0.010	0.010	0.010	9753885
Ethylene Dibromide	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Hexane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Methylene Chloride(Dichloromethane)	ug/g	<0.049	9753885	<0.049	0.049	0.049	9753885
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	9753885	<0.40	0.40	0.40	9753885
Methyl Isobutyl Ketone	ug/g	<0.40	9753885	<0.40	0.40	0.40	9753885
Methyl t-butyl ether (MTBE)	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Styrene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: VP

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		AICG80		AICG81			
Sampling Date		2024/11/04 11:50		2024/11/04 12:05			
COC Number		1021069-02-01		1021069-02-01			
	UNITS	MW5-5	QC Batch	QC-3	RDL	MDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
1,1,2,2-Tetrachloroethane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Tetrachloroethylene	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Toluene	ug/g	<0.020	9753885	<0.020	0.020	0.020	9753885
1,1,1-Trichloroethane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
1,1,2-Trichloroethane	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Trichloroethylene	ug/g	<0.010	9753885	<0.010	0.010	0.010	9753885
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	9753885	<0.040	0.040	0.040	9753885
Vinyl Chloride	ug/g	<0.019	9753885	<0.019	0.019	0.019	9753885
p+m-Xylene	ug/g	<0.020	9753885	<0.020	0.020	0.020	9753885
o-Xylene	ug/g	<0.020	9753885	<0.020	0.020	0.020	9753885
Total Xylenes	ug/g	<0.020	9753885	<0.020	0.020	0.020	9753885
F1 (C6-C10)	ug/g	<10	9753885	<10	10	2.0	9753885
F1 (C6-C10) - BTEX	ug/g	<10	9753885	<10	10	2.0	9753885
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	9758113	<7.0	7.0	5.0	9756782
F3 (C16-C34 Hydrocarbons)	ug/g	<50	9758113	140	50	5.0	9756782
F4 (C34-C50 Hydrocarbons)	ug/g	<50	9758113	120	50	10	9756782
Reached Baseline at C50	ug/g	Yes	9758113	Yes			9756782
Surrogate Recovery (%)		=					
o-Terphenyl	%	96	9758113	98			9756782
4-Bromofluorobenzene	%	100	9753885	98			9753885
D10-o-Xylene	%	99	9753885	100			9753885
D4-1,2-Dichloroethane	%	108	9753885	108			9753885
D8-Toluene	%	92	9753885	91			9753885
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: VP

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AICG79		AICG80		AICG81			
Sampling Date		2024/11/04 08:20		2024/11/04 11:50		2024/11/04 12:05			
COC Number		1021069-02-01		1021069-02-01		1021069-02-01			
PRINT WELL	UNITS	MW5-2	QC Batch	MW5-5	QC Batch	QC-3	RDL	MDL	QC Batch
Inorganics									
Moisture	%	9.7	9751746	13	9758063	17	1.0	0.50	9751746
RDL = Reportable Detect	tion Limit								
QC Batch = Quality Cont	rol Batch								

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: VP

TEST SUMMARY

Bureau Veritas ID: AICG79 Sample ID: MW5-2

Matrix: Soil

Collected: 2024/11/04

Shipped: Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9751326	N/A	2024/11/11	Automated Statchk
Hot Water Extractable Boron	ICP	9754950	2024/11/08	2024/11/08	Thuy Linh Nguyen
Free (WAD) Cyanide	TECH	9755655	2024/11/08	2024/11/11	Prgya Panchal
Conductivity	AT	9756629	2024/11/09	2024/11/09	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9754630	2024/11/08	2024/11/08	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9754805	2024/11/08	2024/11/08	Daniel Teclu
Moisture	BAL	9751746	N/A	2024/11/07	Frances Gacayan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9756705	2024/11/09	2024/11/09	Jonghan Yoon
pH CaCl2 EXTRACT	AT	9755294	2024/11/08	2024/11/08	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9751336	N/A	2024/11/11	Automated Statchk

Bureau Veritas ID: AICG80 Sample ID: MW5-5

Matrix: Soil

Collected: 2024/11/04

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9751327	N/A	2024/11/11	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9758113	2024/11/11	2024/11/11	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9758063	N/A	2024/11/07	Raj Patel
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9753885	N/A	2024/11/08	Dina Wang

Bureau Veritas ID: AICG81 Sample ID: QC-3

Matrix: Soil

Collected: 2024/11/04

Shipped:

Received: 2024/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9751327	N/A	2024/11/11	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9756782	2024/11/09	2024/11/10	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9751746	N/A	2024/11/07	Frances Gacayan
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9753885	N/A	2024/11/08	Dina Wang

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: VP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 6.3°C

Sample AICG79 [MW5 2]: PAH Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample AICG80 [MW5-5]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: VP

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9753885	4-Bromofluorobenzene	2024/11/08	103	60 - 140	102	60 - 140	86	%		
9753885	D10-o-Xylene	2024/11/08	107	60 - 130	91	60 - 130	94	%		
9753885	D4-1,2-Dichloroethane	2024/11/08	100	60 - 140	103	60 - 140	105	%		
9753885	D8-Toluene	2024/11/08	102	60 - 140	102	60 - 140	92	%		
9756705	D10-Anthracene	2024/11/09	79	50 - 130	66	50 - 130	103	%		
9756705	D14-Terphenyl (FS)	2024/11/09	73	50 - 130	68	50 - 130	92	%		
9756705	D8-Acenaphthylene	2024/11/09	100	50 - 130	105	50 - 130	107	%		
9756782	o-Terphenyl	2024/11/10	104	60 - 140	102	60 - 140	101	%		
9758113	o-Terphenyl	2024/11/11	66	60 - 140	101	60 - 140	97	%		
9751746	Moisture	2024/11/07							0	20
9753885	1,1,1,2-Tetrachloroethane	2024/11/08	109	60 - 140	111	60 - 130	<0.040	B/Bn	NC	20
9753885	1,1,1-Trichloroethane	2024/11/08		60 - 140	66	60-130	<0.040	B/Bn	NC	50
9753885	1,1,2,2-Tetrachloroethane	2024/11/08	76	60 - 140	96	60 - 130	<0.040	B/Bn	NC	50
9753885	1,1,2-Trichloroethane	2024/11/08	66	60 - 140	103	60 - 130	<0.040	B/Bn	NC	50
9753885	1,1-Dichloroethane	2024/11/08	94	60 - 140	97	60 - 130	<0.040	B/Bn	NC	50
9753885	1,1-Dichloroethylene	2024/11/08	26	60 - 140	100	60 - 130	<0.040	g/gn	NC	50
9753885	1,2-Dichlorobenzene	2024/11/08	102	60 - 140	103	60 - 130	<0.040	g/gn	NC	20
9753885	1,2-Dichloroethane	2024/11/08	104	60 - 140	108	60 - 130	<0.049	B/Bn	NC	50
9753885	1,2-Dichloropropane	2024/11/08	86	60 - 140	101	60 - 130	<0.040	B/Bn	NC	50
9753885	1,3-Dichlorobenzene	2024/11/08	103	60 - 140	104	60 - 130	<0.040	a/gn	NC	50
9753885	1,4-Dichlorobenzene	2024/11/08	104	60 - 140	105	60 - 130	<0.040	B/Bn	NC	50
9753885	Acetone (2-Propanone)	2024/11/08	86	60 - 140	105	60 - 140	<0.49	B/Bn	NC	50
9753885	Benzene	2024/11/08	86	60 - 140	102	60 - 130	<0.0060	B/Bn	2.5	90
9753885	Bromodichloromethane	2024/11/08	86	60 - 140	101	60 - 130	<0.040	B/Bn	NC	90
9753885	Bromoform	2024/11/08	98	60 - 140	103	60 - 130	<0.040	B/Bn	NC	90
9753885	Bromomethane	2024/11/08	84	60 - 140	88	60 - 140	<0.040	B/Bn	NC	50
9753885	Carbon Tetrachloride	2024/11/08	106	60 - 140	108	60 - 130	<0.040	B/Bn	NC	50
9753885	Chlorobenzene	2024/11/08	93	60 - 140	96	60 - 130	<0.040	8/8n	ON	50
9753885	Chloroform	2024/11/08	100	60 - 140	103	60 - 130	<0.040	g/gn	NC	50
9753885	cis-1,2-Dichloroethylene	2024/11/08	106	60 - 140	109	60 - 130	<0.040	B/8n	NC	90
9753885	cis-1,3-Dichloropropene	2024/11/08	94	60 - 140	66	60 - 130	<0.030	g/gn	NC	50
			1	1170						

Page 10 of 17

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www,bvna,com

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: VP

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	Mank	RPD	
QC Batch	Parameter	Date	% Fecovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9753885	Dibromochloromethane	2024/11/08	101	60 - 140	105	60 - 130	<0.040	g/gn	NC	20
9753885	Dichlorodifluoromethane (FREON 12)	2024/11/08	77	60 - 140	81	60 - 140	<0.040	g/gn	NC	50
9753885	Ethylbenzene	2024/11/08	96	60 - 140	66	60 - 130	<0.01	g/gn	NC	50
9753885	Ethylene Dioromide	2024/11/08	66	60 - 140	103	60 - 130	<0.040	ng/g	NC	50
9753885	F1 (C6-C10) - BTEX	2024/11/08					<10	ng/g	NC	30
9753885	F1 (C6-C10)	2024/11/08	97	60 - 140	92	80 - 120	<10	B/Bn	NC	30
9753885	Hexane	2024/11/08	108	60 - 140	110	60 - 130	<0.040	a/an	NC	50
9753885	Methyl Ethyl Ketone (2-Butanone)	2024/11/08	86	60 - 140	104	60 - 140	<0.40	B/Bn	NC	50
9753885	Methyl Isobutyl Ketone	2024/11/08	- 6	60 - 140	102	60-130	<0.40	g/gn	NC	50
9753885	Methyl t-butyl ether (MTBE)	2024/11/08	66	60 - 140	103	60 - 130	<0.040	g/gn	NC	50
9753885	Methylene Chloride(Dichloromethane)	2024/11/08	86	60 - 140	102	60 - 130	<0.049	a/gn	NC	50
9753885	o-Xylene	2024/11/08	106	60 - 140	108	60 - 130	<0.020	g/gn	NC	50
9753885	p+m-Xylene	2024/11/08	86	60 - 140	100	60 - 130	<0.020	g/gn	NC	50
9753885	Styrene	2024/11/08	104	60 - 140	105	60 - 130	<0.040	g/gn	NC	50
9753885	Tetrachloroethylene	2024/11/08	66	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
9753885	Toluene	2024/11/08	66	60 - 140	102	60 - 130	<0.020	g/gn	4.7	50
9753885	Total Xylenes	2024/11/08					<0.020	g/gn	NC	50
9753885	trans-1,2-Dichloroethylene	2024/11/08	106	60 - 140	108	60 - 130	<0.040	ug/g	NC	50
9753885	trans-1,3-Dichloropropene	2024/11/08	103	60 - 140	109	60 - 130	<0.040	ug/g	NC	50
9753885	Trichloroethylene	2024/11/08	102	60 - 140	104	60 - 130	<0.010	g/gn	NC	50
9753885	Trichlorofluoromethane (FREON 11)	2024/11/08	98	60 - 140	100	60 - 130	<0.040	B/Bn	NC	50
9753885	Vinyl Chloride	2024/11/08	91	60 - 140	94	60 - 130	<0.019	g/gn	NC	50
9754630	Chromium (VI)	2024/11/08	60 (1)	70 - 130	94	80 - 120	<0.18	g/gn	NC	35
9754805	Acid Extractable Antimony (Sb)	2024/11/08	114	75 - 125	110	80 - 120	<0.20	g/gn	NC	30
9754805	Acid Extractable Arsenic (As)	2024/11/08	106	75 - 125	104	80 - 120	<1.0	g/gn	6.4	30
9754805	Acid Extractable Barium (Ba)	2024/11/08	102	75 - 125	96	80 - 120	<0.50	g/gn	14	30
9754805	Acid Extractable Beryllium (Be)	2024/11/08	101	75 - 125	93	80 - 120	<0.20	g/gn	NC	30
9754805	Acid Extractable Boron (B)	2024/11/08	98	75 - 125	94	80 - 120	<5.3	g/gn	NC	30
9754805	Acid Extractable Cadmium (Cd)	2024/11/08	104	75 - 125	100	80 - 120	<0.10	g/gn	NC	30
9754805	Acid Extractable Chromium (Cr)	2024/11/08	105	75 - 125	101	80 - 120	<1.0	g/gn	8.9	30
9754805	Acid Extractable Cobalt (Co)	2024/11/08	103	75 - 125	102	80 - 120	<0.10	g/gn	9.9	30

Page 11 of 17

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel (905) E17-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www,bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: VP

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	Slank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9754805	Acid Extractable Copper (Cu)	2024/11/08	104	75 - 125	66	80 - 120	<0.50	B/Bn	10	30
9754805	Acid Extractable Lead (Pb)	2024/11/08	104	75 - 125	98	80 - 120	<1.0	B/Bn	12	30
9754805	Acid Extractable Mercury (Hg)	2024/11/08	105	75 - 125	100	80 - 120	<0.050	B/Bn	NC	30
9754805	Acid Extractable Molybdenum (Mo)	2024/11/08	102	75 - 125	97	80 - 120	<0.50	B/Bn	NC	30
9754805	Acid Extractable Nickel (Ni)	2024/11/08	106	75 - 125	104	80 - 120	<0.50	B/Bn	5.1	30
9754805	Acid Extractable Selenium (Se)	2024/11/08	114	75 - 125	107	80 - 120	<0.50	B/Bn	NC	30
9754805	Acid Extractable Silver (Ag)	2024/11/08	97	75 - 125	93	80 - 120	<0.20	B/Bn	NC	30
9754805	Acid Extractable Thallium (TI)	2024/11/08	101	75 - 125	98	80 - 120	<0.050	B/Bn	9.1	30
9754805	Acid Extractable Uranium (U)	2024/11/08	105	75 - 125	100	80 - 120	<0.050	B/Bn	8.1	30
9754805	Acid Extractable Vanadium (V)	2024/11/08	113	75 - 125	105	80 - 120	<5.0	g/gn	11	30
9754805	Acid Extractable Zinc (Zn)	2024/11/08	NC	75 - 125	102	80 - 120	<5.0	B/Bn	7.6	30
9754950	Hot Water Ext. Boron (B)	2024/11/08	101	75 - 125	98	75 - 125	<0.050	B/Bn	NC	40
9755294	Available (CaCl2) pH	2024/11/08			100	97 - 103			0.033	N/A
9755655	WAD Cyanide (Free)	2024/11/11	86	75 - 125	104	80 - 120	<0.01	B/Bn	NC	35
9756629	Conductivity	2024/11/09			102	90 - 110	<0.002	mS/cm	3.9	10
9756705	1-Methylnaphthalene	2024/11/09	89	50 - 130	96	50 - 130	<0.0050	B/Bn	NC	40
9756705	2-Methylnaphthalene	2024/11/09	92	50 - 130	66	50 - 130	<0.0050	g/gn	NC	40
9756705	Acenaphthene	2024/11/09	97	50 - 130	66	50 - 130	<0.0050	g/gn	NC	40
9756705	Acenaphthylene	2024/11/09	110	50 - 130	114	50 - 130	<0.0050	g/gn	NC	40
9756705	Anthracene	2024/11/09	84	50 - 130	106	50 - 130	<0.0050	B/Bn	NC	40
9756705	Benzo(a)anthracene	2024/11/09	104	50 - 130	107	50 - 130	<0.0050	g/gn	NC	40
9756705	Benzo(a)pyrene	2024/11/09	102	50 - 130	100	50 - 130	<0.0050	ng/g	NC	40
9756705	Benzo(b/j)fluoranthene	2024/11/09	102	50 - 130	104	50 - 130	<0.0050	g/gn	NC	40
9756705	Benzo(g,h,i)perylene	2024/11/09	91	50 - 130	92	50 - 130	<0.0050	g/gn	NC	40
9756705	Benzo(k)fluoranthene	2024/11/09	103	50 - 130	102	50 - 130	<0.0050	g/gn	NC	40
9756705	Chrysene	2024/11/09	104	50 - 130	107	50 - 130	<0.0050	g/gn	NC	40
9756705	Dibenzo(a,h)anthracene	2024/11/09	83	50 - 130	78	50 - 130	<0.0050	B/Bn	NC	40
9756705	Fluoranthene	2024/11/09	84	50 - 130	105	50 - 130	<0.0050	B/Bn	NC	40
9756705	Fluorene	2024/11/09	66	50 - 130	100	50 - 130	<0.0050	B/Bn	NC	40
9756705	Indeno(1,2,3-cd)pyrene	2024/11/09	93	50 - 130	90	50 - 130	<0.0050	g/gn	NC	40
9756705	Naphthalene	2024/11/09	86	50 - 130	95	50 - 130	<0.0050	g/gn	NC	40
				1.0						

Page 12 of 17

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www,bvna,com

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 12214G392 Sampler Initials: VP

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Slank	RPD	0
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9756705	Phenanthrene	2024/11/09	83	50 - 130	103	50-130	<0.0050	B/Bn	NC	40
9756705	Pyrene	2024/11/09	82	50 - 130	102	50 - 130	<0.0050	8/8n	NC	40
9756782	F2 (C10-C16 Hydrocarbons)	2024/11/10	101	60 - 140	101	80 - 120	<7.0	B/Bn	109 (2)	30
9756782	F3 (C16-C34 Hydrocarbons)	2024/11/10	82	60 - 140	104	80 - 120	<50	B/Bn	91 (2)	30
9756782	F4 (C34-C50 Hydrocarbons)	2024/11/10	89	60 - 140	106	80 - 120	<50	g/gn	81 (2)	30
9758063	Moisture	2024/11/11							0	20
9758113	F2 (C10-C16 Hydrocarbons)	2024/11/11	108	60 - 140	102	80 - 120	<7.0	B/Bn	NC	30
9758113	F3 (C16-C34 Hydrocarbons)	2024/11/11	110	60 - 140	105	80 - 120	<50	B/Bn	NC	30
9758113	F4 (C34-C50 Hydrocarbons)	2024/11/11	109	60 - 140	104	80 - 120	<50	B/Bn	NC	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify la-oratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL)

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

(2) Duplicate results exceeced RPD acceptance criteria for flagged analytes. Sample extract was reanalyzec with the same results. This is likely due to sample heterogeneity.

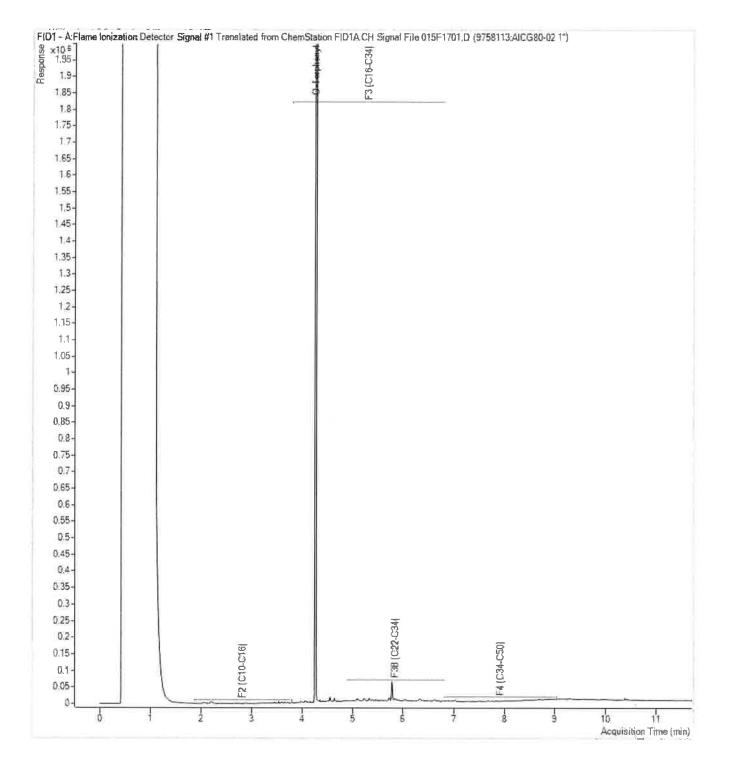
Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: VP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louise Harding, Scientific Specialist

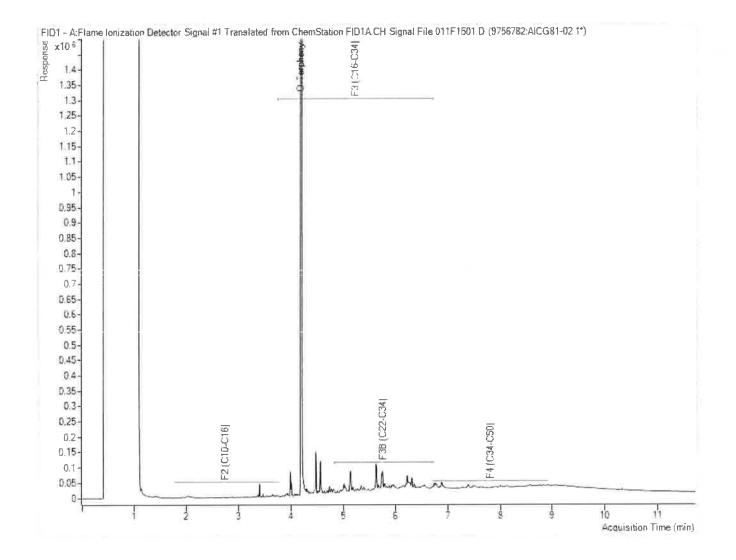

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas Job #: C4Z0005 Report Date: 2024/11/12 Bureau Veritas Sample: AICG80

Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW5-5

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C4Z0005 Report Date: 2024/11/12 Bureau Veritas Sample: AICG81 Stantec Consulting Ltd Client Project #: 122140392

Client ID: QC-3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 122140392 Your C.O.C. #: 1021273-04-01

Attention: Netta Benazon

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2024/11/14 Report #: R8404781

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Z1246 Received: 2024/11/06, 15:38

Sample Matrix: Water # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	11	N/A	2024/11/12	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	13	N/A	2024/11/12		EPA 8260C m
Chloride by Automated Colourimetry	11	N/A	2024/11/12	CAM SOP-00463	SM 24 4500-Cl E m
Chromium (VI) in Water	2	N/A	2024/11/11	CAM SOP-00436	EPA 7199 m
Chromium (VI) in Water	9	N/A	2024/11/12	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	11	N/A	2024/11/11	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1)	12	2024/11/11	2024/11/12	CAM SOP-00316	CCME PHC-CWS m
Mercury	11	2024/11/11	2024/11/12	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	7	N/A	2024/11/11	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2024/11/12	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	3	N/A	2024/11/08	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM)	4	2024/11/11	2024/11/11	CAM SOP-00318	EPA 8270E
PAH Compounds in Water by GC/MS (SIM)	3	2024/11/11	2024/11/12	CAM SOP-00318	EPA 8270E
PAH Compounds in Water by GC/MS (SIM)	3	2024/11/13	2024/11/13	CAM SOP-00318	EPA 8270E
PAH Compounds in Water by GC/MS (SIM)	1	2024/11/13	2024/11/14	CAM SOP-00318	EPA 8270E
Volatile Organic Compounds and F1 PHCs	13	N/A	2024/11/11	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Your Project #: 122140392 Your C.O.C. #: 1021273-04-01

Attention: Netta Benazon

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2024/11/14 Report #: R8404781 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Z1246 Received: 2024/11/06, 15:38

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Julie Clement, Technical Account Manager Email: Julie.CLEMENT@bureauveritas.com Phone# (613)868-6079

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID		AIFD17				AIFD18			
Sampling Date		2024/11/05 15:05				2024/11/05 14:05			
COC Number		1021273-04-01				1021273-04-01			
	UNITS	MW2	RDL	MDL	QC Batch	MW3	RDL	MDL	QC Batch
Inorganics						<u></u>			
WAD Cyanide (Free)	ug/L	<1	1	0.2	9757652	<1	1	0.2	9757652
Dissolved Chloride (Cl-)	mg/L	2200	20	13	9756113	600	5.0	3.3	9756113
Metals							•		
Chromium (VI)	ug/L	<1.0 (1)	1.0	0.60	9759381	<0.50	0.50	0.30	9757814
Mercury (Hg)	ug/L	<0.10	0.10	0.020	9758001	<0.10	0.10	0.020	9758001
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	0.00020	9755168	0.00056	0.00050	0.00020	9755168
Dissolved Arsenic (As)	mg/L	0.0055	0.0010	0.00010	9755168	0.0017	0.0010	0.00010	9755168
Dissolved Barium (Ba)	mg/L	0.80	0.0020	0.00030	9755168	0.25	0.0020	0.00030	9755168
Dissolved Beryllium (Be)	mg/L	<0.00040	0.00040	0.000050	9755168	<0.00040	0.00040	0.000050	9755168
Dissolved Boron (B)	mg/L	0.060	0.010	0.00060	9755168	0.094	0.010	0.00060	9755168
Dissolved Cadmium (Cd)	mg/L	<0.000090	0.000090	0.000090	9755168	<0.000090	0.000090	0.000090	9755168
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	0.00070	9755168	<0.0050	0.0050	0.00070	9755168
Dissolved Cobalt (Co)	mg/L	0.0025	0.00050	0.000040	9755168	0.00071	0.00050	0.000040	9755168
Dissolved Copper (Cu)	mg/L	<0.00090	0.00090	0.00030	9755168	0.00095	0.00090	0.00030	9755168
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	0.000050	9755168	<0.00050	0.00050	0.000050	9755168
Dissolved Molybdenum (Mo)	mg/L	0.0044	0.00050	0.000070	9755168	0.0070	0.00050	0.000070	9755168
Dissolved Nickel (Ni)	mg/L	0.0016	0.0010	0.00040	9755168	0.0015	0.0010	0.00040	9755168
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	0.00020	9755168	<0.0020	0.0020	0.00020	9755168
Dissolved Silver (Ag)	mg/L	<0.000090	0.000090	0.000020	9755168	<0.000090	0.000090	0.000020	9755168
Dissolved Sodium (Na)	mg/L	730	0.50	0.10	9755168	280	0.10	0.020	9755168
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	0.000020	9755168	<0.000050	0.000050	0.000020	9755168
Dissolved Uranium (U)	mg/L	0.00083	0.00010	0.000010	9755168	0.0015	0.00010	0.000010	9755168
Dissolved Vanadium (V)	mg/L	0.00064	0.00050	0.000090	9755168	0.00092	0.00050	0.000090	9755168
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	0.0010	9755168	0.0080	0.0050	0.0010	9755168

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID		AIFD20				AIFD21			
Sampling Date		2024/11/05 13:05				2024/11/05 12:05			
COC Number		1021273-04-01				1021273-04-01			
	UNITS	MW6	RDL	MDL	QC Batch	MW7	RDL	MDL	QC Batch
Inorganics									
WAD Cyanide (Free)	ug/L	<1	1	0.2	9757652	2	1	0.2	9757652
Dissolved Chloride (Cl-)	mg/L	5200	50	33	9756113	6600	50	33	9756205
Metals									
Chromium (VI)	ug/L	<1.0 (1)	1.0	0.60	9759381	<2.5 (1)	2.5	1.5	9759381
Mercury (Hg)	ug/L	<0.10	0.10	0.020	9758001	<0.10	0.10	0.020	9758001
Dissolved Antimony (Sb)	mg/L	<0.0025	0.0025	0.0010	9755168	<0.0025	0.0025	0.0010	9755168
Dissolved Arsenic (As)	mg/L	<0.0050	0.0050	0.00050	9755168	<0.0050	0.0050	0.00050	9755168
Dissolved Barium (Ba)	mg/L	0.64	0.010	0.0015	9755168	1,3	0.010	0.0015	9755168
Dissolved Beryllium (Be)	mg/L	<0.0020	0.0020	0.00025	9755168	<0.0020	0.0020	0.00025	9755168
Dissolved Boron (B)	mg/L	0.33	0.050	0.0030	9755168	0.39	0.050	0.0030	9755168
Dissolved Cadmium (Cd)	mg/L	<0.00045	0.00045	0.00045	9755168	<0.00045	0.00045	0.00045	9755168
Dissolved Chromium (Cr)	mg/L	<0.025	0.025	0.0035	9755168	<0.025	0.025	0.0035	9755168
Dissolved Cobalt (Co)	mg/L	<0.0025	0.0025	0.00020	9755168	0.0042	0.0025	0.00020	9755168
Dissolved Copper (Cu)	mg/L	<0.0045	0.0045	0.0015	9755168	<0.0045	0.0045	0.0015	9755168
Dissolved Lead (Pb)	mg/L	<0.0025	0.0025	0.00025	9755168	<0.0025	0.0025	0.00025	9755168
Dissolved Molybdenum (Mo)	mg/L	<0.0025	0.0025	0.00035	9755168	0.0030	0.0025	0.00035	9755168
Dissolved Nickel (Ni)	mg/L	<0.0050	0.0050	0.0020	9755168	0.0051	0.0050	0.0020	9755168
Dissolved Selenium (Se)	mg/L	<0.010	0.010	0.0010	9755168	<0.010	0.010	0.0010	9755168
Dissolved Silver (Ag)	mg/L	<0.00045	0.00045	0.00010	9755168	<0.00045	0.00045	0.00010	9755168
Dissolved Sodium (Na)	mg/L	2700	0.50	0.10	9755168	3600	1.0	0.20	9755168
Dissolved Thallium (TI)	mg/L	<0.00025	0.00025	0.00010	9755168	<0.00025	0.00025	0.00010	9755168
Dissolved Uranium (U)	mg/L	<0.00050	0.00050	0.000050	9755168	0.0017	0.00050	0.000050	9755168
Dissolved Vanadium (V)	mg/L	<0.0025	0.0025	0.00045	9755168	<0.0025	0.0025	0.00045	9755168
Dissolved Zinc (Zn)	mg/L	<0.025	0.025	0.0050	9755168	<0.025	0.025	0.0050	9755168

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Report Date: 2024/11/14

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID		AIFD22			AIFD23		AIFD24			
Sampling Date		2024/11/06 10:45			2024/11/06 13:10		2024/11/06			
COC Number		1021273-04-01			1021273-04-01		1021273-04-01			
	UNITS	MW1	RDL	MDL	MW4	QC Batch	QC-01	RDL	MDL	QC Batch
Inorganics		-								
WAD Cyanide (Free)	ug/L	<1	1	0.2	<1	9757652	<1	1	0.2	9757652
Dissolved Chloride (Cl-)	mg/L	920	7.0	4.6	1700	9756113	1700	20	13	9756113
Metals										
Chromium (VI)	ug/L	<0.50	0.50	0.30	<0.50	9759381	<0.50	0.50	0.30	9757814
Mercury (Hg)	ug/L	<0.10	0.10	0.020	<0.10	9758001	<0.10	0.10	0.020	9758001
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	0.00020	0.0012	9755168	0.0013	0.00050	0.00020	9755168
Dissolved Arsenic (As)	mg/L	0.0011	0.0010	0.00010	0.0028	9755168	0.0028	0.0010	0.00010	9755168
Dissolved Barium (Ba)	mg/L	0.36	0.0020	0.00030	0.22	9755168	0.23	0.0020	0.00030	9755168
Dissolved Beryllium (Be)	mg/L	<0.00040	0.00040	0.000050	<0.00040	9755168	<0.00040	0.00040	0.000050	9755168
Dissolved Boron (B)	mg/L	0.040	0.010	0.00060	0.20	9755168	0.20	0.010	0.00060	9755168
Dissolved Cadmium (Cd)	mg/L	<0.000090	0.000090	0.000090	<0.000090	9755168	<0.000090	0.000090	0.000090	9755168
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	0.00070	<0.0050	9755168	<0.0050	0.0050	0.00070	9755168
Dissolved Cobalt (Co)	mg/L	0.0017	0.00050	0.000040	<0.00050	9755168	<0.00050	0.00050	0.000040	9755168
Dissolved Copper (Cu)	mg/L	<0.00090	0.00090	0.00030	<0.00090	9755168	<0.00090	0.00090	0.00030	9755168
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	0.000050	<0.00050	9755168	<0.00050	0.00050	0.000050	9755168
Dissolved Molybdenum (Mo)	mg/L	0.00089	0.00050	0.000070	0.0060	9755168	0.0060	0.00050	0.000070	9755168
Dissolved Nickel (Ni)	mg/L	0.0023	0.0010	0.00040	<0.0010	9755168	<0.0010	0.0010	0.00040	9755168
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	0.00020	<0.0020	9755168	<0.0020	0.0020	0.00020	9755168
Dissolved Silver (Ag)	mg/L	<0.000090	0.000090	0.000020	<0.000090	9755168	<0.000090	0.000090	0.000020	9755168
Dissolved Sodium (Na)	mg/L	430	0.10	0.020	950	9755168	950	0.50	0.10	9755168
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	0.000020	<0.000050	9755168	<0.000050	0.000050	0.000020	9755168
Dissolved Uranium (U)	mg/L	0.0020	0.00010	0.000010	0.00020	9755168	0.00020	0.00010	0.000010	9755168
Dissolved Vanadium (V)	mg/L	0.00063	0.00050	0.000090	0.0011	9755168	0.0010	0.00050	0.000090	9755168
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	0.0010	<0.0050	9755168	<0.0050	0.0050	0.0010	9755168

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID		AIFD25				AIFD25			
Sampling Date		2024/11/06 10:00			,	2024/11/06 10:00			
COC Number		1021273-04-01				1021273-04-01			
AND LONG HER	UNITS	MW5	RDL	MDL	QC Batch	MW5 Lab-Dup	RDL	MDL	QC Batch
Inorganics									
WAD Cyanide (Free)	ug/L	<1	1	0.2	9757652				
Dissolved Chloride (CI-)	mg/L	630	6.0	4.0	9756113				
Metals									
Chromium (VI)	ug/L	<0.50	0.50	0.30	9759381				
Mercury (Hg)	ug/L	<0.10	0.10	0.020	9758001				
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	0.00020	9755168	<0.00050	0.00050	0.00020	9755168
Dissolved Arsenic (As)	mg/L	<0.0010	0.0010	0.00010	9755168	<0.0010	0.0010	0.00010	9755168
Dissolved Barium (Ba)	mg/L	0.15	0.0020	0.00030	9755168	0.15	0.0020	0.00030	9755168
Dissolved Beryllium (Be)	mg/L	<0.00040	0.00040	0.000050	9755168	<0.00040	0.00040	0.000050	9755168
Dissolved Boron (B)	mg/L	0.038	0.010	0.00060	9755168	0.038	0.010	0.00060	9755168
Dissolved Cadmium (Cd)	mg/L	<0.000090	0.000090	0.000090	9755168	<0.000090	0.000090	0.000090	9755168
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	0.00070	9755168	<0.0050	0.0050	0.00070	9755168
Dissolved Cobalt (Co)	mg/L	0.0049	0.00050	0.000040	9755168	0 0049	0 00050	0 000040	9755168
Dissolved Copper (Cu)	mg/l	<0.00090	0.00090	0.00030	9755168	<0.00090	0.00090	0.00030	9755168
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	0.000050	9755168	<0.00050	0.00050	0.000050	9755168
Dissolved Molybdenum (Mo)	mg/L	0.0038	0.00050	0.000070	9755168	0.0037	0.00050	0.000070	9755168
Dissolved Nickel (Ni)	mg/L	0.0026	0.0010	0.00040	9755168	0.0023	0.0010	0.00040	9755168
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	0.00020	9755168	<0.0020	0.0020	0.00020	9755168
Dissolved Silver (Ag)	mg/L	<0.000090	0.000090	0.000020	9755168	<0.000090	0.000090	0.000020	9755168
Dissolved Sodium (Na)	mg/L	290	0.10	0.020	9755168	300	0.10	0.020	9755168
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	0.000020	9755168	<0.000050	0.000050	0.000020	9755168
Dissolved Uranium (U)	mg/L	0.00071	0.00010	0.000010	9755168	0.00070	0.00010	0.000010	9755168
Dissolved Vanadium (V)	mg/L	0.00056	0.00050	0.000090	9755168	0.00053	0.00050	0.000090	9755168
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	0.0010	9755168	<0.0050	0.0050	0.0010	9755168

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID		AIFD26				AIFD27			
Sampling Date		2024/11/06 12:35				2024/11/06 11:30			
COC Number		1021273-04-01				1021273-04-01			
	UNITS	MW12	RDL	MDL	QC Batch	MW10	RDL	MDL	QC Batch
Inorganics	1			-					
WAD Cyanide (Free)	ug/L	<1	1	0.2	9757652	<1	1	0.2	9757654
Dissolved Chloride (CI-)	mg/L	38	1.0	0.66	9756113	2300	20	13	9756113
Metals									
Chromium (VI)	ug/L	<0.50	0.50	0.30	9759381	<1.0 (1)	1.0	0.60	9759381
Mercury (Hg)	ug/L	<0.10	0.10	0.020	9758001	<0.10	0.10	0.020	9758001
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	0.00020	9755168	<0.00050	0.00050	0.00020	9755168
Dissolved Arsenic (As)	mg/L	<0.0010	0.0010	0.00010	9755168	0.0033	0.0010	0.00010	9755168
Dissolved Barium (Ba)	mg/L	0.15	0.0020	0.00030	9755168	0.52	0.0020	0.00030	9755168
Dissolved Beryllium (Be)	mg/L	<0.00040	0.00040	0.000050	9755168	<0.00040	0.00040	0.000050	9755168
Dissolved Boron (B)	mg/L	0.014	0.010	0.00060	9755168	0.062	0.010	0.00060	9755168
Dissolved Cadmium (Cd)	mg/L	<0.000090	0.000090	0.000090	9755168	<0.000090	0.000090	0.000090	9755168
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	0.00070	9755168	<0.0050	0.0050	0.00070	9755168
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	0.000040	9755168	0.0013	0.00050	0.000040	9755168
Dissolved Copper (Cu)	mg/L	<0.00090	0.00090	0.00030	9755168	<0.00090	0.00090	0.00030	9755168
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	0.000050	9755168	<0.00050	0.00050	0.000050	9755168
Dissolved Molybdenum (Mo)	mg/L	0.00061	0.00050	0.000070	9755168	0.0036	0.00050	0.000070	9755168
Dissolved Nickel (Ni)	mg/L	<0.0010	0.0010	0.00040	9755168	0.0012	0.0010	0.00040	9755168
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	0.00020	9755168	<0.0020	0.0020	0.00020	9755168
Dissolved Silver (Ag)	mg/L	<0.000090	0.000090	0.000020	9755168	<0.000090	0.000090	0.000020	9755168
Dissolved Sodium (Na)	mg/L	9.5	0.10	0.020	9755168	720	0.50	0.10	9755168
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	0.000020	9755168	<0.000050	0.000050	0.000020	9755168
Dissolved Uranium (U)	mg/L	<0.00010	0.00010	0.000010	9755168	0.00020	0.00010	0.000010	9755168
Dissolved Vanadium (V)	mg/L	0.00092	0.00050	0.000090	9755168	0.00057	0.00050	0.000090	9755168
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	0.0010	9755168	<0.0050	0.0050	0.0010	9755168

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID		AIFD28			
Sampling Date		2024/11/06 11:55			
COC Number		1021273-04-01			
	UNITS	MW9	RDL	MDL	QC Batch
Inorganics					
WAD Cyanide (Free)	ug/L	<1	1	0.2	9757654
Dissolved Chloride (Cl-)	mg/L	490	5.0_	3.3	9756113
Metals					
Chromium (VI)	ug/L	<0.50	0.50	0.30	9759381
Mercury (Hg)	ug/L	<0.10	0.10	0.020	9758001
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	0.00020	9755168
Dissolved Arsenic (As)	mg/L	0.0020	0.0010	0.00010	9755168
Dissolved Barium (Ba)	mg/L	0.32	0.0020	0.00030	9755168
Dissolved Beryllium (Be)	mg/L	<0.00040	0.00040	0.000050	9755168
Dissolved Boron (B)	mg/L	0.045	0.010	0.00060	9755168
Dissolved Cadmium (Cd)	mg/L	<0.000090	0.000090	0.000090	9755168
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	0.00070	9755168
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	0.000040	9755168
Dissolved Copper (Cu)	mg/L	<0.00090	0.00090	0.00030	9755168
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	0.000050	9755168
Dissolved Molybdenum (Mo)	mg/L	0.0021	0.00050	0.000070	9755168
Dissolved Nickel (Ni)	mg/L	<0.0010	0.0010	0.00040	9755168
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	0.00020	9755168
Dissolved Silver (Ag)	mg/L	<0.000090	0.000090	0.000020	9755168
Dissolved Sodium (Na)	mg/L	220	0.10	0.020	9755168
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	0.000020	9755168
Dissolved Uranium (U)	mg/L	0.00054	0.00010	0.000010	9755168
Dissolved Vanadium (V)	mg/L	<0.00050	0.00050	0.000090	9755168
		<0.0050	0.0050	0.0010	9755168

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 PAHS (WATER)

Bureau Veritas ID		AIFD17		AIFD18		AIFD20			
Sampling Date		2024/11/05 15:05		2024/11/05 14:05		2024/11/05 13:05			
COC Number		1021273-04-01		1021273-04-01		1021273-04-01			
	UNITS	MW2	QC Batch	MW3	QC Batch	MW6	RDL	MDL	QC Batch
Calculated Parameters		<u></u>	1						•
Methylnaphthalene, 2-(1-)	ug/L	<0.071	9753939	<0.071	9753939	<0.071	0.071	N/A	9753939
Polyaromatic Hydrocarbons									
Acenaphthene	ug/L	<0.050	9758371	0.051	9762816	0.050	0.050	0.0030	9758371
Acenaphthylene	ug/L	<0.050	9758371	<0.050	9762816	<0.050	0.050	0.0030	9758371
Anthracene	ug/L	<0.050	9758371	<0.050	9762816	<0.050	0.050	0.0030	9758371
Benzo(a)anthracene	ug/L	<0.050	9758371	<0.050	9762816	<0.050	0.050	0.0030	9758371
Benzo(a)pyrene	ug/L	<0.0090	9758371	0.0096	9762816	0.065	0.0090	0.0030	9758371
Benzo(b/j)fluoranthene	ug/L	<0.050	9758371	<0.050	9762816	0.064	0.050	0.0030	9758371
Benzo(g,h,i)perylene	ug/L	<0.050	9758371	<0.050	9762816	0.070	0.050	0.0030	9758371
Benzo(k)fluoranthene	ug/L	<0.050	9758371	<0.050	9762816	<0.050	0.050	0.0030	9758371
Chrysene	ug/L	<0.050	9758371	<0.050	9762816	<0.050	0.050	0.0030	9758371
Dibenzo (a, h) anthracene	ug/L	<0.050	9758371	<0.050	9762816	<0.050	0.050	0.0030	9758371
Fluoranthene	ug/L	<0.050	9758371	<0.050	9762816	0.076	0.050	0.0030	9758371
Fluorene	ug/L	<0.050	9758371	<0.050	9762816	<0.050	0.050	0.0030	9758371
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	9758371	<0.050	9762816	0.058	0.050	0.0030	9758371
1-Methylnaphthalene	ug/L	<0.050	9758371	<0.050	9762816	0.057	0.050	0.0030	9758371
2-Methylnaphthalene	ug/L	<0.050	9758371	<0.050	9762816	<0.050	0.050	0.0030	9758371
Naphthalene	ug/L	0.16	9758371	<0.050	9762816	0.083	0.050	0.0030	9758371
Phenanthrene	ug/L	0.035	9758371	<0.030	9762816	0.15	0.030	0.0030	9758371
Pyrene	ug/L	<0.050	9758371	<0.050	9762816	0.073	0.050	0.0030	9758371
Surrogate Recovery (%)									
D10-Anthracene	%	96	9758371	107	9762816	107			9758371
D14-Terphenyl (FS)	%	98	9758371	110	9762816	110			9758371
D8-Acenaphthylene	%	90	9758371	102	9762816	94			9758371

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

O.REG 153 PAHS (WATER)

Bureau Veritas ID		AIFD20				AIFD21	AIFD22			
Sampling Date		2024/11/05 13:05				2024/11/05 12:05	2024/11/06 10:45			
COC Number		1021273-04-01				1021273-04-01	1021273-04-01			
	UNITS	MW6 Lab-Dup	RDL	MDL	QC Batch	MW7	MW1	RDL	MDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/L					<0.071	<0.071	0.071	N/A	9753939
Polyaromatic Hydrocarbons										
Acenaphthene	ug/L	0.053	0.050	0.0030	9758371	< 0.050	<0.050	0.050	0.0030	9758371
Acenaphthylene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Anthracene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Benzo(a)anthracene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Benzo(a)pyrene	ug/L	0.061	0.0090	0.0030	9758371	<0.0090	<0.0090	0.0090	0.0030	9758371
Benzo(b/j)fluoranthene	ug/L	0.059	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Benzo(g,h,i)perylene	ug/L	0.056	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Benzo(k)fluoranthene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Chrysene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Dibenzo(a,h)anthracene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Fluoranthene	ug/L	0.080	ი იรი	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Fluorene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
1-Methylnaphthalene	ug/L	0.058	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
2-Methylnaphthalene	ug/L	<0.050	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Naphthalene	ug/L	0.083	0.050	0.0030	9758371	<0.050	<0.050	0.050	0.0030	9758371
Phenanthrene	ug/L	0.15	0.030	0.0030	9758371	<0.030	<0.030	0.030	0.0030	9758371
Pyrene	ug/L	0.077	0.050	0.0030	9758371	<0.050	0.092	0.050	0.0030	9758371
Surrogate Recovery (%)										
D10-Anthracene	%	97			9758371	92	95			9758371
D14-Terphenyl (FS)	%	100			9758371	91	98			9758371
D8-Acenaphthylene	%	91			9758371	88	89			9758371

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 PAHS (WATER)

Bureau Veritas ID		AIFD23	AIFD24	AIFD25		AIFD26			
Sampling Date		2024/11/06 13:10	2024/11/06	2024/11/06 10:00		2024/11/06 12:35			
COC Number		1021273-04-01	1021273-04-01	1021273-04-01		1021273-04-01			
	UNITS	MW4	QC-01	MW5	QC Batch	MW12	RDL	MDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/L	0.68	0.69	<0.071	9753939	<0.071	0.071	N/A	9753939
Polyaromatic Hydrocarbons								-	
Acenaphthene	ug/L	0.40	0.40	<0.050	9761914	<0.050	0.050	0.0030	9758371
Acenaphthylene	ug/L	0.065	0.059	<0.050	9761914	<0.050	0.050	0.0030	9758371
Anthracene	ug/L	0.13	0.12	<0.050	9761914	<0.050	0.050	0.0030	9758371
Benzo(a)anthracene	ug/L	<0.050	<0.050	<0.050	9761914	<0.050	0.050	0.0030	9758371
Benzo(a)pyrene	ug/L	0.042	0.042	0.021	9761914	<0.0090	0.0090	0.0030	9758371
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	<0.050	9761914	<0.050	0.050	0.0030	9758371
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	9761914	<0.050	0.050	0.0030	9758371
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	9761914	<0.050	0.050	0.0030	9758371
Chrysene	ug/L	<0.050	<0.050	<0.050	9761914	<0.050	0.050	0.0030	9758371
Dibenzo(a,h)anthracene	ug/L	<0.050	<0.050	<0.050	9761914	<0.050	0.050	0.0030	9758371
Fluoranthene	ug/L	0.26	0.28	<0.050	9761914	<0.050	0.050	0.0030	9758371
Fluorene	ug/L	0.62	0.61	<0.050	9761914	<0.050	0.050	0.0030	9758371
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	9761914	<0.050	0.050	0.0030	9758371
1-Methylnaphthalene	ug/L	0.39	0.40	<0.050	9761914	<0.050	0.050	0.0030	9758371
2-Methylnaphthalene	ug/L	0.29	0.29	<0.050	9761914	<0.050	0.050	0.0030	9758371
Naphthalene	ug/L	2.2	2.2	<0.050	9761914	<0.050	0.050	0.0030	9758371
Phenanthrene	ug/L	1.0	1.0	<0.030	9761914	<0.030	0.030	0.0030	9758371
Pyrene	ug/L	0.18	0.19	<0.050	9761914	<0.050	0.050	0.0030	9758371
Surrogate Recovery (%)									
D10-Anthracene	%	109	109	108	9761914	97			9758371
D14-Terphenyl (FS)	%	103	107	94	9761914	98			9758371
D8-Acenaphthylene	%	106	103	102	9761914	88			9758371

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 PAHS (WATER)

Bureau Veritas ID		AIFD27			AIFD28			
Sampling Date		2024/11/06 11:30			2024/11/06 11:55			
COC Number		1021273-04-01			1021273-04-01			
C. Section of the Control of the Con	UNITS	MW10	RDL	MDL	MW9	RDL	MDL	QC Batch
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/L	<0.071	0.071	N/A	<0.071	0.071	N/A	9753939
Polyaromatic Hydrocarbons								
Acenaphthene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Acenaphthylene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Anthracene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Benzo(a)anthracene	ug/I	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Benzo(a)pyrene	ug/L	<0.0090	0.0090	0.0030	<0.0090	0.0090	0.0030	9758371
Benzo(b/j)fluoranthene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Benzo(k)fluoranthene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Chrysene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Dibenzo(a,h)anthracene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Fluoranthene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Fluorene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Indeno(1,2,3-cd)pyrene	ug/L	< 0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
1-Methylnaphthalene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
2-Methylnaphthalene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Naphthalene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Phenanthrene	ug/L	<0.030	0.030	0.0030	<0.20 (1)	0.20	0.020	9758371
Pyrene	ug/L	<0.050	0.050	0.0030	<0.050	0.050	0.0030	9758371
Surrogate Recovery (%)								
D10-Anthracene	%	97			99			9758371
D14-Terphenyl (FS)	%	100			104			9758371
D8-Acenaphthylene	%	90			91			9758371

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Detection Limit was raised due to matrix interferences.

Report Date: 2024/11/14

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFD17			AIFD18	AIFD20			
Sampling Date		2024/11/05 15:05			2024/11/05 14:05	2024/11/05 13:05			
COC Number		1021273-04-01			1021273-04-01	1021273-04-01			
	UNITS	MW2	RDL	MDL	MW3	MW6	RDL	MDL	QC Batch
Calculated Parameters	•								
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	0.50	<0.50	<0.50	0.50	0.50	9753940
Volatile Organics									
Acetone (2-Propanone)	ug/L	<10	10	1.0	13	<10	10	1.0	9754785
Benzene	ug/L	<0.17	0.17	0.020	<0.17	0.30	0.17	0.020	9754785
Bromodichloromethane	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
Bromoform	ug/L	<1.0	1.0	0.10	<1.0	<1.0	1.0	0.10	9754785
Bromomethane	ug/L	<0.50	0.50	0.10	<0.50	<0.50	0.50	0.10	9754785
Carbon Tetrachloride	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
Chlorobenzene	ug/L	<0.20	0.20	0.010	<0.20	<0.20	0.20	0.010	9754785
Chloroform	ug/L	<0.30 (1)	0.30	0.075	<0.20	<0.20	0.20	0.050	9754785
Dibromochloromethane	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
1,2-Dichlorobenzene	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
1,3-Dichlorobenzene	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
1,4-Dichlorobenzene	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	0.050	<1.0	<1.0	1.0	0.050	9754785
1,1-Dichloroethane	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
1,2-Dichloroethane	ug/L	<0.50	0.50	0.020	<0.50	<0.50	0.50	0.020	9754785
1,1-Dichloroethylene	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
1,2-Dichloropropane	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	0.050	<0.30	<0.30	0.30	0.050	9754785
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	0.050	<0.40	<0.40	0.40	0.050	9754785
Ethylbenzene	ug/L	<0.20	0.20	0.010	<0.20	<0.20	0.20	0.010	9754785
Ethylene Dibromide	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
Hexane	ug/L	<1.0	1.0	0.10	<1.0	<1.0	1.0	0.10	9754785
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	0.10	<2.0	<2.0	2.0	0.10	9754785
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	0.50	<10	<10	10	0.50	9754785
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	0.10	<5.0	<5.0	5.0	0.10	9754785
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
Styrene	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) The detection limit was raised due to matrix interference.

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFD17			AIFD18	AIFD20			
Sampling Date		2024/11/05			2024/11/05	2024/11/05			
Sampling Date		15:05			14:05	13:05			
COC Number		1021273-04-01			1021273-04-01	1021273-04-01			
	UNITS	MW2	RDL	MDL	MW3	MW6	RDL	MDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
Tetrachloroethylene	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
Toluene	ug/L	0.37	0.20	0.010	<0.20	0.29	0.20	0.010	9754785
1,1,1-Trichloroethane	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
1,1,2-Trichloroethane	ug/L	<0.50	0.50	0.050	<0.50	<0.50	0.50	0.050	9754785
Trichloroethylene	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	0.10	<0.50	<0.50	0.50	0.10	9754785
Vinyl Chloride	ug/L	<0.20	0.20	0.050	<0.20	<0.20	0.20	0.050	9754785
p+m-Xylene	ug/L	0.22	0.20	0.010	<0.20	0.41	0.20	0.010	9754785
o-Xylene	ug/L	<0.20	0.20	0.010	<0.20	<0.20	0.20	0.010	9754785
Total Xylenes	ug/L	0.22	0.20	0.010	<0.20	0.41	0.20	0.010	9754785
F1 (C6-C10)	ug/L	<25	25	20	<25	46	25	20	9754785
F1 (C6-C10) - BTEX	ug/L	<25	25	20	<25	45	25	20	9754785
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	<90	90	50	<90	<90	90	50	9758370
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	70	<200	<200	200	70	9758370
F4 (C34-C50 Hydrocarbons)	Il/gii	<200	200	50	<200	<200	200	50	9758370
Reached Baseline at C50	ug/L	Yes			Yes	Yes			9758370
Surrogate Recovery (%)									
o-Terphenyl	%	110			105	105			9758370
4-Bromofluorobenzene	%	99			98	99			9754785
D4-1,2-Dichloroethane	%	105			107	106			9754785
D8-Toluene	%	92			92	93			9754785

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFD20				AIFD21	AIFD22			
Sampling Date		2024/11/05				2024/11/05	2024/11/06			
Sampling Date		13:05				12:05	10:45			
COC Number		1021273-04-01				1021273-04-01	1021273-04-01			
	UNITS	MW6 Lab-Dup	RDL	MDL	QC Batch	MW7	MW1	RDL	MDL	QC Batch
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/L					<0.50	<0.50	0.50	0.50	9753940
Volatile Organics										
Acetone (2-Propanone)	ug/L					<10	<10	10	1.0	9754785
Benzene	ug/L					<0.17	<0.17	0.17	0.020	9754785
Bromodichloromethane	ug/L					<0.50	<0.50	0.50	0.050	9754785
Bromoform	ug/L					<1.0	<1.0	1.0	0.10	9754785
Bromomethane	ug/L					<0.50	<0.50	0.50	0.10	9754785
Carbon Tetrachloride	ug/L					<0.20	<0.20	0.20	0.050	9754785
Chlorobenzene	ug/L					<0.20	<0.20	0.20	0.010	9754785
Chloroform	ug/L					0.20	<0.20	0.20	0.050	9754785
Dibromochloromethane	ug/L					<0.50	<0.50	0.50	0.050	9754785
1,2-Dichlorobenzene	ug/L					<0.50	<0.50	0.50	0.050	9754785
1,3-Dichlorobenzene	ug/L					<0.50	<0.50	0.50	0.050	9754785
1,4-Dichlorobenzene	ug/L					<0.50	<0.50	0.50	0.050	9754785
Dichlorodifluoromethane (FREON 12)	ug/L					<1.0	<1.0	1.0	0.050	9754785
1,1-Dichloroethane	ug/L					<0.20	<0.20	0.20	0.050	9754785
1,2-Dichloroethane	ug/L					<0.50	<0.50	0.50	0.020	9754785
1,1-Dichloroethylene	ug/L					<0.20	<0.20	0.20	0.050	9754785
cis-1,2-Dichloroethylene	ug/L					<0.50	<0.50	0.50	0.050	9754785
trans-1,2-Dichloroethylene	ug/L					<0.50	<0.50	0.50	0.050	9754785
1,2-Dichloropropane	ug/L					<0.20	<0.20	0.20	0.050	9754785
cis-1,3-Dichloropropene	ug/L					<0.30	<0.30	0.30	0.050	9754785
trans-1,3-Dichloropropene	ug/L					<0.40	<0.40	0.40	0.050	9754785
Ethylbenzene	ug/L					<0.20	<0.20	0.20	0.010	9754785
Ethylene Dibromide	ug/L					<0.20	<0.20	0.20	0.050	9754785
Hexane	ug/L					<1.0	<1.0	1.0	0.10	9754785
Methylene Chloride(Dichloromethane)	ug/L					<2.0	<2.0	2.0	0.10	9754785
Methyl Ethyl Ketone (2-Butanone)	ug/L					<10	<10	10	0.50	9754785
Methyl Isobutyl Ketone	ug/L					<5.0	<5.0	5.0	0.10	9754785
Methyl t-butyl ether (MTBE)	ug/L					<0.50	<0.50	0.50	0.050	9754785
Styrene	ug/L					<0.50	<0.50	0.50	0.050	9754785

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFD20				AIFD21	AIFD22			
		2024/11/05				2024/11/05	2024/11/06			
Sampling Date		13:05				12:05	10:45			
COC Number		1021273-04-01				1021273-04-01	1021273-04-01			
a distribution of the con-	UNITS	MW6 Lab-Dup	RDL	MDL	QC Batch	MW7	MW1	RDL	MDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/L					<0.50	<0.50	0.50	0.050	9754785
1,1,2,2-Tetrachloroethane	ug/L					<0.50	<0.50	0.50	0.050	9754785
Tetrachloroethylene	ug/L					<0.20	<0.20	0.20	0.050	9754785
Toluene	ug/L					<0.20	<0.20	0.20	0.010	9754785
1,1,1-Trichloroethane	ug/L					<0.20	<0.20	0.20	0.050	9754785
1,1,2-Trichloroethane	ug/L					<0.50	<0.50	0.50	0.050	9754785
Trichloroethylene	ug/L					<0.20	<0.20	0.20	0.050	9754785
Trichlorofluoromethane (FREON 11)	ug/L					<0.50	<0.50	0.50	0.10	9754785
Vinyl Chloride	ug/L					<0.20	<0.20	0.20	0.050	9754785
p+m-Xylene	ug/L					<0.20	<0.20	0.20	0.010	9754785
o-Xylene	ug/L					<0.20	<0.20	0.20	0.010	9754785
Total Xylenes	ug/L					<0.20	<0.20	0.20	0.010	9754785
F1 (C6-C10)	ug/L					<25	<25	25	20	9754785
F1 (CG-C10) - BTEX	ug/l					<25	<25	25	20	9754785
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<90	90	50	9758370	<90	<90	90	50	9758370
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	70	9758370	<200	<200	200	70	9758370
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	50	9758370	<200	<200	200	50	9758370
Reached Baseline at C50	ug/L	Yes			9758370	Yes	Yes			9758370
Surrogate Recovery (%)										
o-Terphenyl	%	111			9758370	111	106			9758370
4-Bromofluorobenzene	%					99	98			9754785
D4-1,2-Dichloroethane	%					108	108			9754785
D8-Toluene	%					91	92			9754785

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFD23	AIFD24	AIFD25	AIFD26			
Sampling Date		2024/11/06 13:10	2024/11/06	2024/11/06 10:00	2024/11/06 12:35			
COC Number		1021273-04-01	1021273-04-01	1021273-04-01	1021273-04-01			
	UNITS	MW4	QC-01	MW5	MW12	RDL	MDL	QC Batch
Calculated Parameters			<u></u>					
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.50	9753940
Volatile Organics								
Acetone (2-Propanone)	ug/L	<10	<10	<10	<10	10	1.0	9754785
Benzene	ug/L	0.60	0.60	<0.17	<0.17	0.17	0.020	9754785
Bromodichloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	0.10	9754785
Bromomethane	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.10	9754785
Carbon Tetrachloride	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
Chlorobenzene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.010	9754785
Chloroform	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
Dibromochloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	0.050	
1,1-Dichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
1,2-Dichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.020	9754785
1,1-Dichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
1,2-Dichloropropane	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	<0.30	<0.30	0.30	0.050	9754785
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	<0.40	<0.40	0.40	0.050	9754785
Ethylbenzene	ug/L	0.28	0.28	<0.20	<0.20	0.20	0.010	9754785
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
Hexane	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	0.10	9754785
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	0.10	9754785
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	<10	<10	10	0.50	9754785
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	0.10	9754785
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
Styrene	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFD23	AIFD24	AIFD25	AIFD26			
Sampling Date		2024/11/06 13:10	2024/11/06	2024/11/06 10:00	2024/11/06 12:35			
COC Number		1021273-04-01	1021273-04-01	1021273-04-01	1021273-04-01			
	UNITS	MW4	QC-01	MW5	MW12	RDL	MDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
Tetrachloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
Toluene	ug/L	0.50	0.51	<0.20	<0.20	0.20	0.010	9754785
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.050	9754785
Trichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	0.10	9754785
Vinyl Chloride	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	0.050	9754785
p+m-Xylene	ug/L	2.3	2.3	<0.20	<0.20	0.20	0.010	9754785
o-Xylene	ug/L	0.23	0,23	<0.20	<0.20	0.20	0.010	9754785
Total Xylenes	ug/L	2.5	2.5	<0.20	<0.20	0.20	0.010	9754785
F1 (C6-C10)	ug/L	30	36	<25	<25	25	20	9754785
F1 (C6-C10) - BTEX	ug/L	26	32	<25	<25	25	20	9754785
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/L	<90	<90	<90	<90	90	50	9758370
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	200	70	9758370
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	200	50	9758370
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes			9758370
Surrogate Recovery (%)	***	14-						
o-Terphenyl	%	112	110	112	112			9758370
4-Bromofluorobenzene	%	98	98	98	99			9754785
D4-1,2-Dichloroethane	%	106	105	108	107			9754785
D8-Toluene	%	93	93	92	92			9754785

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFD27	AIFD28				AIFD30			
Sampling Date		2024/11/06 11:30	2024/11/06 11:55	0			2024/11/06			
COC Number		1021273-04-01	1021273-04-01				1021273-04-01			
	UNITS	MW10	MW9	RDL	MDL	QC Batch	TRIP BLANK	RDL	MDL	QC Batch
Calculated Parameters					72					
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	0.50	0.50	9753940	<0.50	0.50	0.50	9753940
Volatile Organics		hi	•							
Acetone (2-Propanone)	ug/L	<10	<10	10	1.0	9754785	<10	10	1.0	9754785
Benzene	ug/L	<0.17	<0.17	0.17	0.020	9754785	<0.17	0.17	0.020	9754785
Bromodichloromethane	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Bromoform	ug/L	<1.0	<1.0	1.0	0.10	9754785	<1.0	1.0	0.10	9754785
Bromomethane	ug/L	<0.50	<0.50	0.50	0.10	9754785	<0.50	0.50	0.10	9754785
Carbon Tetrachloride	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Chlorobenzene	ug/L	<0.20	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
Chloroform	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Dibromochloromethane	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	1.0	0.050	9754785	<1.0	1.0	0.050	9754785
1,1-Dichloroethane	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
1,2-Dichloroethane	ug/L	<0.50	<0.50	0.50	0.020	9754785	<0.50	0.50	0.020	9754785
1,1-Dichloroethylene	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,2-Dichloropropane	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	0.30	0.050	9754785	<0.30	0.30	0.050	9754785
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	0.40	0.050	9754785	<0.40	0.40	0.050	9754785
Ethylbenzene	ug/L	<0.20	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
Ethylene Dibromide	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Hexane	ug/L	<1.0	<1.0	1.0	0.10	9754785	<1.0	1.0	0.10	9754785
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	2.0	0.10	9754785	<2.0	2.0	0.10	9754785
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	10	0.50	9754785	<10	10	0.50	9754785
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	5.0	0.10	9754785	<5.0	5.0	0.10	9754785
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Styrene	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFD27	AIFD28				AIFD30			
Sampling Date		2024/11/06 11:30	2024/11/06 11:55				2024/11/06			
COC Number		1021273-04-01	1021273-04-01				1021273-04-01			
	UNITS	MW10	MW9	RDL	MDL	QC Batch	TRIP BLANK	RDL	MDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Tetrachloroethylene	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Toluene	ug/L	<0.20	1.3	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Trichloroethylene	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	0.50	0.10	9754785	<0.50	0.50	0.10	9754785
Vinyl Chloride	ug/L	<0.20	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
p+m-Xylene	ug/L	<0.20	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
o-Xylene	ug/L	<0.20	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
Total Xylenes	ug/L	<0.20	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
F1 (C6-C10)	ug/L	<25	<25	25	20	9754785	<25	25	20	9754785
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	20	9754785	<25	25	20	9754785
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<90	<90	90	50	9758370				
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	70	9758370				
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	50	9758370				
Reached Baseline at C50	ug/L	Yes	Yes			9758370				
Surrogate Recovery (%)										
o-Terphenyl	%	110	109			9758370				
4-Bromofluorobenzene	%	98	98			9754785	98			9754785
D4-1,2-Dichloroethane	%	109	108			9754785	107			9754785
D8-Toluene	%	92	91			9754785	91			9754785

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFF00				AIFF00			
Sampling Date		2024/11/06				2024/11/06			
COC Number		1021273-04-01				1021273-04-01			
	UNITS	QC-02	RDL	MDL	QC Batch	QC-02 Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	0.50	9753940				
Volatile Organics								-	
Acetone (2-Propanone)	ug/L	<10	10	1.0	9754785	<10	10	1.0	9754785
Benzene	ug/L	<0.17	0.17	0.020	9754785	<0.17	0.17	0.020	9754785
Bromodichloromethane	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Bromoform	ug/L	<1.0	1.0	0.10	9754785	<1.0	1.0	0.10	9754785
Bromomethane	ug/L	<0.50	0.50	0.10	9754785	<0.50	0.50	0.10	9754785
Carbon Tetrachloride	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Chlorobenzene	ug/L	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
Chloroform	ug/L	2.0	0.20	0.050	9754785	2.0	0.20	0.050	9754785
Dibromochloromethane	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,2-Dichlorobenzene	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50		9754785
1,3-Dichlorobenzene	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,4-Dichlorobenzene	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50		9754785
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	0.050	9754785	<1.0	1.0		9754785
1,1-Dichloroethane	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
1,2-Dichloroethane	ug/L	<0.50	0.50	0.020	9754785	<0.50	0.50	0.020	9754785
1,1-Dichloroethylene	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,2-Dichloropropane	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	0.050	9754785	<0.30	0.30	0.050	9754785
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	0.050	9754785	<0.40	0.40	0.050	9754785
Ethylbenzene	ug/L	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
Ethylene Dibromide	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Hexane	ug/L	<1.0	1.0	0.10	9754785	<1.0	1.0	0.10	9754785
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	0.10	9754785	<2.0	2.0	0.10	9754785
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	0.50	9754785	<10	10	0.50	9754785
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	0.10	9754785	<5.0	5.0	0.10	9754785
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Styrene	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		AIFF00				AIFF00			
Sampling Date		2024/11/06				2024/11/06			
COC Number		1021273-04-01				1021273-04-01			
	UNITS	QC-02	RDL	MDL	QC Batch	QC-02 Lab-Dup	RDL	MDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Tetrachloroethylene	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Toluene	ug/L	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
1,1,1-Trichloroethane	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
1,1,2-Trichloroethane	ug/L	<0.50	0.50	0.050	9754785	<0.50	0.50	0.050	9754785
Trichloroethylene	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	0.10	9754785	<0.50	0.50	0.10	9754785
Vinyl Chloride	ug/L	<0.20	0.20	0.050	9754785	<0.20	0.20	0.050	9754785
p+m-Xylene	ug/L	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
o-Xylene	ug/L	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
Total Xylenes	ug/L	<0.20	0.20	0.010	9754785	<0.20	0.20	0.010	9754785
F1 (C6-C10)	ug/L	<25	25	20	9754785	<25	25	20	9754785
Г1 (С6-С10) - BTFX	ug/l	<25	25	20	9754785	<25	25	20	9754785
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	<90	90	50	9758370				
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	70	9758370				
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	50	9758370				
Reached Baseline at C50	ug/L	Yes			9758370				
Surrogate Recovery (%)									
o-Terphenyl	%	110			9758370				
4-Bromofluorobenzene	%	98			9754785	100			9754785
D4-1,2-Dichloroethane	%	105			9754785	105			9754785
D8-Toluene	%	92			9754785	93			9754785

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: AIFD17

Collected: 2024/11/05

Sample ID: MW2 Matrix: Water Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/11	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9758371	2024/11/11	2024/11/11	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFD18 Sample ID: MW3
Matrix: Water

Collected: 2024/11/05

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9757814	N/A	2024/11/11	Surleen Kaur Romana
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/08	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9762816	2024/11/13	2024/11/14	Jiaxuan (Simon) Xi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFD20 Sample ID: MW6 Matrix: Water

Collected: 2024/11/05

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/11	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9758371	2024/11/11	2024/11/11	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: AIFD20 Dup Sample ID: MW6

Matrix: Water

Collected: 2024/11/05

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9758371	2024/11/11	2024/11/11	Jonghan Yoon

Bureau Veritas ID: AIFD21

Sample ID: MW7

Matrix: Water

Collected: 2024/11/05

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756205	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/12	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9758371	2024/11/11	2024/11/11	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Verilas ID. AIFD22 Sample ID: MW1

Matrix: Water

Collected: 2024/11/06

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/11	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9758371	2024/11/11	2024/11/11	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFD23 Sample ID: MW4

Matrix: Water

Collected: 2024/11/06

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: AIFD23

Sample ID: MW4 Matrix: Water

Collected: 2024/11/06

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/11	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9761914	2024/11/13	2024/11/13	Joe Paino
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFD24 Sample ID: QC-01

Matrix: Water

Shipped:

Collected: 2024/11/06

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9757814	N/A	2024/11/11	Surleen Kaur Romana
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/11	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9761914	2024/11/13	2024/11/13	Joe Paino
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFD25 Sample ID: MW5 Matrix: Water

Shipped:

Collected: 2024/11/06

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/08	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9761914	2024/11/13	2024/11/13	Joe Paino
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFD25 Dup

Sample ID: MW5

Matrix: Water

Collected: 2024/11/06

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/08	Azita Fazaeli

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: AIFD26 Sample ID: MW12 Matrix: Water

Collected: 2024/11/06

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757652	N/A	2024/11/11	Jency Sara Johnson
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/11	Azila Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9/583/1	2024/11/11	2024/11/12	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFD27 Sample ID: MW10 Matrix: Water

Collected: 2024/11/06

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757654	N/A	2024/11/11	Prgya Panchal
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/11	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9758371	2024/11/11	2024/11/12	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFD28 Sample ID: MW9
Matrix: Water

Collected: 2024/11/06 Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9753939	N/A	2024/11/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9756113	N/A	2024/11/12	Massarat Jan
Chromium (VI) in Water	IC	9759381	N/A	2024/11/12	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9757654	N/A	2024/11/11	Prgya Panchal
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9758001	2024/11/11	2024/11/12	Maitri PATIL
Dissolved Metals by ICPMS	ICP/MS	9755168	N/A	2024/11/08	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9758371	2024/11/11	2024/11/12	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Report Date: 2024/11/14

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: AIFD30

Sample ID: TRIP BLANK

Matrix: Water

Collected: 2024/11/06

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFF00

Sample ID: QC-02

Matrix: Water

Shipped:

Collected: 2024/11/06

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9753940	N/A	2024/11/12	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9758370	2024/11/11	2024/11/12	Mohammed Abdul Nafay Shoeb
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Bureau Veritas ID: AIFF00 Dup

Sample ID: QC-02

Matrix: Water

Collected: 2024/11/06

Shipped:

Received: 2024/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9754785	N/A	2024/11/11	Dina Wang

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	15.3°C
Package 2	15.3°C

Sample AIFD18 [MW3]: PAH-SIM-L: Used part 07 from VOC vials for analysis since part 06 is not available.

Sample AIFD20 [MW6]: Metal Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample AIFD21 [MW7]: Metal Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9754785	4-Bromofluorobenzene	2024/11/11	102	70 - 130	101	70 - 130	100	%		
9754785	D4-1,2-Dichloroethane	2024/11/11	100	70 - 130	98	70 - 130	102	%		
9754785	D8-Toluene	2024/11/11	102	70 - 130	101	70 - 130	94	%		
9758370	o-Terphenyl	2024/11/12	110	60 - 140	113	60 - 140	110	%		
9758371	D10-Anthracene	2024/11/12	95	50 - 130	96	50 - 130	111	%		
9758371	D14-Terphenyl (FS)	2024/11/12	101	50 - 130	104	50 - 130	114	%		
9758371	D8-Acenaphthylene	2024/11/12	92	50 - 130	92	50 - 130	104	%		
9761914	D10-Anthracene	2024/11/13	108	50 - 130	108	50 - 130	112	%		
9761914	D14-Terphenyl (FS)	2024/11/13	113	50 - 130	109	50 - 130	113	%		
9761914	D8-Acenaphthylene	2024/11/13	103	50 - 130	102	50 - 130	97	%		
9762816	D10-Anthracene	2024/11/13	105	50 - 130	107	50 - 130	106	%		
9762816	D14-Terphenyl (FS)	2024/11/13	104	50 - 130	108	50 - 130	104	%		
9762816	D8-Acenaphthylene	2024/11/13	104	50 - 130	66	50 - 130	85	%		
9754785	1,1,1,2-Tetrachloroethane	2024/11/11	108	70 - 130	109	70 - 130	<0.50	ng/L	NC	30
9754785	1,1,1-Trichloroethane	2024/11/11	95	70 - 130	96	70 - 130	<0.20	1/Bn	NC	30
9754785	1,1,2,2-Tetrachloroethane	2024/11/11	92	70 - 130	92	70 - 130	<0.50	ng/L	NC	30
9754785	1,1,2-Trichloroethane	2024/11/11	66	70 - 130	66	70 - 130	<0.50	1/8n	NC	30
9754785	1,1-Dichloroethane	2024/11/11	92	70 - 130	93	70 - 130	<0.20	1/8n	NC	30
9754785	1,1-Dichloroethylene	2024/11/11	95	70 - 130	98	70 - 130	<0.20	1/8n	NC	30
9754785	1,2-Dichlorobenzene	2024/11/11	104	70 - 130	105	70 - 130	<0.50	ng/L	NC	30
9754785	1,2-Dichloroethane	2024/11/11	103	70 - 130	104	70 - 130	<0.50	ng/L	NC	30
9754785	1,2-Dichloropropane	2024/11/11	97	70 - 130	66	70 - 130	<0.20	ng/L	NC	30
9754785	1,3-Dichlorobenzene	2024/11/11	103	70 - 130	105	70 - 130	<0.50	ng/L	NC	30
9754785	1,4-Dichlorobenzene	2024/11/11	104	70 - 130	107	70 - 130	<0.50	ng/L	NC	30
9754785	Acetone (2-Propanone)	2024/11/11	97	60 - 140	98	60 - 140	<10	1/8n	NC	30
9754785	Benzene	2024/11/11	96	70 - 130	66	70 - 130	<0.17	ng/L	NC	30
9754785	Bromodichloromethane	2024/11/11	97	70 - 130	98	70 - 130	<0.50	ng/L	NC	30
9754785	Bromoform	2024/11/11	98	70 - 130	98	70 - 130	<1.0	ng/L	NC	30
9754785	Bromomethane	2024/11/11	82	60 - 140	84	60 - 140	<0.50	ng/L	NC	30
9754785	Carbon Tetrachloride	2024/11/11	104	70 - 130	104	70 - 130	<0.20	ng/L	NC	30
9754785	Chlorobenzene	2024/11/11	94	70 - 130	96	70 - 130	<0.20	1/Bn	NC	30
				000						

Page 29 of 49

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www,bvna,com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Biank	iank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9754785	Chloroform	2024/11/11	26	70 - 130	86	70 - 130	<0.20	ng/L	0.50	30
9754785	cis-1,2-Dichloroethylene	2024/11/11	105	70 - 130	106	70 - 130	<0.50	1/8n	NC	30
9754785	cis-1,3-Dichloropropene	2024/11/11	98	70 - 130	102	70 - 130	<0.30	1/Bn	NC	30
9754785	Dibromochloromethane	2024/11/11	103	70 - 130	102	70 - 130	<0.50	ng/L	NC	30
9754785	Dichlorodifluoromethane (FREON 12)	2024/11/11	76	50 - 140	77	60 - 140	<1.0	ng/L	NC	30
9754785	Ethylbenzene	2024/11/11	66	70 - 130	101	70 - 130	<0.20	ng/L	NC	30
9754785	Ethylene Dibromide	2024/11/11	101	70 - 130	100	70 - 130	<0.20	ng/L	NC	30
9754785	F1 (C6-C10) - BTEX	2024/11/11					<25	∏/Bn	NC	30
9754785	F1 (C6-C10)	2024/11/11	91	50 - 140	91	60 - 140	<25	1/8n	NC	30
9754785	Hexane	2024/11/11	106	70 - 130	109	70 - 130	<1.0	ng/L	NC	30
9754785	Methyl Ethyl Ketone (2-Butanone)	2024/11/11	66	50 - 140	101	60 - 140	<10	1/Bn	NC	30
9754785	Methyl Isobutyl Ketone	2024/11/11	100	70 - 130	103	70 - 130	<5.C	1/8n	NC	30
9754785	Methyl t-butyl ether (MTBE)	2024/11/11	100	70 - 130	102	70 - 130	<0.50	ng/L	NC	30
9754785	Methylene Chloride(Dichloromethane)	2024/11/11	96	70 - 130	26	70 - 130	<2.ū	l ng/L	NC	30
9754785	o-Xylene	2024/11/11	107	70 - 130	110	70 - 130	<0.20	ng/L	NC	30
9754785	p+m-Xylene	2024/11/11	100	70 - 130	103	70 - 130	<0.25	l ug/L	NC	30
9754785	Styrene	2024/11/11	104	70 - 130	105	70 - 130	<0.50	ng/L	NC	30
9754785	Tetrachloroethylene	2024/11/11	97	70 - 130	98	70 - 130	<0.23	ng/L	NC	30
9754785	Toluene	2024/11/11	66	70 - 130	101	70 - 130	<0.23	l ng/L	NC	30
9754785	Total Xylenes	2024/11/11					<0.23	ng/L	NC	30
9754785	trans-1,2-Dichloroethylene	2024/11/11	103	70 - 130	104	70 - 130	<0.53	ng/L	NC	30
9754785	trans-1,3-Dichloropropene	2024/11/11	107	70 - 130	112	70 - 130	<0.43	ng/L	NC	30
9754785	Trichloroethylene	2024/11/11	101	70 - 130	103	70 - 130	<0.23	ug/L	NC	30
9754785	Trichlorofluoromethane (FREON 11)	2024/11/11	95	70 - 130	96	70 - 130	<0.50	ng/L	NC	30
9754785	Vinyl Chloride	2024/11/11	88	70 - 130	06	70 - 130	<0.23	ng/L	NC	30
9755168	Dissolved Antimony (Sb)	2024/11/08	102	80 - 120	102	80 - 120	<0.00050	mg/L	NC	20
9755168	Dissolved Arsenic (As)	2024/11/08	66	80 - 120	100	80 - 120	<0.0010	mg/L	NC	20
9755168	Dissolved Barium (Ba)	2024/11/08	101	80 - 120	101	80 - 120	<0.0020	mg/L	2.1	20
9755168	Dissolved Beryllium (Be)	2024/11/08	97	80 - 120	97	80 - 120	<0.00040	mg/L	NC	20
9755168	Dissolved Boron (B)	2024/11/08	94	80 - 120	93	80 - 120	<0.020	mg/L	0.39	20
9755168	Dissolved Cadmium (Cd)	2024/11/08	97	80 - 120	98	80 - 120	<0.000090	mg/L	NC	20
			Dage 30 of 49	of 29						

Page 30 of 49

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2LB Tel: (905) 812-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

			Matrix Spike	Spike	SPIKED BLANK	LANK	Method Blank	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9755168	Dissolved Chromium (Cr)	2024/11/08	97	80 - 120	97	80 - 120	<0.0050	mg/L	NC	20
9755168	Dissolved Cobalt (Co)	2024/11/08	93	80 - 120	95	80 - 120	<0.00050	mg/L	0.36	20
9755168	Dissolved Copper (Cu)	2024/11/08	98	80 - 120	98	80 - 120	<0.00090	mg/L	NC	20
9755168	Dissolved Lead (Pb)	2024/11/08	91	80 - 120	94	80 - 120	<0.00050	mg/L	NC	20
9755168	Dissolved Molybdenum (Mo)	2024/11/08	103	80 - 120	100	80 - 120	<0.00050	mg/L	3.1	20
9755168	Dissolved Nickel (Ni)	2024/11/08	93	80 - 120	96	80 - 120	<0.0010	mg/L	11	20
9755168	Dissolved Selenium (Se)	2024/11/08	26	80 - 120	97	80 - 120	<0.0020	mg/L	NC	20
9755168	Dissolved Silver (Ag)	2024/11/08	89	80 - 120	96	80 - 120	<0.000090	mg/L	NC	20
9755168	Dissolved Sodium (Na)	2024/11/08	NC	80 - 120	96	80 - 120	<0.10	mg/L	2.2	20
9755168	Dissolved Thallium (TI)	2024/11/08	92	80 - 120	95	80 - 120	<0.000050	mg/L	NC	20
9755168	Dissolved Uranium (U)	2024/11/08	94	80 - 120	94	80 - 120	<0.00010	mg/L	1.8	20
9755168	Dissolved Vanadium (V)	2024/11/08	98	80 - 120	66	80 - 120	<0.00050	mg/L	5.5	20
9755168	Dissolved Zinc (Zn)	2024/11/08	92	80 - 120	97	80 - 120	<0.0050	mg/L	NC	20
9756113	Dissolved Chloride (CI-)	2024/11/12	NC	80 - 120	96	80 - 120	<1.0	mg/L	1.1	20
9756205	Dissolved Chloride (CI-)	2024/11/12	NC	80 - 120	96	80 - 120	<1.0	mg/L	0.068	20
9757652	WAD Cyanide (Free)	2024/11/11	94	80 - 120	102	80 - 120	<1	1/Bn	NC	20
9757654	WAD Cyanide (Free)	2024/11/11	97	80 - 120	105	80 - 120	<1	ng/L	NC	20
9757814	Chromium (VI)	2024/11/11	102	80 - 120	101	80 - 120	<0.50	ng/L	NC	20
9758001	Mercury (Hg)	2024/11/12	96	75 - 125	98	80 - 120	<0.10	ng/L	NC	20
9758370	F2 (C10-C16 Hydrocarbons)	2024/11/12	106	60 - 140	112	60 - 140	06>	l/gn	NC	30
9758370	F3 (C16-C34 Hydrocarbons)	2024/11/12	110	60 - 140	119	60 - 140	<200	l //gn	NC	30
9758370	F4 (C34-C50 Hydrocarbons)	2024/11/12	66	60 - 140	103	60 - 140	<200	ng/L	NC	30
9758371	1-Methylnaphthalene	2024/11/11	87	50 - 130	84	50 - 130	<0.050	ng/L	1.9	30
9758371	2-Methylnaphthalene	2024/11/11	85	50 - 130	81	50 - 130	<0.050	ng/L	NC	30
9758371	Acenaphthene	2024/11/11	93	50 - 130	95	50 - 130	<0.050	1/8n	4.7	30
9758371	Acenaphthylene	2024/11/11	96	50 - 130	93	50 - 130	<0.050	1/Bn	NC	30
9758371	Anthracene	2024/11/11	95	50 - 130	97	50 - 130	<0.050	1/8n	NC	30
9758371	Benzo(a)anthracene	2024/11/11	103	50 - 130	104	50 - 130	<0.050	ng/L	NC	30
9758371	Benzo(a)pyrene	2024/11/11	86	50 - 130	66	50 - 130	<0.0090	ng/L	7.1	30
9758371	Benzo(b/j)fluoranthene	2024/11/11	102	50 - 130	103	50 - 130	<0.050	ng/L	6.9	30
9758371	Benzo(g,h,i)perylene	2024/11/11	88	50 - 130	90	50 - 130	<0.050	ng/L	23	30

Page 31 of 49

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www,bvna.com

Stantec Consulting Ltd Client Project #: 12214C392 Sampler Initials: AS

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Bank	ank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9758371	Benzo(k)fluoranthene	2024/11/11	103	30 - 130	105	50 - 130	<0.050	ng/L	NC	30
9758371	Chrysene	2024/11/11	103	30 - 130	105	50 - 130	<0.050	ng/L	NC	30
9758371	Dibenzo(a,h)anthracene	2024/11/11	89	50 - 130	89	50-130	<0.050	ng/L	NC	30
9758371	Fluoranthene	2024/11/11	103	50 - 130	104	50 - 130	<0.050	1/Bn	4.5	30
9758371	Fluorene	2024/11/11	101	=0-130	101	50 - 130	<0.050	1/Bn	NC	30
9758371	Indeno(1,2,3-cd)pyrene	2024/11/11	84	30 - 130	86	50 - 130	<0.050	ng/L	16	30
9758371	Naphthalene	2024/11/11	83	50 - 130	81	50 - 130	<0.050	ng/L	0.53	30
9758371	Phenanthrene	2024/11/11	66	50 - 130	101	50 - 130	<0.030	ng/L	3.9	30
9758371	Pyrene	2024/11/11	104	50 - 130	105	50 - 130	<0.050	ng/L	4.7	30
9759381	Chromium (VI)	2024/11/12	103	50 - 120	103	80 - 120	<0.50	1/8n	NC	20
9761914	1-Methylnaphthalene	2024/11/13	97	50 - 130	92	50 - 130	<0.050	ng/L	NC	30
9761914	2-Methylnaphthalene	2024/11/13	94	50 - 130	87	50 - 130	<0.050	ng/L	NC	30
9761914	Acenaphthene	2024/11/13	106	50 - 130	100	50 - 130	<0.050	1/8n	NC	30
9761914	Acenaphthylene	2024/11/13	108	50 - 130	102	50 - 130	<0.050	ng/L	NC	30
9761914	Anthracene	2024/11/13	110	50 - 130	104	50 - 130	<0.050	ug/L	NC	30
9761914	Benzo(a)anthracene	2024/11/13	114	50 - 130	108	50 - 130	<0.050	ug/L	NC	30
9761914	Benzo(a)pyrene	2024/11/13	116	50 - 130	111	50 - 130	∞.0030	ug/L	NC	30
9761914	Benzo(b/j)fluoranthene	2024/11/13	117	50 - 130	112	50 - 130	<0.050	ng/L	NC	30
9761914	Benzo(g,h,i)perylene	2024/11/13	116	50 - 130	117	50 - 130	<0.050	ng/L	NC	30
9761914	Benzo(k)fluoranthene	2024/11/13	109	50 - 130	104	50 - 130	<0.050	ng/L	NC	30
9761914	Chrysene	2024/11/13	117	50 - 130	113	50 - 130	<0.050	1/Bn	NC	30
9761914	Dibenzo(a,h)anthracene	2024/11/13	112	50 - 130	108	50 - 130	<0.050	1/Bn	NC	30
9761914	Fluoranthene	2024/11/13	129	50 - 130	114	50 - 130	<0.050	ng/L	NC	30
9761914	Fluorene	2024/11/13	110	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
9761914	Indeno(1,2,3-cd)pyrene	2024/11/13	122	50 - 130	116	50 - 130	<0.050	ng/L	NC	30
9761914	Naphthalene	2024/11/13	91	50 - 130	98	50 - 130	<0.050	ng/L	NC	30
9761914	Phenanthrene	2024/11/13	111	50 - 130	106	50 - 130	<0.030	ng/L	NC	30
9761914	Pyrene	2024/11/13	127	50 - 130	111	50 - 130	<0.050	ng/L	NC	30
9762816	1-Methylnaphthalene	2024/11/14	116	50 - 130	106	50 - 130	<0.050	ng/L	NC	30
9762816	2-Methylnaphthalene	2024/11/14	111	50 - 130	106	50 - 130	<0.050	ng/L	NC	30
9762816	Acenaphthene	2024/11/14	111	50 - 130	107	50 - 130	<0.050	ng/L	NC	30
			Dage 37 of 79	of 29						

Page 3.2 of 49

Bureau Veritas 6740 Campobello Road, Mississauga, Ontaric, LSN 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Stantec Consulting Ltd Client Project #: 122140392 Sampler Initials: AS

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9762816	Acenaphthylene	2024/11/14	112	50 - 130	108	50 - 130	<0.050	ng/L	NC	30
9762816	Anthracene	2024/11/14	107	50 - 130	108	50 - 130	<0.050	1/Bn	NC	30
9762816	Benzo(a)anthracene	2024/11/14	103	50 - 130	106	50 - 130	<0.050	ng/L	NC	30
9762816	Benzo(a)pyrene	2024/11/14	101	50 - 130	115	50 - 130	<0.0090	ng/L	NC	30
9762816	Benzo(b/j)fluoranthene	2024/11/14	101	50 - 130	121	50 - 130	<0.050	ng/L	NC	30
9762816	Benzo(g,h,i)perylene	2024/11/14	101	50 - 130	122	50 - 130	<0.050	ng/L	NC	30
9762816	Benzo(k)fluoranthene	2024/11/14	92	50 - 130	117	50 - 130	<0.050	ng/L	NC	30
9762816	Chrysene	2024/11/14	101	50 - 130	110	50 - 130	<0.050	ng/L	NC	30
9762816	Dibenzo(a,h)anthracene	2024/11/14	95	50 - 130	110	50 - 130	<0.050	1/8n	NC	30
9762816	Fluoranthene	2024/11/14	115	50 - 130	117	50 - 130	<0.050	ng/L	NC	30
9762816	Fluorene	2024/11/14	110	50 - 130	105	50 - 130	<0.050	1/8n	NC	30
9762816	Indeno(1,2,3-cd)pyrene	2024/11/14	101	50 - 130	126	50 - 130	<0.050	1/8n	NC	30
9762816	Naphthalene	2024/11/14	104	50 - 130	103	50 - 130	<0.050	1/8n	NC	30
9762816	Phenanthrene	2024/11/14	108	50 - 130	106	50 - 130	<0.030	ng/L	NC	30
9762816	Pyrene	2024/11/14	112	50 - 130	114	50 - 130	<0.050	ng/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Stantec Consulting Ltd Client Project #: 122140392

Sampler Initials: AS

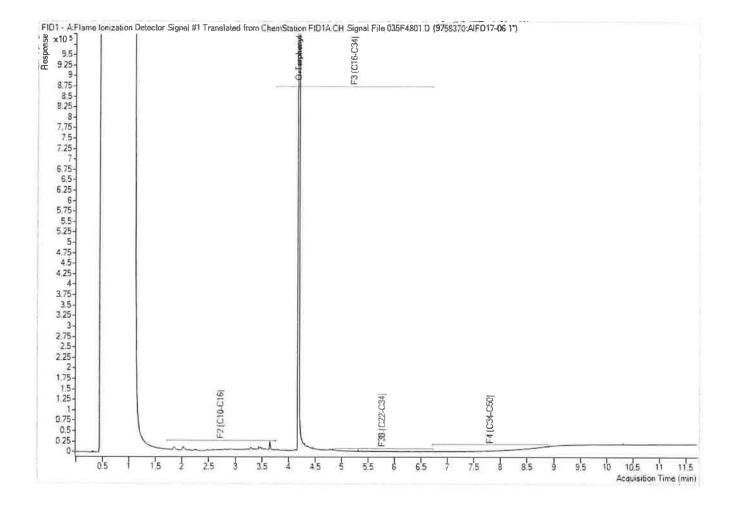
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

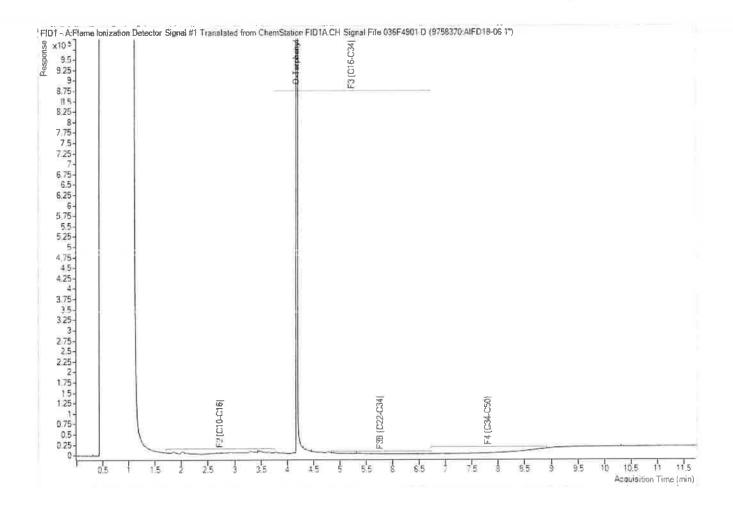
ATTENIOR DE Parge of St 15 Project Memager: Bottle Order # 李本 Wilder Bureau Ventras VI Job Specific Rush TAT (If applies to entire submission) NONT-2024-11-1140 Presse now Standard TAT for centain fasts such as BOO Pays - control pack Project Nature for centain Custody Sool Caracter 7.1.7 - \$.7 Working days for most mass. be applied # Rush TAT is not specified.) SAMPLES WIST BE KEPT COCK (< 10°C) PROWING OF SKAPLING UNTIL PELIVERY TO BUREAU VERITAS Terresiance (PC) an Rocar Regular (Standard) TAT: Laboratory Use Only USAN Conforts 5 2 J J 0 5 4 2 J 5 Time Sonshire A. Sinte, S. Printy, N. moore # jars used and not submitted PROJECT INFORMATION: 0 UNLESS CHESWISS ABREED TO MINOTING, WORK SUBMITTED ON THIS CHAIN OF CUSTOOY IS SUBJECT TO BIRBEALY PROTARS STANDARD TERMS AND CONDITIONS, SOORIS OF THIS CHAIN OF CUSTOOY DOCUMENT IS ACKNOWLEDABLEY AND ACCEPTANCE OF OUR TEXALS WHICH ARE ANALABLE FOR VIEWNO AT WINNIAMAL CONFIRMS, AND CONDITIONS. 122140392 C41673 15,38 IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO DESURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD, AN INCOMPLETE CHAIN OF CUSTODY NAY RESULT IN ANALYTICAL TAT DELAYS. SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEIVED AT WINWEBVIA, COMEDAIRON MENTAL-LABGRA CORESRESOURCES SIGHER, CUSTODY FORMS. COGS Рюјес: Мате Project, # O d 20111 mg Fax netta.benazon@stantoc.com; Marissa lusito@stantoc.c × × Byroau Varies 640 Europobelo Ross Mosissavça, Onar o Canaza Est 2,0 Tei (205) à 17-5775, Toll-fee 501-563-505, Fox (925) e 17-5777, www.tvms.co × × \times × × × × X X X >X × X X × × × X \times SZ Field Filtered (please circle) 1 / 3 RECEIVED SY. Water MOE REGULVIED DRINKING WATER OR VIATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE BUREAU VERITAS DRINKING WATER CHAIN OF CUSTODY Natta Benazon > Firms Sampled 15:05 13:05 11-05 37.26 10:45 (3.10 5-51 56.2 8-11 2 Company Name. Attentions Address Mess 6/24 NE05/14 23 Sanitary Sever Bylaw Date: (YY/WM/DD) Municipality
Reg 406 Table Other Regulations (519) 579-6733 Include Criteria on Certificate of Analysis (YIN)? CIMM #9197 Stantec Consulting Ltd
Accounts Payable
300 Hagey Blvd Suite 100
Waterloo ON N2L D44
(519) 579-4410
SAPinvolces@Stantec.com CCME
Reg 558
MISA
PW00 QC-01 MMS 322 RALIO NSZ MKZ K M W 3 * RELINGUISHED BY: (Signaturo/Print) MM INVOICE TO: Regulation 133 (2011)
side 1 M Resident Modernifier [[Modernifier]]
side 2 | Institute] For RSC [DE TURE South / ARCE Surply Barooce Lieses 2024/11/06 15:38 CONTRACT Company Name Table 3 C4Z1246 AHERSHUTE Address. 101


Page 35 of 49

10212-5 Project Manager. Judge Clement Job Specific Rush TAT (# Japanes to eather submission) Laboratory Use Only: Lander Standard (At forcement leasts such as SDD), Randard TAT # 5-2 Working days for most tests If be applied a Rush FAT is not specified) SAMPLES MIST BE KEPT COOL (* 10° O.) FROM THE OF DAMPING UNTIL DESMENYTO HURBAL VERVERS Bureau Veritas Job E. CHAIN OF CUSTODY RECORD Temperature (*C; on Neca Laboratory Jse Only Rush Continuation Number Act forther 4 + 2 A. Sinke G. Reman to Moste e jars used and not submitted PROJECT INFORMATION: VALESS OTHERWISE GARRED TO INVINITING, WORK SUBMITTED OIL THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERTIAS STANDARD TERMS AND CONDITIONS, SUGNING OF CUSTODY DOCUMENT IS ACKNOWLEDGARD TRANS AND CONDITIONS, SUGNING THE CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGARD TRANSFORMED TO ACKNOWLEDGARD TO A 122140392 IT IS THE RESPONSIBILIT OF THE RELADUISHER TO ENSURE THE AGCURACY OF THE CHAIN OF CUSTOOY RECORD, AN INCOMPLETE CHAIN OF CUSTOOY MAY RESULT IN ANA. YTICAL TAT DELAYS. ** SAMPLE CONTANNER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT WWW.DIVIALCOMENTRAL-LABORATORIES/RESOIRCES/CHAIV-CISTOO*-FORMS-COGS Poject Meme * 0 4 Poleci 5.40 # Fax netta benazon@stantec.com; Marissa.lusito@stantes; c birnau Vanisa GEG Caroobain Ross Masusauga, Omara Carosa LSA N.E. TAI (806-817-872). Tolishee (800-889-859-815-816-817-3177-www.bros.iom × RECEIVED BY: (Septuature/Print) (which weight) hazalidahi (NA 2 1 gH) alengle 5.3 41 3 REPORT TO Saty 1. 11 10 MOE REGULATED DRINKING WATER OR WATER INTENDED FOR HUMMY CONSUMPTION MUST BE SUBMITTED ON THE BUHEAU VERITAS DRINKING WATER CHAIN OF CUSTODY (4055) 24 8 8 5-(5) 12 W 124 Address Ni W Date: (YY/RM/DD) Storm Sewer Bylaw
Municipality
Reg 405 Talbe 201111106 (519) 579-6733 First Stronkas Include Criteria on Certificate of Analysis (YM)? 1rie Blank CCMF #9197 Stantec Consulting Ltd Accounts Payable 300 Hagay Bivd Suite 100 Waterloo ON NZE DA4 (519) 579-4410 SAPinvolces@Stantec.com MINIO Fac RELINCUSHED BY: (Signature-Print) INVOICE TO: KeyPan Moorates Indicorn Moorates 2024/11/06 15:38 V. 0.70 Company Name Table 3 C4Z1Z46

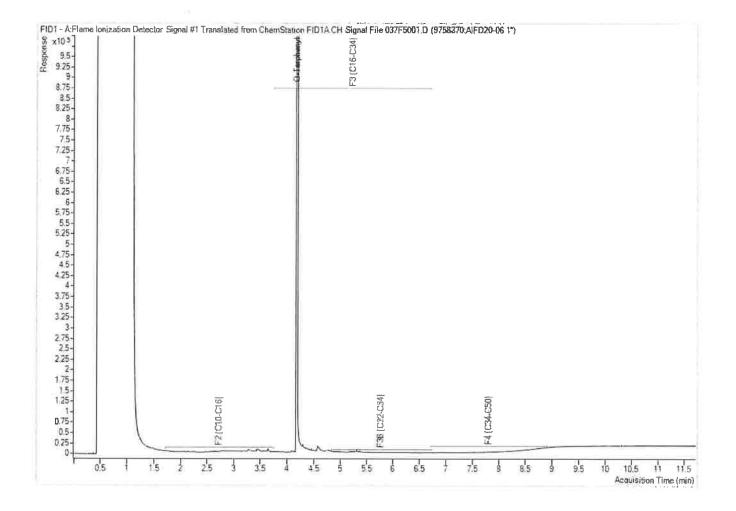
Page 36 of 49

Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW2


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

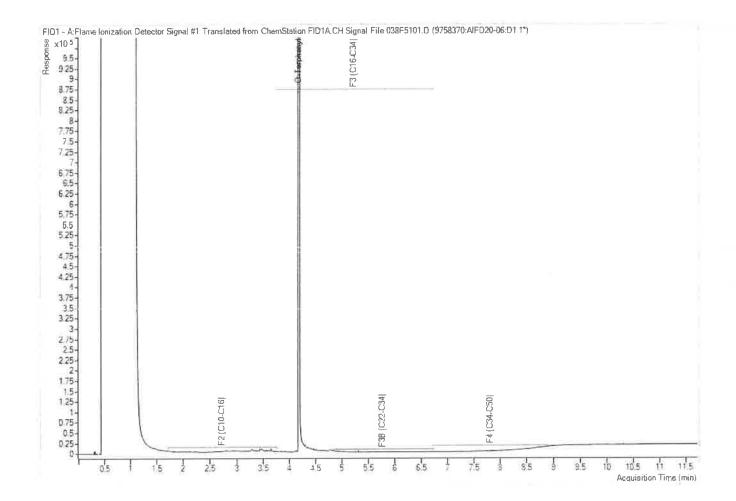
Client ID: MW3


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW6

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Bureau Veritas Sample: AIFD20 Lab-Dup

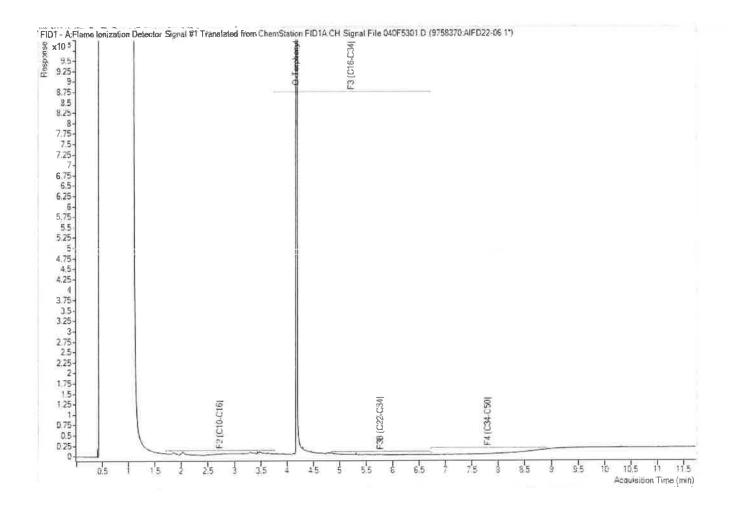
Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW6

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

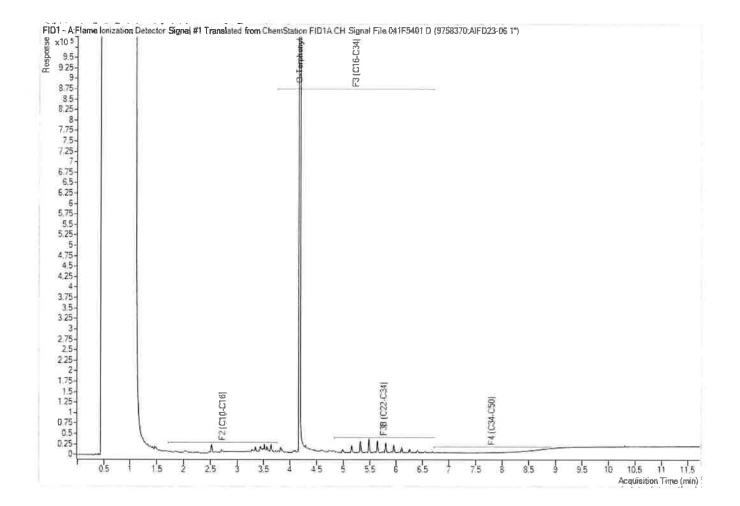
Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW7

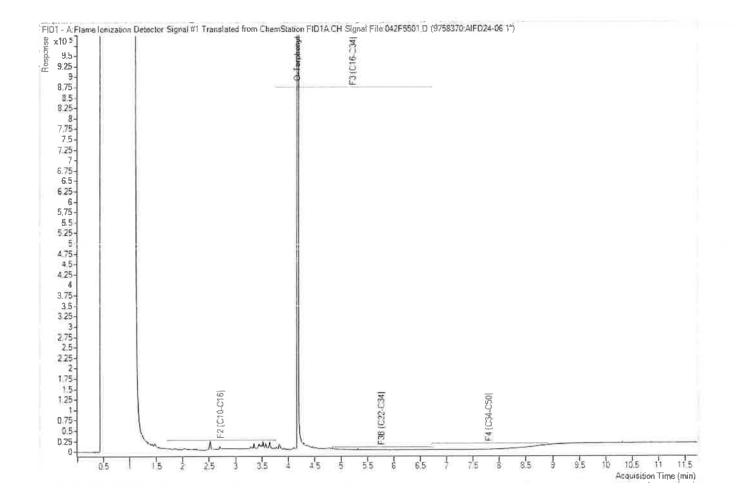

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

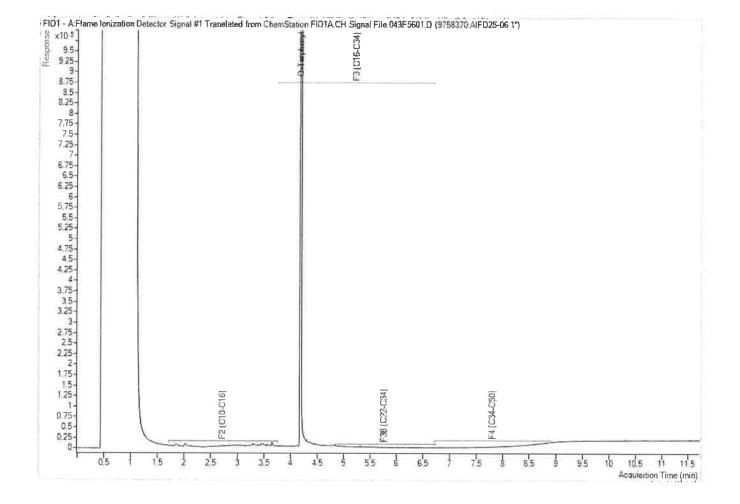
Client ID: MW1


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

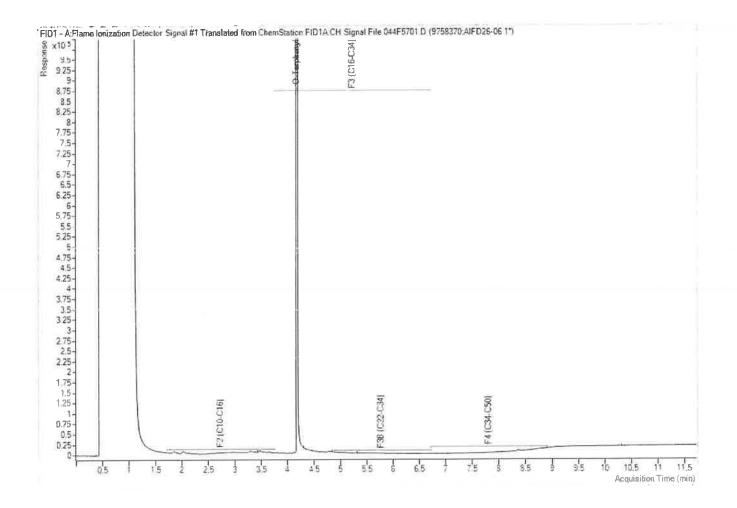

Client ID: MW4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram


Stantec Consulting Ltd Client Project #: 122140392 Client ID: QC-01

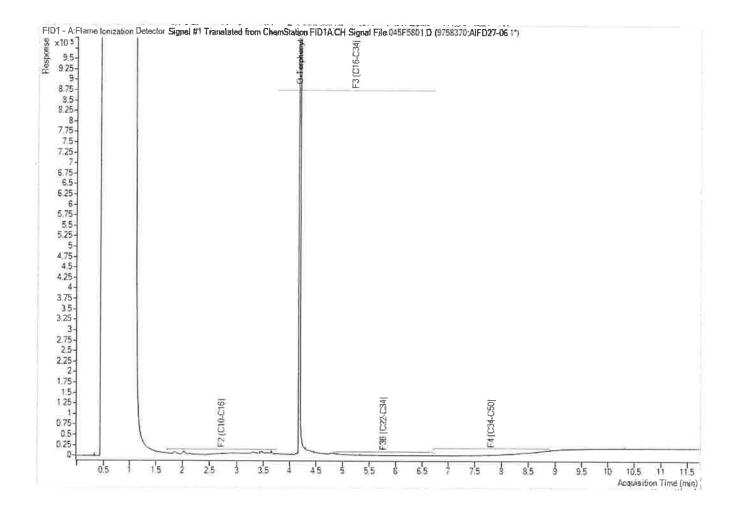
Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Stantec Consulting Ltd Client Project #: 122140392 Client ID: MW5


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

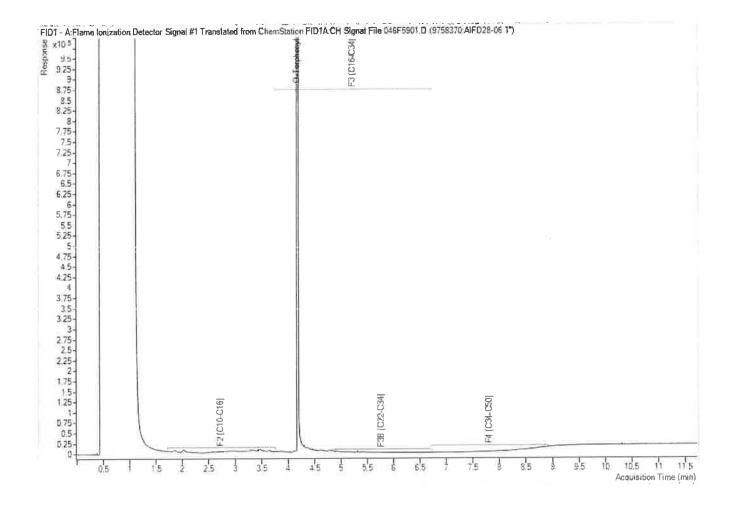
Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW12

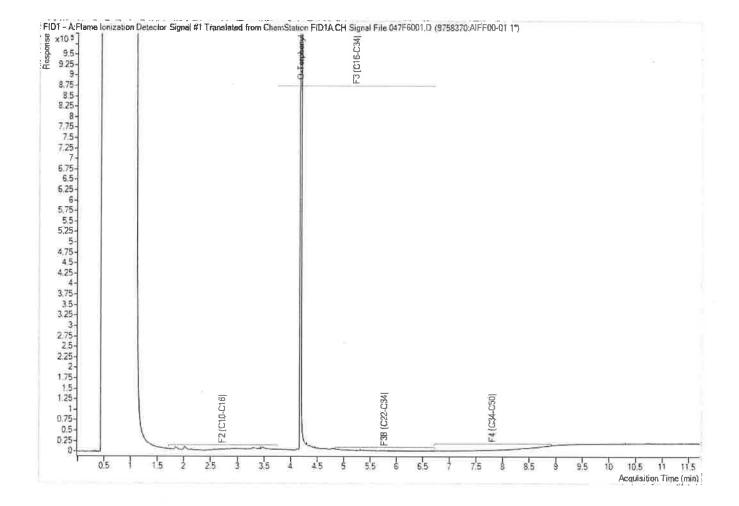

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Stantec Consulting Ltd Client Project #: 122140392

Client ID: MW10


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Stantec Consulting Ltd Client Project #: 122140392


Client ID: MW9

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Stantec Consulting Ltd Client Project #: 122140392 Client ID: QC-02

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

	×		